
B Supplemental web appendix for “Semiparametrically

efficient estimation of the average linear regression

function” by Bryan Graham and Cristine Pinto

This supplemental web appendix contains proofs of the results not included in the main

appendix as well as additional detailed calculations for some proof steps. All notation is

as defined in the main text and/or appendix unless explicitly noted otherwise. Equation

numbering continues in sequence with that established in the main text and its appendix.

Proof of Proposition 2

Begin by noting that under Assumption 4 we have

h (x, U) = h (U) +

∫ x

x

∂h (t, U)

∂x
dt

= h (U) +

∫ x̄

x

∂h (t, U)

∂x
1 (x ≥ t) dt,

which, invoking conditional independence yields

E

[

X − e0 (W )

v0 (W )
h (U)

]

= E

[

X − e0 (W )

v0 (W )
E [h (U)|W,X ]

]

= E

[

X − e0 (W )

v0 (W )
E [h (U)|W ]

]

= E

[

E

[

X − e0 (W )

v0 (W )

∣

∣

∣

∣

W

]

E [h (U)|W ]

]

= E
[

v0 (W )−1
E [X − e0 (W )|W ]E [h (U)|W ]

]

= E
[

v0 (W )−1 · 0 · E [h (U)|W ]
]

= 0.

Using this result we can re-write the β0 estimand as follows:
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E

[

X − e0 (W )

v0 (W )
Y

]

= E

[

X − e0 (W )

v0 (W )

∫ x̄

x

∂h (t, U)

∂x
1 (X ≥ t) dt

]

= E

[
∫ x̄

x

∂h (t, U)

∂x
1 (X ≥ t)

X − e0 (W )

v0 (W )
dt

]

= E

[
∫ x̄

x

E

[

∂h (t, U)

∂x

∣

∣

∣

∣

W,X

]

1 (X ≥ t)
X − e0 (W )

v0 (W )
dt

]

= E

[
∫ x̄

x

E

[

∂h (t, U)

∂x

∣

∣

∣

∣

W

]

1 (X ≥ t)
X − e0 (W )

v0 (W )
dt

]

= E

[
∫ x̄

x

E

[

∂h (t, U)

∂x

∣

∣

∣

∣

W

]

E

[

X − e0 (W )

v0 (W )

∣

∣

∣

∣

W,X ≥ t

]

(

1− FX|W (t|W )
)

dt

]

.

Next observe that

v0 (w) = E [X (X − e0 (W ))|W = w]

= E

[
∫ x̄

x

(X − e0 (W )) dt

∣

∣

∣

∣

W = w

]

=

∫ x̄

x

E [X − e0 (W )|W = w,X ≥ t]
(

1− FX|W (t|w)
)

dt.

Putting all these pieces together we have

E

[

X − e0 (W )

v0 (W )
Y

]

=E

[

∫ x̄

x

E

[

∂h (t, U)

∂x

∣

∣

∣

∣

W

]

E [X − e0 (W )|W,X ≥ t]
(

1− FX|W (t|W )
)

∫ x̄

x E [X − e0 (W )|W,X ≥ v]
(

1− FX|W (v|W )
)

dv
dt

]

=E

[
∫ x̄

x

∫ ∞

−∞

(

∂h (t, u)

∂x
fU |W,X (u|w, t) du

× 1

fX|W (t|W )

E [X − e0 (W )|W,X ≥ t]
(

1− FX|W (t|W )
)

∫ x̄

x E [X − e0 (W )|W,X ≥ v]
(

1− FX|W (v|W )
)

dv
fX|W (t|W )

)

dt

]

=E

[
∫ x̄

x

∫ ∞

−∞

(

∂h (t, u)

∂x

1

fX|W (t|W )

×
E [X − e0 (W )|W,X ≥ t]

(

1− FX|W (t|W )
)

∫ x̄
x E [X − e0 (W )|W,X ≥ v]

(

1− FX|W (v|W )
)

dv
fU,X|W (u, t|W )

)

dudt

]

= E

[

ω (W,X)
∂h (X,U)

∂x

]

,
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with

ω (w, x) =
1

fX|W (x|w)
E [X − e0 (W )|W = w,X ≥ x]

(

1− FX|W (x|w)
)

∫ x̄

x E [X − e0 (W )|W = w,X ≥ v]
(

1− FX|W (v|w)
)

dv
.

