
C Technical Appendix

C.1 A Jump-Only Continuous Time Model

In this section, we describe an alternative to the diffusion-based model presented in sec-
tion §2, in which the DM updates her beliefs via a controlled Poisson process. For a deriva-
tion of this model, see Hébert and Woodford (2018). We informally demonstrate that, if the
cost of the Poisson signal is described by a Bregman divergence, Theorem 1 continues to
describe the DM’s value function, even though the beliefs follow a Poisson process as op-
posed to a diffusion. Formally, Theorem 1 and the results in Hébert and Woodford (2018),
taken together, imply this result.

We suppose that the DM’s beliefs follows the stochastic process

dqt =−ψtytdt + ytdJt ,

where dJt is a Poisson process with intensity ψt (controlled by the DM), and yt is direction
beliefs jump (also controlled by the DM). There is a trivial restriction to ensure beliefs stay
in the simplex: yt +qt ∈P(X) (let Y (qt) denote the set of yt for which this holds). There
is also a non-trivial restriction,

ψtD∗(qt + yt ||qt)≤ χ,

where D∗ is a divergence , convex in its first argument, and χ is a positive constant that
indexes the tightness of the constraint.

We will assume that D∗ satisfies, for all sets of signals S, all π ∈P(S), and q,q′,{qs}s∈S ∈
P(X) such that ∑s∈S πsqs = q′,

D∗(q′||q)+∑
s∈S

πsD∗(qs||q′)≥∑
s∈S

πsD∗(qs||q).

Note that a Bregman divergence (as defined in equation (11)) satisfies this condition with
equality. In Hébert and Woodford (2018), we prove that this condition leads to immediate
stopping after jumps in the dynamic problem.

The remainder of the model is essentially identical to the one described in section §2.
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The DM maximizes her expected payoff, subject to the aforementioned constraints:

V (qt) = sup
{ys∈Y (qs),ψs≥0},τ≥t

Et [û(qτ)−κ(τ− t)].

Anywhere the value function is differentiable and the DM does not choose to stop, the
Hamilton-Jacobi-Bellman (HJB) equation associated with this problem is

sup
yt∈Y (qt),ψt≥0

ψt(V (qt + yt)−V (qt)−Vq(qt)yt)dt = κdt,

subject to ψtD∗(qt + yt ||qt)≤ χ .
It immediately follows, by κ > 0, that ψ∗t > 0 and the constraint must bind, and thus

V (qt + y∗t )−V (qt)−Vq(qt)y∗t = θD∗(qt + y∗t ||qt),

where θ = χ−1κ . Optimality requires that

V (qt + y∗t )−Vq(qt)y∗t −θDH(qt + y∗t ||qt)≥V (qt + y′)−Vq(qt)y′−θD∗(qt + y′||qt)

for all y′ ∈ Y (qt).
We now define, from the divergence D∗ and the initial beliefs q0, a Bregman divergence

DH(·||·), from an entropy function

H(q) = D∗(q||q0).

We will guess and verify that the value function described by Theorem 1 satisfies these
equations, with this entropy function. We will assume, to keep the exposition short, that
the optimal posteriors are interior and that all actions are chosen with positive probability,
but neither requirement is necessary.

The envelope theorem and first-order conditions from the static problem (equation (14))
apply. By the homogeneity of degree one of the H function,

qT
a · (ua−κ−θHq(qa)+θHq(q0)) = qT

a (ua−κ)−θDH(qa||q0).

Plugging this into the definition of the static value function, V (q0) = qT
0 κ . Therefore, using
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the envelope theorem and the above expression,

qT
a ·ua− (qa−q0)

T ·Vq(q0)−θDH(qa||q0)−V (q0) = 0.

Thus, if V (qa) = qT
a ·ua,, this expression is

V (qa)−V (q0)− (qa−q0)
TVq(q0)−θDH(qa||q0) = 0,

and qa is a maximizer of this expression. We appeal to the “Locally Invariant Posteriors”
property shown by Caplin et al. (2018b): qa as a prior is a convex combination of the
posteriors chosen from q0, and therefore the same set of posteriors will be chosen with qa

as a prior, and hence it must be the case that V (qa) = qT
a ·ua, as required.

By the definition of DH ,

V (qa)−V (q0)− (qa−q0)
TVq(q0) = θD∗(qa||q0),

and hence the first-order condition in the dynamic problem is satisfied. For any q′ ∈P(X),

V (q′)−V (q0)− (q′−q0)
TVq(q0)≤ θDH(q′||q0).

Consequently,

ε(V (q′)−V (q0)− (q′−q0)
TVq(q0))+(1− ε)(V (q0− ε(q′−q0))−V (q0)+ ε(q′−q0)

TVq(q0)

≤ εθDH(q′||q0)+(1− ε)θDH(V (q0− ε(q′−q0)||q0)

≤ εθD∗(q′||q0)+(1− ε)θD∗(V (q0− ε(q′−q0)||q0).

Dividing by ε and taking limits,

V (q′)−V (q0)− (q′−q0)
TVq(q0)≤ D∗(q′||q0),

and hence optimality is satisfied.
Therefore, for any y = qa−q0, the static value function solves the HJB equation. For-

malizing this proof would require dealing with boundaries, and verification. Both of these
issues are technical but relatively straightforward in this context.
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C.2 Convergence to the Continuous State Model

For each of a sequence of values for the integer M, we assume a neighborhood struc-
ture of the kind discussed in section 4.2 with M + 1 states. The set of states is ordered,
XM = {0,1, . . . ,M}, and each pair of adjacent states forms a neighborhood, Xi = {i, i+1},
for all i ∈ {0,1, . . . , M− 1}. We will also assume that there is an M + 1st neighborhood
containing all of the states. Note that M indexes both the number of states and the number
of neighborhoods. We consider the limit as M→ ∞.

To study this limit, we need to define how the prior beliefs, qM, and the magnitude of
the information costs vary with M. For the initial beliefs, we shall assume that there is
a differentiable probability density function q : [0,1]→ R+, with full support on the unit
interval and with a derivative that is Lipschitz continuous. Using this function, we define,
for any i ∈ XM,

eT
i qM =

ˆ i+1
M+1

i
M+1

q(x)dx.

That is, for each value of M, the prior qM is assumed to be a discrete approximation to the
p.d.f. q(x), which becomes increasingly accurate as M→ ∞.

For our neighborhood structures, we assume that that the constants associated with the
cost of each neighborhood, c j, are equal to M2 for all j < M, and M−1 for j = M. In this
particular example, the scaling ensures that the DM is neither able to determine the state
with certainty, nor prevented from gathering any useful information, even as M is made
arbitrarily large; moreover, the scaling ensures that the neighborhood containing all states
plays no role in the limiting behavior, so that in the limit all information costs are local. We
also scale the entire cost function by a constant, θ > 0.

We also need to define the set of actions, and the utility from those actions. We will as-
sume the set of actions, A, remains fixed as N grows, and define the utility from a particular
action, in a particular state, as

eT
i ua,M =

´ i+1
M+1

i
M+1

q(x)ua(x)dx

eT
i qM

.

Here, the utility ua : [0,1]→ R is a bounded measurable function for each action a ∈ A.32

32Note that we do not require the payoff resulting from an action to be a continuous function of x at all
points, though it will be continuous almost everywhere. This allows for the possibility that a DM’s payoffs
change discontinuously when the state x crosses some threshold, as in some of our applications.
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In other words, as M grows large, the prior converges to q(x) and the utilities converge to
the functions ua(x).

We consider only the case of neighborhood cost functions with ρ = 1. Under these
assumptions, the static model of Theorem 1 can be written as

VN(qM;M)= max
πM∈P(A),{qa,M∈P(XM)}a∈A

∑
a∈A

πM(a)(uT
a,M ·qa,M)−θ ∑

a∈A
πM(a)DN(qa,M||qM;M),

(23)
subject to the constraint that

∑
a∈A

πN(a)qa,M = qM.

Here DN denotes the divergence associated with the neighborhood-based cost function in-
troduced above, specialized to the particular neighborhood structure of this section and
ρ = 1:

DN(qa,M||qM;M)=M2(HN(qa,M;1,M)−HN(qM;1,M))+M−1(HS(qM;M)−HS(qa,M;M)),

where HN is defined by equation (18) in the main text and HS is Shannon’s entropy.
The following theorem shows that the solution to this problem, both in terms of the

value function and the optimal policies, converges to the solution of a static rational inat-
tention problem with a continuous state space.

Theorem 2. Consider the sequence of finite-state-space static rational inattention prob-

lems (23), with progressively larger state spaces indexed by the natural numbers M. There

exists a sub-sequence of integers n∈N for which the solutions to the sub-sequence of prob-

lems converge, in the sense that, for some π∗ ∈P(A) and {q∗a ∈P([0,1])}a∈A ,

i) limn→∞ VN(qn;n) = VN(q);

ii) limn→∞ π∗n = π∗; and

iii) for all a ∈ A and all x ∈ [0,1], limn→∞ ∑
bxnc
i=0 eT

i q∗a,n =
´ x

0 q∗a(y)dy.