Proof of Corollary 1

Let f (x|w;φ) be a known parametric family of conditional distributions for X given W .

Let f0 (x|w) = f (x|w;φ) at some unique φ = φ0. Relative to that considered in Theorem

1, the parametric submodel changes to

f (w, x, y; η) = f (y|w, x) f (x|w;φ (η)) f (w; η)

with an associated score vector of

sη (w, x, y; η) = sη (y|w, x; η) +
(

∂φ (η)

∂η′

)′

Sφ (x|w;φ) + tη (w; η) , (56)

where Sφ (x|w;φ) is the score function associated with the parametric conditional log-

likelihood for φ.

From (56), and the usual (conditional) mean zero properties of score functions, the tangent

set is evidently

T = {s (y|w, x) + cSφ (x|w) + t (w)}

where Sφ (x|w) = Sφ (x|w;φ0), c is a matrix of constants, and

E [s (Y |W,X)|W,X ] = E [Sφ (X|W )|W ] = E [t (W )] = 0.

To show pathwise differentiability, begin by noting that β (η) continues to equal (37), however

b (w; η) now satisfies the modified conditional moment restriction

∫ ∫

(

1

x

)

(y − a (w; η)− x′b (w; η)) f (y|w, x; η) f (x|w;φ (η)) dxdy = 0. (57)

We can derive a close-form expression for ∂b(w;η0)
∂η′ in (39) by differentiating (57) with respect
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to η (and evaluating at η = η0):

−
∫ ∫

(

1

x

)

∂a (w; η0)

∂η′
f (y|w, x; η0) f (x|w;φ0) dxdy

−
∫ ∫

(

x′

xx′

)

∂b (w; η0)

∂η′
f (y|w, x; η0) f (x|w;φ0) dxdy

+

(

∫ ∫

(

1

x

)

(y − x′b (w; η0))

{

sη (y|w, x; η0) +
(

∂φ (η0)

∂η′

)′

Sφ (x|w)
}

×f (y|w, x; η0) f (x|w;φ0) dxdy) = 0

Analogous to the corresponding calculations given in the proof of Theorem 1 we can solve

to get

(

∂a(w;η0)
∂η′

∂b(w;η0)
∂η′

)

=

(

1 −e (w;φ0)
′ v (w;φ0)

−1

−v (w;φ0)
−1 e (w;φ0) v (w;φ0)

−1

)

×E

[(

Y − a (W ; η0)−X ′b (W ; η0)

X (Y − a (W ; η0)−X ′b (W ; η0))

)

×
{

sη (Y |W,X ; η0) +

(

∂φ (η0)

∂η′

)′

Sφ (X|W )

}∣

∣

∣

∣

W = w

]

.

Plugging the second row of the above expression into (39), which remains unchanged relative

to its form in the proof of Theorem 1, we get

∂β (η0)

∂η′
= E

[

v (W ;φ0)
−1 (X − e (W ;φ0)) (Y − a0 (W )−X ′b0 (W ))

×
{

sη (Y |W,X ; η0) +

(

∂φ (η0)

∂η′

)′

Sφ (X|W )

}]

+E [b0 (W ) tη (W )] . (58)

Now observe that (17) remains a pathwise derivative. Furthermore (17) continues to lie in the

tangent space with its first component playing the role of s (x, y|w) = s (y|w, x)+cSφ (x|w)
and its second component that of t (w). The claim again follows from Theorem 3.1 of Newey

(1990).
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Detailed calculations for proof of Theorem (2)

Let m (Zi, θ) be the (L+ J + 1 + J + JK +K)× 1 vector of moment conditions as defined

in the main text. In this appendix we work with the more refined partition of this vector:

m1(Xi,Wi,φ) =Sφ (Xi|Wi;φ) (59)

m2(Wi, µW ) =Wi − µW (60)

m3(Zi, µW ,λ, β) =Ui (µW ,λ, β) (61)

m4(Zi, µW ,λ, β) = (Wi − µW )Ui (µW ,λ, β) (62)

m5(Zi, µW ,λ, β) = ((Wi − µW ) ! Xi)Ui (µW ,λ, β) (63)

m5(Zi,φ, µW ,λ, β) =v (W ;φ)−1 (X − e (W ;φ))Ui (µW ,λ, β) (64)

where θ = (φ, µW ,λ′, β)′ with dim (θ) = L+ J + 1 + J + JK +K as before.

The Jacobian of the moment vector equals

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M11 M12 M13 M14 M15 M16

M21 M22 M23 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 M42 M43 M44 M45 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 M66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Considering the first block of columns in M , we have that

M11
L×L

= H (φ0)

with H (φ0) equal the L×L expected Hessian matrix associated with the generalized propen-

sity score log-likelihood (under Assumption 5 we have that −H (φ0) = E [SS′]). We also have

that

M21
J×L

= 0, M31
1×L

= 0, M41
J×L

= 0, M51
JK×L

= 0,
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and, finally

M61
K×L

=E

[([

−v (W,φ0)
−1 ∂v(W,φ0)

∂φ1
v (W,φ0)

−1 (X − e (W,φ0)) · · ·

· · ·− v (W,φ0)
−1 ∂v (W,φ0)

∂φL
v (W,φ0)

−1 (X − e (W,φ0))

]

+v (W,φ0)
−1 ∂e (W,φ0)

∂φ′

)

U (µW ,λ∗, β0)

]

.

Iterated expectations gives

M61 = E

[[

c1 (W,φ0) · · · cL (W,φ0)
]

C (X,U∗|W ) + d (W,φ0)E [U∗|W ]
]

(65)

with cl (W,φ) = −v (W,φ)−1 ∂v(W,φ)
∂φl

v (W,φ)−1 for l = 1, . . . , L and d (W,φ) =

v (W,φ)−1 ∂e(W,φ)
∂φ′

.

It is useful to develop an alternative expression for (65). Note that

E [m5(Zi,φ0, µW ,λ∗, β0)] = E
[

v (W,φ0)
−1 (X − e (W,φ0))U (µW ,λ∗, β0)

]

= 0,

is mean zero. A GIME argument, similar to the one used to derive (22) in the main text,

therefore gives

E

[

∂

∂φ′

{

v (W,φ0)
−1 (X − e (W,φ0))

}

U∗

]

= −E
[

v (W,φ0)
−1 (X − e (W,φ0))U∗S

′] , (66)

where we use the fact that U∗ = U (µW ,λ∗, β0) does not vary with the propensity score

parameter, φ. We can use (66) to write

M61 = −E
[

v (W,φ0)
−1 (X − e (W,φ0))U∗S

′] .

If both Assumptions 5 and 6 hold simultaneously, then U∗ = U0 is conditionally mean zero

and uncorrelated with X (i.e., E [U0|W ] = E [XU0|W ] = 0). In this case M61 = 0 (see

Equation (65) above). If Assumption 6 does not hold, then M61 may be non-zero.

Turning to the second block of columns in M , we have that

M12
L×J

= 0, M22
J×J

= −IJ ,
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and also that

M32
1×J

=E

[

{

γ∗ + (IJ ⊗X)
′

δ∗
}′
]

M42
J×J

=E

[

−IJU∗ + (W − µW )
{

γ∗ + (IJ ⊗X)
′

δ∗
}′
]

=E

[

(W − µW )
{

(IJ ⊗X)
′

δ∗
}′
]

M52
JK×J

=E

[

− (IJ ⊗X)U∗ + ((W − µW )⊗X)
(

γ∗ + (IJ ⊗X)
′

δ∗
)′
]

A.6
= E

[

((W − µW )⊗X)
(

γ0 + (IJ ⊗X)
′

δ0
)′
]

.