Moreover, the limiting value function VN(q) is the value function for the following continuous-
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state-space static rational inattention problem:

VN(q) = sup
π∈P(A),{qa∈PLipG([0,1])}a∈A

∑
a∈A

π(a)
ˆ

supp(q)
ua(x)qa(x)dx

− θ

4 ∑
a∈A
{π(a)

ˆ 1

0

(q′a(x))
2

qa(x)
dx}+ θ

4

ˆ 1

0

(q′(x))2

q(x)
dx,

subject to the constraint that, for all x ∈ [0,1],

∑
a∈A

π(a)qa(x) = q(x), (24)

and where PLipG([0,1]) denotes the set of differentiable probability density functions with

full support on [0,1], whose derivatives are Lipschitz-continuous. Furthermore, the limiting

action probabilities π∗(a) and posteriors q∗a are the optimal policies for this continuous-

state-space problem.

Proof. See the technical appendix, section C.6.

This theorem demonstrates that the value function, choice probabilities, and posterior
beliefs of the discrete state problem converge to the value function, choice probabilities, and
posterior beliefs associated with a continuous state problem. The continuous state problem
uses a particular cost function, the expected value of the Fisher information IFisher(x; p),

defined locally for each element of the continuum of possible states x, with the expectation
taken with respect to the prior over possible states. The posterior beliefs in the contin-
uous state problem, qa(x), are required to be differentiable, with a Lipschitz-continuous
derivative, on their support. This is a result; the limiting posterior beliefs of the discrete
state problem will have these properties. This restriction also ensures that the Fisher in-
formation is finite, so that the optimization associated with the continuous state problem is
well-behaved.

The static rational inattention problem for the limiting case of a continuous state space
can be given an alternative, equivalent formulation, in which the objects of choice are the
conditional probabilities of taking different actions in the different possible states, rather
than the posteriors associated with different actions. This is essentially the continuous state
analog of Lemma 3.
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Lemma 4. Consider the alternative continuous-state-space static rational inattention prob-

lem:

V̄N(q) = sup
p∈PLipG(A)

ˆ 1

0
q(x) ∑

a∈A
pa(x)ua(x)dx − θ

4

ˆ 1

0
q(x) IFisher(x; p)dx,

where PLipG(A) is the set of mappings p : [0,1]→P(A) such that for each action a, the

function pa(x)33 is a differentiable function of x with a Lipschitz-continuous derivative, and

for any information structure p∈PLipG(A), the Fisher information at state x∈X is defined

as

IFisher(x; p) ≡ ∑
a∈A

(p′a(x))
2

pa(x)
.

This problem is equivalent to the one defined in Theorem 2, in the sense that the information

structure p∗ that solves this problem defines action probabilities and posteriors

π
∗(a) =

ˆ 1

0
q(x)p∗a(x), q∗a(x) =

q(x)p∗a(x)
π∗(a)

(25)

that solve the problem in Theorem 2, and conversely, the action probabilities and posteri-

ors {π∗(a),q∗a} that solve the problem stated in the theorem define state-contingent action

probabilities

p∗a(x) =
π∗(a)q∗a(x)

q(x)
(26)

that solve the problem stated here. Moreover, the maximum achievable value is the same

for both problems: V̄N(q) =VN(q).

Proof. See the appendix, section C.7.

C.3 Security Design and Acceptance with Certainty

In this section, we discuss the optimal security design application, and consider the possi-
bility that the seller designs the security to induce the buyer to accept with probability one.
In other words, the buyer’s “consideration set” in his rational inattention problem consists
only of L, instead of both L and R. As mentioned in the text, we have chosen the parameters
of our numerical example to ensure that, for all of the cost functions, the seller is better off

33Here for any x ∈ [0,1], we use the notation pa(x) to indicate the probability of action a implied by the
probability distribution p(x) ∈P(A).
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inducing information acquisition (πL < 1) than avoiding information acquisition (πL = 1).
Note that the πL = 0 case is equivalent to trading a “nothing” security at zero price, and
hence assuming πL > 0 is without loss of generality.

Consider the buyer’s problem,

V (q;s,K) = max
πL∈[0,1],qL,qR∈P(X)

πLqT
L (s−Kι)

−θπLDH(qL||q)−θ(1−πL)DH(qR||q),

subject to the constraint that πLqL +(1−πL)qR = q. Rewrite the choice variables as q̂L =

πLqL and q̂R = (1−πL)qR, and use the homogeneity of the H function, so that the problem
is

V (q;s,K) = max
q̂L,q̂R∈R

|X |
+

q̂T
L (s−Kι)

−θDH(q̂L||q)−θDH(q̂R||q),

subject to q̂L + q̂R = q. Observe that the objective is concave and the constraints linear, so
it suffices to consider local perturbations.

Suppose that it is optimal to set πL = 1, implying q̂L = q. Consider a perturbation to
q̂L = q− εqR, q̂R = εqR, for any arbitrary qR ∈P(X). For such a perturbation to reduce
utility, we must have

−εqT
R(s−Kι)−θDH(q− εqR||q)−θεDH(qR||q)≤ 0.

Taking the limit as ε → 0+, we must have, for all qR, and hence for the minimizer,

min
qR∈P(X)

qT
R(s−Kι)+θDH(qR||q)≥ 0.

If this condition is satisfied, it is at least weakly optimal for the buyer to choose πL = 1
and gather no information. Consequently, the Lagrangian version of the optimal security
design problem, subject to the constraint of inducing no information acquisition, is

max
s∈R|X |+ ,K≥0

min
λ≥0,qR∈P(X),ω∈R|X |+

qT (Kι−β s)+λ (qT
R(s−Kι)+θDH(qR||q))+ω

T (v− s),

where λ is the multiplier on the no-information-gathering constraint and ω is the multiplier
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on the upper-bound of the limited liability requirement.
Defining q̃R = λqR, the dual of this problem is

min
q̃R∈R

|X |
+ ,ω∈R|X |+

max
s∈R|X |+ ,K≥0

qT (Kι−β s)+ q̃T
R(s−Kι)+θDH(q̃R||q)+ω

T (v− s),

which can be understood as

min
q̃R∈R

|X |
+ ,ω∈R|X |+

θDH(q̃R||q)+ω
T v,

subject to
q̃R−βq−ω ≤ 0,

1−qT
Rι ≤ 0.

The multipliers of this convex minimization problem are the optimal security design and
price. After solving the problem for q̃R and ω , we can use the first-order condition to
recover the security design:

s−Kι = Hq(q)−Hq(q̃R).

We use the convention that in the lowest state, the asset value is zero (eT
0 v = 0), and there-

fore eT
0 s = 0, and hence

eT
x s = (ex− e0)

T (Hq(q)−Hq(q̃R)).

To implement the problem with the additional requirement of monotonicity for the se-
curity design, write the monotonicity requirement as Ms� 0, where M is an |X |−1×|X |
matrix. The dual problem is

min
q̃R∈R

|X |
+ ,ω∈R|X |+ ,ρ∈R|X |+

θDH(q̃R||q)+ω
T v,

subject to
q̃R−βq−ω +MT

ρ ≤ 0,

1−qT
Rι ≤ 0.

As mentioned above, under our parameters it is not optimal for the seller to avoid in-
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formation acquisition. For completeness, we present the optimal securities that avoid in-
formation acquisition below. Note the shapes of these securities are very similar to their
optimal counterparts, although the level is often quite difference.

Figure 5: Optimal Security Designs that Avoid Info. Acquisition by Entropy Function

Figure 6: Optimal Monotone Security Designs that Avoid Info Acquisition by Entropy
Function
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C.4 The Linear-Quadratic-Gaussian Tracking Problem

Here we solve the problem in the calculus of variations stated in Section 5.4. We begin by
noting that the objective (21) that we wish to minimize is of the form

ˆ
X

q(x)
ˆ

A
F(a, pa(x), p′a(x);x)dadx,

where for each pair (x,a), the function

F(a, f ,g;x) ≡ f · (a− x)2 +
θ

4
g2

f

is a convex function of the arguments ( f ,g) everywhere on its domain (the half-plane on
which f > 0). This can be seen from the fact that (for any fixed values of (x,a)) F( f ,g) is
equal to f times a convex function of g/ f .

Given the convexity of the objective, the first-order conditions are both necessary and
sufficient for an optimum. The relevant first-order conditions are furthermore the same as
those for minimization of the Lagrangian

ˆ
X

q(x)
ˆ

A
L(a, pa(x), p′a(x);x)dadx,

where
L(a, f ,g;x) = F(a, f ,g;x) + ϕ(x) f . (27)

Here ϕ(x) is the Lagrange multiplier associated with the constraint

ˆ
A

pa(x)da = 1 (28)

for each x ∈ X , as is required in order for pa(x) to be a probability density function.
For given Lagrange multipliers, the problem of minimizing the Lagrangian can further

be expressed as a separate minimization problem for each possible action a. Then if we
can find a function ϕ(x) and a function pa(x) for each a ∈ A, with pa(x)> 0 for all x, such
that (i) for each a ∈ A, the function pa(x) minimizes

ˆ
X

q(x)L(a, pa(x), p′a(x);x)dx, (29)
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and (ii) condition (28) holds for all x∈ X , then we will have derived an optimal information
structure.

For the problem of choosing a function pa(x) to minimize (29), the first-order condi-
tions are given by the Euler-Lagrange equations

q(x)
∂L
∂ f

(a, pa(x), p′a(x);x) =
d
dx

[
q(x)

∂L
∂g

(a, pa(x), p′a(x);x)
]
,

or equivalently,

∂L
∂ f

(a, pa(x), p′a(x);x) =
∂L
∂g

(a, pa(x), p′a(x);x)· d
dx

[logq(x)] +
d
dx

[
∂L
∂g

(a, pa(x), p′a(x);x)
]
.

In the case of the objective function (27), we have

∂L
∂ f

= (a− x)2 − θ

4
(v′a(x))

2 + ϕ(x),

∂L
∂g

=
θ

2
v′a(x),

where va(x)≡ log pa(x). Under our assumption of a Gaussian prior, we also have

d
dx

[logq(x)] =
µ− x

σ2 .

Substituting these expressions, the Euler-Lagrange equations take the form

(a− x)2 +ϕ(x)− θ

4
(v′a(x))

2 =
θ

2
µ− x

σ2 v′a(x) +
θ

2
v′′a(x)

for all x and a.
In the case that θ < 4σ4, these equations have a solution given by

v′a(x) = λ [a−βx− (1−β )µ], (30)

ϕ(x) = [βx+(1−β )µ][2− (βx+(1−β )µ)]− x2−2β (1−β )σ2,

where

λ ≡ 2
θ 1/2 > 0, β ≡ 1− θ 1/2

2σ2 , (31)

which implies (given the bound on θ ) that 0 < β < 1. Equation (30) is further observed to
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correspond to the density function pa(x) for a Gaussian distribution with mean

E[a|x] = βx+(1−β )µ (32)

and variance
var[a|x] = β

λ
= σ

2
β (1−β )> 0. (33)

This solution for the distribution of a conditional on x further corresponds to a noisy rep-
resentation of the state, s = x+ ε, where the “observation error” ε is normally distributed,
with mean zero and a variance ν2, and independent of the value of x; and an estimate a of
the state given by the expectation of x conditional on the noisy representation:

a = E[x|s] = β s+(1−β )µ. (34)

(This is of course the estimate that minimizes the mean squared error, under the constraint
that the estimate must be a function of s.)

The second equality in (34) holds if and only the variance of the observation error
satisfies

ν2

σ2 = β
−1−1 > 0. (35)

The decision rule (34) then implies that the distribution of a conditional on x will be Gaus-
sian, with the moments (32)–(33).

Comparison of (35) with (31) indicates that the optimal degree of noise in the represen-
tation s is given by

ν2

σ2 = [2σ
2
θ
−1/2−1]−1,

as stated in the text. This is an increasing function of the information cost parameter θ , that
approaches zero (the limiting case of perfectly accurate representation, and hence perfectly
accurate estimation of the state) as θ approaches zero, and becomes unboundedly large
(the limiting case of a completely uninformative information structure) as θ approaches
the upper bound 4σ4 from below.

In the case that θ ≥ 4σ4, instead, there is no solution to the Euler-Lagrange equations,
and we can show that there is no interior solution to the optimization problem. Instead, as
stated in the text, it is optimal to choose a completely uninformative information structure,
and to choose the estimate a = µ at all times. This is because in this case, one can show
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that any information structure and estimation rule implies that

V ≡ E[(a− x)2] +
θ

4
E[I(x)] ≥ E[(x−µ)2] = σ

2,

with the lower bound achieved only in the case that a = µ with probability 1.
To prove this, we begin by observing that the Cramér-Rao bound for a biased estima-

tor34 implies that

E[(a− x)2|x] ≥ (ā′(x))2

I(x)
+ (ā(x)− x)2,

where ā(x) ≡ E[a|x], and I(x) is the Fisher information. Thus

E[(a− x)2|x] + θ

4
I(x) ≥ (ā′(x))2

I(x)
+

θ

4
I(x) + (ā(x)− x)2

≥ min
I
{(ā
′(x))2

I
+

θ

4
I} + (ā(x)− x)2

= θ
1/2 |ā′(x)| + (ā(x)− x)2

≥ 2σ
2 |ā′(x)| + (ā(x)− x)2

≥ 2σ
2 ā′(x) + (ā(x)− x)2,

where the next-to-last inequality follows from the assumption that θ ≥ 4σ4. Taking the
expected value under the prior q(x), it then follows that

V ≥
ˆ

∞

−∞

q(x) [2σ
2 ā′(x) + (ā(x)− x)2]dx. (36)

We wish to obtain a lower bound for the integral on the right-hand side of (36). To
do this, we solve for the function ā(x) that minimizes this integral, using the calculus of
variations. Once again, we note that the integrand is a convex function of ā and ā′, so that
the first-order conditions are both necessary and sufficient for a minimum. The first-order
conditions are given by the Euler-Lagrange equations

2q(x)(ā(x)− x) = 2σ
2q′(x),

which have a unique solution ā(x) = µ for all x.

34See Cover and Thomas (2006), p. 396.
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Substituting this solution into the integral (36), we obtain the tighter lower bound

V ≥
ˆ

∞

∞

q(x)(x−µ)2 dx = σ
2. (37)

But this lower bound is achievable by choosing a = µ with probability 1, regardless of
the value of x (the optimal estimate in the case of a perfectly uninformative information
structure). Hence a perfectly uninformative information structure is optimal for all θ ≥
4σ4.

This solution is not only one way of achieving the lower bound, it is the only way. It
follows from the reasoning used to derive the lower bound for V that the lower bound can
be achieved only if each of the weak inequalities holds as an equality. But the bound in
(37) is equal to the bound in (36) only if ā(x) = µ almost surely; thus optimality requires
this. And the restriction that E[a|x] = µ for a set of x with full measure implies that we
must have

E[(a− x)2|x] = (x−µ)2 + var[a|x].

This in turn implies that

E[(a− x)2] = E[(x−µ)2] + E[var[a|x]] = σ
2 + E[var[a|x]].

Hence the lower bound can be achieved only if E[var[a|x]] = 0.
Given that the variance is necessarily non-negative, this requires that var[a|x] = 0 almost

surely. This together with the requirement that E[a|x] = µ almost surely implies that a = µ

almost surely. Hence optimality requires that a = µ with probability 1, whenever θ ≥ 4σ4.

C.5 Additional Definition and Lemmas

Definition 1. Let XM be a sequence of state spaces, as described in section 5.3. A sequence
of policies {pM ∈P(XM)}M∈N satisfies the “convergence condition” if:

i) The sequence satisfies, for some constants cH > cL > 0, all M, and all i ∈ XM,

cH

M+1
≥ eT

i pM ≥
cL

M+1
.
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ii) The sequence satisfies, for some constant K1 > 0, all M, and all i ∈ XM \{0,M},

M3|1
2
(eT

i+1 + eT
i−1−2eT

i )pM| ≤ K1,

and
M2|1

2
(eT

M− eT
M−1)pM| ≤ K1

and
M2|1

2
(eT

1 − eT
0 )pM| ≤ K1.

Definition 2. Let {pM ∈P(XM)}M∈N be a sequence of probability distributions over the
state spaces associated with Theorem 2. The interpolating functions {p̂M ∈P([0,1])}M∈N

are, for x ∈ [ 1
2(M+1) ,1−

1
2(M+1)),

p̂M(x) = (M+1)((M+1)x+
1
2
−b(M+1)x+

1
2
c)eT
b(M+1)x+ 1

2c
pM+

+(M+1)(
1
2
− (M+1)x+ b(M+1)x+

1
2
c)eT
b(M+1)x+ 1

2 c−1 pM,

and, for x ∈ [0, 1
2(M+1)),

p̂M(x) = (M+1)eT
0 qM,

and. for x ∈ [1− 1
2(M+1) ,1],

p̂M(x) = (M+1)eT
MqM.

Lemma 5. Given a function p ∈P([0,1]), define the sequence {pM ∈P(XM)}M∈N,

eT
i pM =

ˆ i+1
M+1

i
M+1

p(x)dx,

where XM is the state space described in section 5.3. If the function p is strictly greater

than zero for all x∈ [0,1], differentiable, and its derivative is Lipschitz continuous, then the

sequence {pM ∈P(XM)}N∈N satisfies the convergence condition, and satisfies, for some

constant K > 0, all M, and all i ∈ XN \{0,M},

M2| ln(1
2
(eT

i+1 + eT
i )qM)+ ln(

1
2
(eT

i−1 + eT
i )qM)−2ln(eT

i qM)| ≤ K,
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and

M| ln(1
2
(eT

1 + eT
0 )qM)− ln(eT

0 qM))|< K

and

M| ln(1
2
(eT

M + eT
M−1)qM)− ln(eT

MqM))|< K.

Proof. See the technical appendix, C.8.

Lemma 6. Let {pM ∈P(XM)}M∈N be a sequence of probability distributions over the

state spaces associated with Theorem 2. If the sequence {pM ∈P(XM)}M∈N satisfies the

convergence condition (Definition 1), then there exists a sub-sequence, whose elements we

denote by n, such that:

i) The interpolating functions (2) p̂n(x) converge point-wise to a differentiable function

p(x) ∈P([0,1]), whose derivative is Lipschitz-continuous, with p(x) > 0 for all

x ∈ [0,1],

ii) the following sum converges:

lim
n→∞

n2
∑

i∈Xn\{n}
{g(eT

i pn)+g(eT
i+1 pn)−2g(

1
2
(eT

i + eT
i+1)pn)}=

1
4

ˆ 1

0

(p′(x))2

p(x)
dx,

where g(x) = x ln(x),

iii) for all a ∈ A, limn→∞ uT
a,n pn =

´ 1
0 ua(x)p(x)dx,

iv) and, if the sequence {pM ∈P(XM)}M∈N is constructed from some function p̃(x), as

in Lemma 5, then p(x) = p̃(x) for all x ∈ [0,1].

Proof. See the technical appendix, section C.9.

Lemma 7. Let πM(a) ∈P(A) and {qa,M ∈P(XM)}a∈A denote optimal policies in the

discrete state setting described in section 5.3. For each a ∈ A, the sequence {qa,N} satisfies

the convergence condition (Definition 1).

Proof. See the technical appendix, section C.10.
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C.6 Proof of Theorem 2

By the boundedness of P(A), there exists a convergent sub-sequence of the optimal policy
πn(a), which we also denote by n. Define

π(a) = lim
n→∞

πn(a).

By Lemma 7, for all a ∈ A, each sequence of optimal policies {qa,n} satisfies the conver-
gence condition (Definition 1). Therefore, by Lemma 6, each sequence of interpolating
functions (2), {q̂a,n(x)}, has a convergent sub-sequence that converges to a differentiable
function qa(x), whose derivative is Lipschitz continuous. We can construct a sub-sequence
in which πn(a) and all {q̂a,n(x)} converge by iteratively applying this argument. Pass to
this subsequence.

We can write the discrete value function, using Lemma 2, and defining g(x) = x lnx, as

VN(qn;n) = max
{px,n∈P(A)}i∈X

∑
a∈A

eT
a pnDiag(q)unea

−θn2
∑
a∈A

(eT
a pnqn)

n−1

∑
i=0

[g(
eT

i qa,n

q̄i,a,n
)+g(

eT
i+1qa,n

q̄i,a,n
)]

+θn2
n−1

∑
i=0

[g(
eT

i qN

q̄i,a,N
)+g(

eT
i+1qN

q̄i,a,N
)]

−θn−1
n−1

∑
i=0

(eT
i qn)DKL(pnei||pnqn).

We can re-arrange this to

VN(qn;n) = max
{px,n∈P(A)}i∈X

∑
a∈A

eT
a pnDiag(q)unea

−θn2
∑
a∈A

(eT
a pq)

n−1

∑
i=0

[g(eT
i qa,n)+g(eT

i+1qa,n)−2g(
1
2
(eT

i + eT
i+1)qa,n)]

+θn2
N−1

∑
i=0

[g(eT
i qn)+g(eT

i+1qn)−2g(
1
2
(eT

i + eT
i+1)qn)]

−θn−1
N−1

∑
i=0

(eT
i qN)DKL(pi,n||pnqn).
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By Lemma 6 and the boundedness of the KL divergence,

lim
n→∞

VN(qn;n) = ∑
a∈A

π(a)
ˆ 1

0
ua(x)qa(x)dx

− θ

4 ∑
a∈A
{π(a)

ˆ 1

0

(q′a(x))
2

qa(x)
dx}+ θ

4

ˆ 1

0

(q′(x))2

q(x)
dx.

Suppose that π(a) and the qa(x) functions do not maximize this expression (subject to the
constraints stated in Theorem 2). Let π∗(a) and q∗a(x) be maximizers. Define, for all n,

π̃n(a) = π
∗(a),

eT
i q̃a,n =

ˆ i+1
n+1

i
n+1

q∗a(x)dx.

Note that, by construction, q̃a,n ∈P(Xn) and ∑a∈A π̃N(a)q̃a,n = qn. That is, the constraints
of the discrete-state problem are satisfied for all n. Denote the value function under these
policies as ṼN(qn;n).

Because of the constraints stated in Theorem 2, each q∗a satisfies the conditions of
Lemma 5, and therefore the sequence q̃a,n satisfies the convergence condition for all a ∈ A.
It follows by Lemma 6 that this sequence of policies delivers, in the limit, the value func-
tion VN(q). If this function is strictly larger than limn→∞VN(qn;n), there must exist some n̄

such that
ṼN(qn̄; n̄)>VN(qn̄; n̄),

contradicting optimality. Therefore, the functions qa(x) and π(a) are maximizers.
It remains to show that

lim
n→∞

bxnc

∑
i=0

eT
i qa,n =

ˆ x

0
qa(y)dy.

Note that

eT
i qa,n = (n+1)

ˆ i+1
n+1

i
n+1

q̂a,n(
2i+1

2(n+1)
)dy,
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where q̂a,n is the function defined in Lemma 6. Therefore, the sum is equal to

bxnc

∑
i=0

eT
i qa,n =

ˆ bxnc+1
n+1

0
q̂a,n(
b(n+1)y+ 1

2c+
1
2

(n+1)
)dy.

By the boundedness of q̂a,n (which follows from the convergence condition) and the domi-
nated convergence theorem,

lim
n→∞

ˆ bxnc+1
n+1

0
q̂(
b(n+1)y+ 1

2c+
1
2

(n+1)
)dy =

ˆ x

0
qa(y)dy,

as required.

C.7 Proof of Lemma 4

We begin by observing that any information structure p ∈PLipG(A) defines unconditional
action frequencies π ∈P(A) and posteriors qa ∈PLipG([0,1]) satisfying (24), using def-
initions (25). And conversely, any unconditional action frequencies and posteriors satisfy-
ing (24) define an information structure, using definitions (26). Hence the set of candidate
structures is the same in both problems, and the problems are equivalent if the two objective
functions are equivalent as well. It is also easily seen that in each problem, the first term
of the objective function is the expected value of the DM’s reward u(x,a), integrating over
the joint distribution for (x,a). Hence it remains only to establish that the remaining terms
of the objective function are equivalent as well.

Consider any information structure p ∈PLipG(A) and the corresponding unconditional
action frequencies and posteriors, and let x be any point at which q(x) > 0, and at which
pa(x) is twice differentiable for all a (and as a consequence, qa(x) is twice differentiable
for all a as well). (We note that, given the Lipschitz continuity of the first derivatives, the
set of x for which this is true must be of full measure.) Then the fact that ∑a∈A pa(x) = 1
for all x implies that

∑
a∈A

p′′a(x) = 0, (38)

and similarly, constraint (24) implies that

∑
a∈A

π(a)q′′a(x) = q′′(x). (39)
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At any such point, the definition of the Fisher information implies that

IFisher(x) ≡ ∑
a∈A

(p′a(x))
2

pa(x)

= ∑
a

p′′a(x) − ∑
a∈A

pa(x)
∂ 2 log pa(x)

∂x2

= −π(a)qa(x)
q(x)

∂ 2

∂x2 [logπ(a)+ logqa(x)− logq(x)]

=
1

q(x)

[
∑
a∈A

π(a)
(q′a(x))

2

qa(x)
−∑

a∈A
π(a)q′′a(x) −

(q′(x))2

q(x)
+q′′(x)

]

=
1

q(x)

[
∑
a∈A

π(a)
(q′a(x))

2

qa(x)
− (q′(x))2

q(x)

]
.

Here the first line is the definition of the Fisher information (given in the lemma), and the
second line follows from twice differentiating the function log pa(x) with respect to x. In
the third line, the first term from the second line vanishes because of (38); the remaining
term from the second line is rewritten using (26). The fourth line follows from the third
line by twice differentiating each of the terms inside the square brackets with respect to x.
The fifth line then follows from (39).

Since this result holds for a set of x of full measure, we obtain expression

ˆ 1

0
q(x)IFisher(x)dx = ∑

a∈A
π(a)

ˆ 1

0

(q′a(x))
2

qa(x)
dx −

ˆ 1

0

(q′(x))2

q(x)
dx

for the mean Fisher information. This shows that the information-cost terms in both objec-
tive functions are equivalent, and hence the two problems are equivalent, and have equiva-
lent solutions.

C.8 Proof of Lemma 5

Proof. The function p is strictly greater than zero, and continuous, and therefore attains
a maximum and minimum on [0,1], which we denote with cH and cL, respectively. By
construction,

eT
i pM ≥

cL

M+1
and likewise for cH , satisfying the bounds.
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For all i ∈ XM \{M},

(eT
i+1− eT

i )pM =

ˆ i+1
M+1

i
M+1

(p(x+
1

M+1
)− p(x))dx

=

ˆ i+1
M+1

i
M+1

ˆ 1
M+1

0
p′(x+ y)dydx

and therefore, letting K2 be the maximum of the absolute value of p′ on [0,1] (which exists
by the continuity of p′), we have

|(eT
i+1− eT

i )pM| ≤
1

(M+1)2 K2, (40)

satisfying the convergence condition for the endpoints.
For all i ∈ XM \{0,M},

(eT
i+1 + eT

i−1−2eT
i )pM =

ˆ i+1
M+1

i
M+1

(p(x+
1

M+1
)+ p(x− 1

M+1
)−2p(x))dx

=

ˆ i+1
M+1

i
M+1

ˆ 1
M+1

0
(p′(x+ y)− p′(x− y))dydx.

Let K3 denote the Lipschitz constant associated with p′. It follows that

|(eT
i+1 + eT

i−1−2eT
i )pM| ≤

2K3

(M+1)3 .

Therefore, the convergence condition is satisfied for K1 = max(1
2K2,K3).

By the concavity of the log function, and the inequality ln(x)≤ x−1,

ln(
1
2(e

T
i+1 + eT

i )pM

eT
i pM

)+ ln(
1
2(e

T
i−1 + eT

i )pM

eT
i pM

)≤ 2ln(
1
4(e

T
i+1 + ei−1 +2eT

i )pM

eT
i pM

)

≤
1
2(e

T
i+1 + ei−1−2eT

i )pM

eT
i pM

.

Therefore, by the convergence condition we have established,

ln(
1
2(e

T
i+1 + eT

i )pM

eT
i pM

)+ ln(
1
2(e

T
i−1 + eT

i )pM

eT
i pM

)≤ (M+1)K1

M3cL
≤ 2K1

M2cL
.
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By the inequality − ln(1
x )≤ x−1,

ln(
1
2(e

T
i+1 + eT

i )pM

eT
i pM

)+ ln(
1
2(e

T
i−1 + eT

i )pM

eT
i pM

)≥
1
2(e

T
i+1− eT

i )pM
1
2(e

T
i+1 + eT

i )pM
+

1
2(e

T
i−1− eT

i )pM
1
2(e

T
i−1 + eT

i )pM
.

We can rewrite this as

ln(
1
2(e

T
i+1 + eT

i )pM

eT
i pM

)+ ln(
1
2(e

T
i−1 + eT

i )pM

eT
i pM

)≥

(
1
2(e

T
i+1 + eT

i−1−2eT
i )pM

1
2(e

T
i+1 + eT

i )pM
+

1
2(e

T
i−1− eT

i )pM
1
2(e

T
i+1 + eT

i )pM
(

1
2(e

T
i+1 + eT

i )pM
1
2(e

T
i−1 + eT

i )pM
−1)).

By the bounds above,
1
2(e

T
i+1 + eT

i−1−2eT
i )pM

1
2(e

T
i+1 + eT

i )pM
≥− 2K1

M2cL

and, using equation (40),

1
2(e

T
i−1− eT

i )pM
1
2(e

T
i+1 + eT

i )pM
(

1
2(e

T
i+1 + eT

i )pM
1
2(e

T
i−1 + eT

i )pM
−1) =

1
2(e

T
i−1− eT

i )pM
1
2(e

T
i+1 + eT

i )pM
(

1
2(e

T
i+1− eT

i−1)pM
1
2(e

T
i−1 + eT

i )pM
)

≥−M2

c2
L

1
(M+1)4 (K2)

2

≥−( K2

2McL
)2.

Therefore,

M2| ln(
1
2(e

T
i+1 + eT

i )pM

eT
i pM

)+ ln(
1
2(e

T
i−1 + eT

i )pM

eT
i pM

)| ≤ 2K1

cL
+(

K2

2cL
)2.

For the end-points,

1
2(e

T
1 − eT

0 )qM
1
2(e

T
1 + eT

0 )qM
≤ ln(

1
2(e

T
1 + eT

0 )qM

eT
0 qM

)≤
1
2(e

T
1 − eT

0 )qM

eT
0 qM

and therefore

| ln(
1
2(e

T
1 + eT

0 )qM

eT
0 qM

)| ≤ K2

McL
.

A similar property holds for the other endpoint, and therefore the claim holds for K =
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max(K2
cL
, 2K1

cL
+( K2

2cL
)2).

C.9 Proof of Lemma 6

Proof. We begin by noting that the functions p̂M(x) are absolutely continuous. Almost
everywhere in [ 1

2(M+1) ,1−
1

2(M+1) ],

p̂′M(x) = (M+1)2(eT
b(M+1)x+ 1

2 c
− eT
b(M+1)x+ 1

2 c−1)pM,

and outside this region, p̂′M(x) = 0. Let p̃′M(x) denote the right-continuous Lebesgue-
integrable function on [0,1] such that

p̂M(x) = p̂M(0)+
ˆ x

0
p̃′M(y)dy,

which is equal to p̂′M(x) anywhere the latter exists.
The total variation of p̃′M(x) is equal to

TV (p̃′M) =
M−1

∑
i=1

(M+1)2|(eT
i+1 + eT

i−1−2eT
i )pM)|+

+(M+1)2|(eT
M− eT

M−1)pM|+(M+1)2|(eT
1 − eT

0 )pM|.

By the convergence condition,

TV (p̃′M)≤ (M+1)3

M3 2K1,

and therefore the sequence of functions p̃′M(x) has uniformly bounded variation.
For any 1− 1

2(M+1) > x > y≥ 1
2(M+1) , the quantity

|p̃′M(x)− p̃′M(y)|= (M+1)2|
b(M+1)x+ 1

2 c

∑
i=b(M+1)y+ 1

2c
(eT

i+1 + eT
i−1−2eT

i )pM|

≤ (M+1)2((M+1)(x− y)+2)
M3 2K1.
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At the end points, for all x ∈ [0, 1
2(M+1)),

|p̃′M(
1

2(M+1)
)− p̃′M(x)| ≤ 2K1

M+1
,

and for all x ∈ [1− 1
2(M+1) ,1],

|p̃′M(x)− lim
y↑1− 1

2(M+1)

p̃′M(y)| ≤ 2K1

M+1
.

By p̃′M(0) = 0, we have, for all x ∈ [0,1],

|p̃′M(x)| ≤ (
(M+1)2((M+1)(1− 1

2(M+1))+2)

M3 +
1

M+1
)2K1,

proving that p̃′M(x) is bounded uniformly in M for all x ∈ [0,1].
Therefore Helly’s selection theorem applies. That is, there exists a sub-sequence, which

we denote by n, such that p̃′n(x) converges point-wise to some p′(x). Moreover, by the
point-wise convergence of p̃′M to p′, for all x > y,

|p′(x)− p′(y)| ≤ 2K1(x− y),

meaning that p′ is Lipschitz-continuous. By the fact that p′(0) = 0, this implies that
|p′(x)| ≤ 2K1 for all x ∈ [0,1].

By the convergence condition, cL ≤ p̂N(0) ≤ cH . Therefore, there exists a convergent
sub-sequence. We now use n to denote the sub-sequence for which limn→∞ p̂n(0) = p(0)
and for which p̃′n(x) converges point-wise to p′(x). By the dominated convergence theorem,
for all x ∈ [0,1],

lim
n→∞

p̂n(x) = lim
n→∞
{p̂n(0)+

ˆ x

0
p̃′n(y)dy}= p(0)+

ˆ x

0
p′(y)dy.

Define the function p(x) = p(0)+
´ x

0 p′(y)dy for all x ∈ [0,1]. By the convergence condi-
tions, this function is bounded, 0 < cL ≤ p(x)≤ cH , by construction it is differentiable, and
its derivative is Lipschitz continuous. Moreover,

ˆ 1

0
p(x)dx = 1,
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and therefore p ∈P([0,1]).
Next, consider the limiting cost function. We have, using the function g(x) = x lnx and

Taylor-expanding,

g(y) = g(x)+g′(x)(y− x)+
1
2

g′′(cy+(1− c)x)(y− x)2

for some c ∈ (0,1). Therefore,

g(eT
i pM)+g(eT

i+1 pM)−2g(
1
2
(eT

i + eT
i+1)pM) =

1
8

g′′(c1eT
i pM +(1− c1)

1
2
(eT

i + eT
i+1)pM)((eT

i+1− eT
i )pM)2

+
1
8

g′′(c2eT
i pM +(1− c2)

1
2
(eT

i + eT
i+1)pM)((eT

i+1− eT
i )pM)2

for constants c1,c2 ∈ (0,1). Note that, by the boundedness p̂M(x) from below, eT
i pM ≥

(M+1)−1cL for all i ∈ XM. It follows that

g′′(c1eT
i pM+(1−c1)

1
2
(eT

i +eT
i+1)pM)=

1
c1eT

i pM +(1− c1)
1
2(e

T
i + eT

i+1)pM
≤ (M+1)c−1

L .

Therefore,

0≤ g(eT
i pM)+g(eT

i+1 pM)−2g(
1
2
(eT

i + eT
i+1)pM)≤

(M+1)c−1
L

4
((eT

i+1− eT
i )pM)2.

By construction,

eT
i pM =

1
(M+1)

p̂M(
2i+1

2(M+1)
).

Therefore,

(M+1)(g(eT
i pM)+g(eT

i+1 pM)−2g(
1
2
(eT

i + eT
i+1)pM)) =

g(p̂M(
2i+1

2(M+1)
))+g(p̂M(

2i+3
2(M+1)

))−2g(p̂M(
2i+2

2(M+1)
)).

and

g(eT
i pM)+g(eT

i+1 pM)−2g(
1
2
(eT

i +eT
i+1)pM)≤

c−1
L

4(M+1)
(p̂(

2i+3
2(M+1)

)− p̂(
2i+1

2(M+1)
))2.
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By the boundedness of p̃′M(x),

g(p̂(
2i+1

2(M+1)
))+g(p̂(

2i+3
2(M+1)

))−2g(p̂(
2i+2

2(M+1)
))≤ B

(M+1)2

for some finite bound B.
Writing the limiting cost as an integral, and switching to the sub-sequence n defined

above,

n2
∑

i∈Xn\{n}
{g(eT

i pn)+g(eT
i+1 pn)−2g(

1
2
(eT

i + eT
i+1)pn)}=

n3

n+1

ˆ 1

0
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}dx.

By the bound above,

n3

n+1

ˆ 1

0
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}dx≤

n3

(n+1)3

ˆ 1

0
Bdx.

Applying the dominated convergence theorem,

lim
n→∞

n2
∑

i∈Xn\{n}
{g(eT

i pn)+g(eT
i+1 pn)−2g(

1
2
(eT

i + eT
i+1)pn)}=

ˆ 1

0
lim
n→∞

n3

n+1
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}dx.

By the Taylor expansion above,

lim
n→∞

n3

n+1
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}=

lim
n→∞

1
8

n3

n+1
{g′′(·)+g′′(·)}(p̂n(

2bnxc+3
2(n+1)

)− p̂n(
2bnxc+1
2(n+1)

))2.

By definition,

(n+1)(p̂n(
2bnxc+3
2(n+1)

)− p̂n(
2bnxc+1
2(n+1)

)) = p̃′n(
2bnxc+2
2(n+1)

)
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and
lim
n→∞

g′′(p̂n(
2bnxc+2
2(n+1)

)+ cn(p̂n(
2bnxc+3
2(n+1)

)− p̂n(
2bnxc+2
2(n+1)

))) =
1

p(x)
,

with cn ∈ (0,1) for all n, and therefore

lim
n→∞

n3

n+1
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}=

lim
n→∞

1
4
(p′(x))2

p(x)
,

proving the second claim.
Turning to the third claim, recall that, by definition,

eT
i ua,M =

´ i+1
M+1

i
M+1

ua(x)q(x)dx

´ i+1
M+1

i
M+1

q(x)dx.

We define the function, for x ∈ [0,1), as

ua,M(x) = eT
b(M+1)xcua,M,

and let ua,M(1) = eT
Mua,M. We also define the function

x̃M(x) =
2b(M+1)xc+1

2(M+1)
.

By construction, p̂M(x̃M(x)) = (M + 1)eT
b(M+1)xcpa,M for all x ∈ [0,1), and equals eT

M pa,M

for x = 1. Therefore,

uT
a,M pM = ∑

i∈XM

(eT
i ua,M)(eT

i pM)

=

ˆ 1

0
p̂M(x̃M(x))ua,M(x)dx.

By the measurability of ua(x),

lim
M→∞

ua,M(x) = ua(x).

83



Therefore, by the boundedness of utilities and the dominated convergence theorem,

lim
n→∞

uT
a,n pn =

ˆ 1

0
p(x)ua(x)dx.

Finally, suppose that, for all M

eT
i pa,M =

ˆ i+1
M+1

i
M+1

p̃(x)dx.

It follows that limn→∞ p̂a,n(x) = p̃(x) for all x ∈ [0,1], and therefore p̃(x) = p(x).

C.10 Proof of Lemma 7

Proof. We begin by noting that the conditions given for the function q(x) satisfy the condi-
tions of Lemma 5, and therefore the sequence qM satisfies the convergence condition. We
will use the constants cH and cL to refer to its bounds,

cH

M+1
≥ eT

i qM ≥
cL

M+1
,

and the constants K1 and K to refer to the constants described by convergence condition
and Lemma 5 for the sequence qM. By the convention that qa,M = qM if πM(a) = 0, qa,M

also satisfies the convergence condition whenever πM(a) = 0.
The problem of size M is

VN(qM;M)= max
πM∈P(A),{qa,M∈P(XM)}a∈A

∑
a∈A

πM(a)(uT
a,M ·qa,M)−θ ∑

a∈A
πM(a)DN(qa,M||qM;M)

subject to

∑
a∈A

πM(a)qa,M = qM,

where

DN(qa,M||qM;ρ,M)=M2(HN(qa,M;1,M)−HN(qM;1,M))+M−1(HS(qa,M;M)−HS(qM;M)

and

HN(q;1,M) = −
M−1

∑
i=0

q̄iHS(qi).
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Let uM denote that |XM|×|A|matrix whose columns are ua,M. Using Lemma 3, we can
rewrite the problem as

VN(qM;M) = max
{pi,M∈P(A)}i∈XM

∑
a∈A

eT
a pMDiag(q)uMea

−θM2
M−1

∑
i=0

(eT
i qM)DKL(pi,M||

pi,M(eT
i qM)+ pi+1,M(eT

i+1qM)

(eT
i + eT

i+1)qM
)

−θM2
M

∑
i=1

(eT
i qM)DKL(pi,M||

pi,M(eT
i qN)+ pi−1,M(eT

i−1qM)

(eT
i + eT

i−1)qM
)

−θM−1
M−1

∑
i=0

(eT
i qM)DKL(pi,M||pMqM).

The FOC for this problem is, for all i ∈ [1,M−1] and a ∈ A such that eT
a pi,M > 0,

eT
i ua,M−θM2 ln(

eT
a pi,M(eT

i + eT
i+1)qM

eT
a (pi,M(eT

i qM)+ pi+1,M(eT
i+1qM))

)

−θM2 ln(
eT

a pi,M(eT
i + eT

i−1)qM

eT
a (pi,M(eT

i qM)+ pi−1,N(eT
i−1qM))

)−θM−1 ln(
eT

a pi,M

eT
a pMqM

)− eT
i κM = 0,

where κM ∈RM+1 are the multipliers (scaled by eT
i qM) on the constraints that ∑a∈A eT

a pi,M =

1 for all i∈ X . Defining eT
i−1qM = eT

M+1qM = 0, and defining p−1,M and pM+1,M in arbitrary
fashion, we can recover this FOC for all i ∈ X .

Rewriting the FOC in terms of the posteriors, and again defining eT
i−1qa,M = eT

M+1qa,M =

0, for any a such that πM(a)> 0,

eT
i (ua,M−κM) = θM2 ln(

(eT
i qa,M)(1+ eT

i+1qM

eT
i qM

)

(ei+1 + ei)T qa,M
)+θM2 ln(

(eT
i qa,N)(1+

eT
i−1qN

eT
i qN

)

(ei−1 + ei)T qa,N
)

+θM−1 ln(
eT

a pi,M

eT
a pMqM

)

=−θM2 ln(1+
eT

i+1qa,M

eT
i qa,M

)+θM2 ln(1+
eT

i+1qM

eT
i qM

)−θM2 ln(1+
eT

i−1qa,M

eT
i qa,M

)

+θM2 ln(1+
eT

i−1qM

eT
i qM

)+θM−1 ln(
eT

i qa,M

eT
i qM

),
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which can be rewritten as

eT
i (ua,M−κM) =−θM2(ln(

1
2
(eT

i+1 + eT
i )qa,M)+ ln(

1
2
(eT

i−1 + eT
i )qa,M)− (2+M−3) ln(eT

i qa,M))

+θM2(ln(
1
2
(eT

i+1 + eT
i )qM)+ ln(

1
2
(eT

i−1 + eT
i )qM)− (2+M−3) ln(eT

i qM)).

(41)

Our analysis proceeds by analyzing this first-order condition.
We next describe a series of lemmas that use this first-order condition to establish var-

ious bounds, which will ultimately be used to establish the bounds required by the con-
vergence condition. As part of the proof, we find it useful to consider the interpolating
functions q̂a,M(x) (2) constructed from qa,M. We define from these interpolating functions
the function

la,N(x) = (M+1)(ln(q̂a,M(x))− ln(q̂a,M(x− 1
2(M+1)

)))

on x ∈ [ 1
2(M+1) ,1], observing that, for any i ∈ XM \{0},

la,M(
2i+1

2(M+1)
) = (M+1) ln(

(M+1)eT
i qa,M

1
2(M+1)(eT

i + eT
i−1)qa,M

),

and for any i ∈ XM \{M},

la,M(
2i+2

2(M+1)
) = (M+1) ln(

1
2(M+1)(eT

i + eT
i+1)qa,M

(M+1)eT
i qa,M

).

Lemma 8. For all M ∈ N and i ∈ XM \{0,M}, eT
i κM ≤ Bκ for some positive constant Bκ .

Proof. See the technical appendix, section C.11.

Lemma 9. For all M ∈ N and i ∈ {0,M}, |eT
i κM| ≤ B0 for some positive constant B0, and

ln(
1
2(e

T
0 + eT

1 )qa,M

eT
0 qa,M

)≤M−1B1

and

ln(
eT

Mqa,M
1
2(e

T
M + eT

M−1)qa,M
)≥−M−1B1
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for some positive constant B1.

Proof. See the technical appendix, section C.12.

Lemma 10. For all M ∈ N and j ∈ {2,3, . . . ,2M+1}, and some positive constant Bl ,

|la,N(
j

2(M+1)
)| ≤ Bl.

Proof. See the technical appendix, section C.13. The proof uses the previous two lemmas.

C.10.1 Proof that cH
M+1 ≥ eT

i qa,M ≥ cL
M+1

We next apply the above lemmas to prove that the first part of the convergence condition
is satisfied. Begin by observing that there must exist some ĩa,M ∈ XM such that eT

ĩa,M
qa,M ≥

1
N+1 , implying that

ln((M+1)eT
ĩa,M

qa,M)≥ 0.

By the definition of la,M, for any i ∈ XM \{0},

la,M(
2i+1

2(M+1)
)+ la,M(

2i
2(M+1)

) = (M+1) ln(
(M+1)eT

i qa,M

(M+1)eT
i−1qa,M

).

For any i > ĩa,M, using Lemma 10,

ln((M+1)eT
i qa,M) = ln((M+1)eT

ĩa,M
qa,M)+

i

∑
j=ĩa,M+1

ln(
(M+1)eT

j qa,M

(M+1)eT
j−1qa,M

)

= ln((M+1)eT
ĩa,M

qa,M)+
1

M+1

i

∑
j=ĩa,M+1

la,M(
2 j+1

2(M+1)
)+ la,N(

2 j
2(M+1)

)

≥− 1
M+1

i

∑
j=ĩa,M+1

2Bl

≥−2Bl.

Similarly, for any i < ĩa,M,

ln((M+1)eT
ĩa,M

qa,M) = ln((M+1)eT
i qa,M)+

ĩa,M

∑
j=i+1

ln(
(N +1)eT

j qa,N

(N +1)eT
j−1qa,N

).
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Therefore, for any i < ĩa,M,

ln((M+1)eT
i qa,M)≥−

ĩa,M

∑
j=i+1

ln(
(M+1)eT

j qa,M

(M+1)eT
j−1qa,M

),

and thus, using Lemma 10, for all i ∈ XM,

ln((M+1)eT
i qa,M)≥−2Bl.

Repeating this argument, there must be some îa,M such that eT
îa,M

qa,M ≤M−1, and using the
bounds on la,M in similar fashion yields

ln((M+1)eT
i qa,M)≤ 2Bl.

It follows that, for all M, a ∈ A such that πM(a)> 0, and i ∈ XM,

exp(2Bl)

(M+1)
≥ eT

i qa,M ≥
exp(−2Bl)

M+1
, (42)

demonstrating that qa,N satisfies the first part of the convergence condition.

C.10.2 Proof that M3|12(e
T
i+1 + eT

i−1−2eT
i )qa,M| ≤ K1

We start by proving a bound on (M+1)2|12(e
T
i+1− eT

i )qa,M|.
Using Lemma 10, and a Taylor expansion of ln(1+ x), for some c ∈ (0,1), for any

i ∈ XM \{M},

|la,M(
2i+2

2(M+1)
)|= |(M+1) ln(

1
2(M+1)(eT

i + eT
i+1)qa,M

(M+1)eT
i qa,M

)|

=
(M+1)|12(e

T
i+1− eT

i )qa,M|
eT

i qa,M + c
2(e

T
i+1− eT

i )qa,M

≤ Bl,

and therefore, by the bound on eT
i qa,M, for any i ∈ XM \{M},

(M+1)2|1
2
(eT

i+1− eT
i )qa,M| ≤ Bl exp(−2Bl). (43)
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Returning to the first-order condition, for i ∈ XN \ {0,N}, and using the bounds on
utility and on the terms involving qM,

eT
i κM ≥−ū−θK +θM−1 ln(

eT
i qM

eT
i qa,M

)

+θM2(ln(
1
2
(eT

i+1 + eT
i )qa,M)+ ln(

1
2
(eT

i−1 + eT
i )qa,M)−2ln(eT

i qa,M)).

We have

M−1 ln(
eT

i qM

eT
i qa,M

)≥M−1 ln(
cL

exp(2Bl)
),

and therefore

eT
i κM ≥−ū−θK+M−1 ln(

cL

exp(2Bl)
)+θM2(ln(

1
2(e

T
i+1 + eT

i )qa,M

eT
i qa,M

)+ln(
1
2(e

T
i−1 + eT

i )qa,M

eT
i qa,M

)).

Using the mean-value theorem, for some c1 ∈ (0,1),

ln(
1
2(e

T
i+1 + eT

i )qa,M

eT
i qa,M

) = ln(1+
1
2(e

T
i+1− eT

i )qa,M

eT
i qa,M

)

=
eT

i qa,M

eT
i qa,M + c1

1
2(e

T
i+1− eT

i )qa,M

1
2(e

T
i+1− eT

i )qa,M

eT
i qa,M

,

and likewise

ln(
1
2(e

T
i−1 + eT

i )qa,M

eT
i qa,M

) =
1
2(e

T
i−1− eT

i )qa,M

(1− 1
2c2)eT

i qa,M + 1
2c1eT

i−1qa,M

for some c2 ∈ (0,1). Therefore,

eT
i κM ≥−ū−θK +M−1 ln(

cL

exp(2Bl)
)

+θM2(
1
2(e

T
i+1− eT

i )qa,M

(1− 1
2c1)eT

i qa,M + 1
2c1eT

i+1qa,M
+

1
2(e

T
i−1− eT

i )qa,M

(1− 1
2c2)eT

i qa,M + 1
2c2eT

i−1qa,M
).
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Multiplying through,

[(1− 1
2

c1)eT
i qa,M +

1
2

c1eT
i+1qa,M](eT

i κM + ū+θK−M−1 ln(
cL

exp(2Bl)
))

≥ θM2(
1
2
(eT

i+1− eT
i )qa,M +

1
2
(eT

i−1− eT
i )qa,M

(1− 1
2c1)eT

i qa,M + 1
2c1eT

i+1qa,M

(1− 1
2c2)eT

i qa,M + 1
2c2eT

i−1qa,M
).

≥ θM2(
1
2
(eT

i+1 + eT
i−1−2eT

i )qa,M +
1
2
(eT

i−1− eT
i )qa,M(

1
2c1(eT

i+1− eT
i )qa,M− 1

2c2(eT
i − eT

i−1)qa,M

(1− 1
2c2)eT

i qa,M + 1
2c2eT

i−1qa,M
)).

Using equations (42) and (43),

[(1− 1
2

c1)eT
i qa,M +

1
2

c1eT
i+1qa,M](eT

i κM + ū+θK−M−1 ln(
cL

exp(2Bl)
))

≥ θM2(
1
2
(eT

i+1 + eT
i−1−2eT

i )qa,M−
Bl exp(2Bl)

(M+1)2 (

2Bl exp(2Bl)
(M+1)2

exp(−2Bl)
M+1

))

≥ θM2 1
2
(eT

i+1 + eT
i−1−2eT

i )qa,M−θ
2B2

l M2 exp(6Bl)

(M+1)3 .

Summing over a, weighted by πN(a), and applying Lemma 5,

(eT
i κM + ū+θK−M−1 ln(

cL

exp(2Bl)
))≥−θ

K1
M +

2B2
l M2 exp(6Bl)

(M+1)3

cL
(M+1)

≥−θc−1
L (2K1 +2B2

l exp(6Bl)).

Therefore, |eT
i κN | is bounded below by some B+

κ > 0 for all i ∈ XN (recalling that this was
shown for i ∈ {0,N} in Lemma 9 and in the other direction in Lemma 8).

It also follows, using equation (42), that

θM2(M+1)
1
2
(eT

i+1 + eT
i−1−2eT

i )qa,M ≤ exp(2Bl)(B+
κ + ū+θK−M−1 ln(

cL

exp(2Bl)
)

+θ
2B2

l M2 exp(6Bl)

(M+1)2 ,

which establishes one side of the bound on |12(e
T
i+1 + eT

i−1−2eT
i )qa,M|.

Rewriting the FOC (equation (41)) and using Lemma 5 and the boundedness of the
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utility and the bound on |eT
i κN |,

−B+
κ − ū−θK−θM−1 ln(

eT
i qM

eT
i qa,M

)

≤θM2(ln(
1
2
(eT

i+1 + eT
i )qa,M)+ ln(

1
2
(eT

i−1 + eT
i )qa,M)−2ln(eT

i qa,M)).

By equation (42),

M−1 ln(
eT

i qM

eT
i qa,M

)≤M−1 ln(
cH

exp(−2Bl)
),

and therefore, by the concavity of the log function,

−B+
κ − ū−θK−θM−1 ln(

cH

exp(−2Bl)
)≤ 2θM2 ln(

1
4(e

T
i+1 + eT

i−1 +2eT
i )qa,M

eT
i qa,M

).

By the inequality ln(x)≤ x−1,

−B+
κ − ū−θK−θM−1 ln(

cH

exp(−2Bl)
)≤ 2θM2(

1
4(e

T
i+1 + eT

i−1−2eT
i )qa,M

eT
i qa,M

),

and therefore, using the lower bound on eT
i qa,M (equation (42)),

−B+
κ − ū−θK−θM−1 ln(

cH

exp(−2Bl)
)≤ θM2(M+1)

1
2
(eT

i+1 + eT
i−1−2eT

i )qa,M,

which proves the other side of the bound.

C.10.3 Proof that M2|12(e
T
1 − eT

0 )qa,M| ≤ K1

By Lemma 10,

−Bl ≤ (M+1) ln(
1
2(e

T
0 + eT

1 )qa,M

eT
0 qa,M

)≤ Bl.

Using the mean-value theorem, for some c ∈ (0,1),

ln(
1
2(e

T
0 + eT

1 )qa,M

eT
0 qa,M

) =
1
2(e

T
1 − eT

0 )qa,M

(1− 1
2c)eT

0 qa,M + 1
2ceT

i qa,M
.
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Therefore, by equation (42),

exp(2Bl)

(M+1)2 Bl ≥
1
2
(eT

1 − eT
0 )qa,M ≥−

exp(2Bl)

(M+1)2 Bl,

proving the bound. The proof for the other endpoint is identical.

C.11 Proof of Lemma 8

First, using Lemma 5, for all i ∈ XM \{0,M}, observe that

M2| ln(1
2
(eT

i+1 + eT
i )qM)+ ln(

1
2
(eT

i−1 + eT
i )qM)−2ln(eT

i qM)| ≤ K.

Rewriting the FOC (equation (41)) and using this bound,

eT
i κM ≤ eT

i ua,M +θK +θM−1 ln(eT
i qM)

+θM2(ln(
1
2
(eT

i+1 + eT
i )qa,M)+ ln(

1
2
(eT

i−1 + eT
i )qa,M)− (2+M−3) ln(eT

i qa,M)).

By the boundedness of the utility function, this can be rewritten as

eT
i κM ≤ ū+θK−θM2(ln(

eT
i qa,M

1
2(e

T
i+1 + eT

i )qa,M
)+ln(

eT
i qa,M

1
2(e

T
i−1 + eT

i )qa,M
))−θM−1 ln(

eT
i qa,M

eT
i qM

).

By the concavity of the log function,

ln(
1
2
(eT

i+1 + eT
i )qa,M)+ ln(

1
2
(eT

i−1 + eT
i )qa,M)+M−3 ln(eT

i qM)≤

(2+M−3) ln(
1

2(2+M−3)
(eT

i+1 + eT
i−1 +2eT

i )qa,M +
M−3

2+M−3 eT
i qM),

It follows that

eT
i κN ≤ ū+θK +(2+M−3)θM2 ln(

1
2(2+M−3)

(eT
i+1 + eT

i−1 +2eT
i )qa,M + N−3

2+N−3 eT
i qM

eT
i qa,M

).
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Exponentiating,

(eT
i qa,M)exp(− 1

2+M−3 θ
−1M−2(ū+ θ̄K− eT

i κM))≤

1
2(2+M−3)

(eT
i+1 + eT

i−1 +2eT
i )qa,M +

M−3

2+M−3 eT
i qM.

Summing over a, weighted by πN(a),

(eT
i qM)exp(− 1

2+M−3 θ
−1M−2(ū+ θ̄K− eT

i κM))≤

1
2(2+M−3)

(eT
i+1 + eT

i−1 +2eT
i )qM +

M−3

2+M−3 eT
i qM.

Taking logs,

− 1
2+M−3 θ

−1M−2(ū+ θ̄K− eT
i κM)≤ ln(

1
2(2+M−3)

(eT
i+1 + eT

i−1 +2eT
i )qM + M−3

2+M−3 eT
i qM

(eT
i qM)

)

≤ ln(1+
M−3

2+M−3 +
1

2+M−3
K1M−3

cLM−1 ),

where the last step follows by Lemma 5, recalling that cL is the lower bound on q(x). We
have

eT
i κN ≤ 3θM2 ln(1+

M−3

2+M−3 +
1

2+M−3
K1

cL
M−2)+ ū+ θ̄K

≤ ū+θK +
3θM−1

2+M−3 +
3θ

2+M−3
K1

cL

≤ ū+θK +
3θ

2
+

3θ

2
K1

cL
.

where the second step follows by the inequality ln(1+ x)< x for x > 0.
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C.12 Proof of Lemma 9

For the lower end point, the FOC (equation (41)) can be simplified to

eT
0 (ua,M−κM) =−θM2(ln(

1
2
(eT

1 + eT
0 )qa,M)+ ln(

1
2
)− (1+M−3) ln(eT

0 qa,M))

+θM2(ln(
1
2
(eT

1 + eT
0 )qM)+ ln(

1
2
)− (1+M−3) ln(eT

0 qM)).

Rearranging this,

θ
−1M−2eT

0 (ua,M−κM)+ ln(
1
2
(eT

1 + eT
0 )qa,M) =

(1+M−3) ln(
eT

0 qa,M

eT
0 qM

)+ ln(
1
2
(eT

1 + eT
0 )qM).

Exponentiating,

1
2
(eT

1 + eT
0 )qa,M exp(θ−1M−2eT

0 (ua,M−κM)) = (
eT

0 qa,M

eT
0 qM

)1+M−3 1
2
(eT

1 + eT
0 )qM.

By the boundedness of the utility function,

1
2
(eT

1 + eT
0 )qa,M exp(θ−1M−2(ū− eT

0 κM))≥ (
eT

0 qa,M

eT
0 qM

)1+M−3 1
2
(eT

1 + eT
0 )qM.

Taking a sum over a, weighted by π(a), and applying Jensen’s inequality,

1
2
(eT

1 + eT
0 )qM exp(θ−1M−2(ū− eT

0 κM))≥ 1
2
(eT

1 + eT
0 )qM,

and therefore
eT

0 κM ≤ ū.

Observing that

M−1 ln(
eT

0 qa,M

eT
0 qM

)≤M−1 ln(
M
cL

)≤M−1(
M
cL
−1)≤ c−1

L , (44)

we have

θ
−1M−2eT

0 (ua,M−κM)+ln(
1
2
(eT

1 +eT
0 )qa,M)≤M−2c−1

L +ln(
eT

0 qa,M

eT
0 qM

)+ln(
1
2
(eT

1 +eT
0 )qM).
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Exponentiating,

1
2
(eT

1 + eT
0 )qa,M exp(θ−1M−2(−θc−1

L + eT
0 (ua,M−κM)))≤ (

eT
0 qa,M

eT
0 qM

)
1
2
(eT

1 + eT
0 )qM

Using the boundedness of the utility function, then taking a sum over a, weighted by π(a),

1
2
(eT

1 + eT
0 )qa,M exp(θ−1M−2(−θc−1

L − ū− eT
0 κM))≤ 1

2
(eT

1 + eT
0 )qM.

Therefore,
eT

0 κM ≥−ū−θc−1
L ,

and thus
|eT

0 κM| ≤ B0

for B0 = ū+θc−1
L . A similar argument applies to the other end-point (eT

MκM).
Using the bound on utility and equation (44), the FOC requires that

ln(
1
2(e

T
1 + eT

0 )qa,M

eT
0 qa,M

)≤ θ
−1M−2(ū+B0 +θc−1

L )+ ln(
1
2(e

T
1 + eT

0 )qM

eT
0 qM

).

By Lemma 5, it follows that

ln(
1
2(e

T
1 + eT

0 )qa,M

eT
0 qa,M

)≤ θ
−1M−2(ū+B0 +θc−1

L )+M−1K,

and therefore the constraint with B1 = K +θ−1(ū+B0 +θc−1
L ) is satisfied.

Similarly, the FOC for the highest state is

θ
−1M−2eT

M(ua,M−κM)+ ln(
1
2(e

T
M + eT

M−1)qa,M

eT
Mqa,M

) =

(1+M−3) ln(
eT

Mqa,M

eT
MqM

)+ ln(
1
2
(eT

M + eT
M−1)qM),

and therefore

ln(
1
2(e

T
M + eT

M−1)qa,M

eT
Mqa,M

)≤ θ
−1M−2(ū+B0 +θc−1

L )+ ln(
1
2(e

T
M + eT

M−1)qM

eT
MqM

),
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implying that

ln(
1
2(e

T
M + eT

M−1)qa,M

eT
Mqa,M

)≤ θ
−1M−2(ū+B0 +θc−1

L )+M−1K,

and therefore

ln(
eT

Mqa,M
1
2(e

T
M + eT

M−1)qa,M
)≥−M−1B1.

C.13 Proof of Lemma 10

The first-order condition is, for any i ∈ XM \ {0,M} can be re-written using the function
la,M (and the function lM, defined from q̂M along the same lines) as

eT
i (κM−ua,M)+θM−1 ln(

eT
i qa,M

eT
i qM

) = θ
M2

(M+1)
(la,M(

2i+2
2(M+1)

)− la,M(
2i+1

2(M+1)
))

−θ
M2

(M+1)
(lM(

2i+2
2(M+1)

)− lM(
2i+1

2(M+1)
)).

Note that

θM−1 ln(
eT

i qa,M

eT
i qM

)≤ θM−1 ln(
1

cLM−1 )≤ θM−1(
M
cL
−1)≤ θc−1

L .

By Lemma 5 and Lemma 8 and the bound on utility,

θ
M2

(M+1)
(la,M(

2i+2
2(M+1)

)− la,M(
2i+1

2(M+1)
)≤ Bκ + ū+θK +θc−1

L .

We also have, for all i ∈ XM \{M}

M2

M+1
(la,M(

2i+3
2(M+1)

)− la,M(
2i+2

2(M+1)
))

= M2(ln(
(M+1)eT

i+1qa,M
1
2(M+1)(eT

i+1 + eT
i )qa,M

)− ln(
1
2(M+1)(eT

i + eT
i+1)qa,M

(M+1)eT
i qa,M

))

≤ 0,
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by the concavity of the log function. Observe also that, by Lemma 9,

la,M(
2

2(M+1)
) = (M+1) ln(

1
2(e

T
0 + eT

1 )qa,M

eT
0 qa,M

)≤ M+1
M

B1.

It follows that, for all j ∈ {2,3, . . . ,2M+1},

la,M(
j

2(M+1)
) = la,M(

2
2(M+1)

)+
j−1

∑
k=2

(la,M(
k+1

2(N +1)
)− la,M(

k
2(M+1)

))

≤ θ
−1(Bκ + ū+θK +θc−1

L )
M+1

M2 ( j−2)+
M+1

M
B1.

Similarly, for all j ∈ {2,3, . . . ,2M+1},

la,M(
2M+1

2(M+1)
) = la,M(

j
2(M+1)

)+
2M

∑
k= j

(la,M(
k+1

2(M+1)
)− la,M(

k
2(M+1)

)).

Observing that

−la,M(
2M+1

2(M+1)
) =− ln(

(M+1)eT
Mqa,M

1
2(M+1)(eT

M + eT
M−1)qa,M

)≤ M+1
M

B1,

using Lemma 9,

−la,M(
j

2(M+1)
)≤ θ

−1(Bκ + ū+θK +θc−1
L )

M+1
M2 (2M− j+1)+

M+1
M

B1.

It follows that, for all j ∈ {2,3, . . . ,2M+1},

|la,N(
j

2(N +1)
)| ≤ θ

−1(Bκ + ū+θK +θc−1
L )

M+1
M2 (2M−1)+

M+1
M

B1

≤ 4θ
−1(Bκ + ū+θK +θc−1

L )+2B1.
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