Note that the second equality after M42 does not require Assumption 6 to hold. Even if λ∗

does not correctly parameterize the CLP coefficients, it remains true that U (µW ,λ∗, β0) is

mean zero. However U (µW ,λ∗, β0) may covary with X when Assumption 6 fails. Therefore

the second equality after M52 does require Assumption 6 to hold. The forms of M32, M42

and M52 determine the effect of sampling uncertainty about the value of µW on sampling

uncertainty about the value of β0.

Finally we get

M62
K×J

= E

[

v (W ;φ0)
−1 (X − e (W ;φ0))

{

γ∗ + (IJ ⊗X)
′

δ∗
}′
]

Turning to the third block of columns in M , we have that

M13
L×1

= 0, M23
J×1

= 0, M33
1×1

= −1,

and also that

M43
J×1

= −E [(W − µW )] = 0, M53
JK×1

= −E [((W − µW )⊗X)]

and

M63
K×1

= −E
[

v (W ;φ0)
−1 (X − e (W ;φ0))

]

= 0.

Turning to the fourth block of columns in M , we have that

M14
L×J

= 0, M24
J×J

= 0, M34
1×J

= −E

[

(W − µW )
′

]

= 0,
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and also that

M44
J×J

= −E
[

(W − µW ) (W − µW )′
]

= −ΣWW , M54
JK×J

= −E

[

((W − µW )⊗X) (W − µW )
′

]

,

and finally that

M64
K×J

= −E

[

v (W ;φ0)
−1 (X − e (W ;φ0)) (W − µW )

′

]

= 0.

Turning to the fifth block of columns in M , we have that

M15
L×JK

= 0, M25
J×JK

= 0,

and also that

M35
1×JK

= −E

[

((W − µW )⊗X)
′

]

, M45
J×JK

= −E

[

(W − µW ) ((W − µW )⊗X)
′

]

,

and also that

M55
JK×JK

= −E

[

((W − µW )⊗X) ((W − µW )⊗X)
′

]

,

and finally that

M65
K×JK

= −E

[

v (W ;φ0)
−1 (X − e (W ;φ0)) ((W − µW )⊗X)

′
]

= 0.

Turning to the sixth, and final, block of columns in M , we have that

M16
L×K

= 0, M26
J×K

= 0,

and also that

M36
1×K

= −E

[

X
′

]

, M46
J×K

= −E

[

(W − µW )X
′

]

, M56
JK×K

= −E

[

((W − µW )⊗X)X
′

]

,

and finally that

M66
K×K

= −E

[

v (W ;φ0)
−1 (X − e (W ;φ0))X

′

]

= −IK .
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Marking out the zero and identity terms we have that

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M11 0 0 0 0 0

0 −IJ 0 0 0 0

0 M32 −1 0 M35 M36

0 M42 0 M44 M45 M46

0 M52 M53 M54 M55 M56

M61 M62 0 0 0 −IK

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Using the above we have (44), as defined in the appendix to the main paper, equal to

B1
(1+J+JK+K)×J

=

⎛

⎜

⎝

M32

M42

M52

⎞

⎟

⎠
= E

⎡

⎢

⎢

⎢

⎢

⎣

{

γ∗ + (IJ ⊗X)
′

δ∗
}′

(W − µW )
{

(IJ ⊗X)
′

δ∗
}′

− (IJ ⊗X)U∗ + ((W − µW )⊗X)
(

γ∗ + (IJ ⊗X)
′

δ∗
)′

⎤

⎥

⎥

⎥

⎥

⎦

.

Additional detailed calculations

Equation (46)

To derive the lower-left-hand block of (46) in the Appendix to the main paper we multiply

out:

−
(

E [RR′]−1 −E [RR′]−1
E [RX ′]

0 IK

)(

0 −B1

−M61 −B2

)(

−H (φ0)
−1 0

0 IJ

)

=

−
(

E [RR′]−1
E [RX ′]M61 −E [RR′]−1 (B1 −B2E [RX ′])

−M61 −B2

)(

−H (φ0)
−1 0

0 IJ

)

=

−
(

−E [RR′]−1
E [RX ′]M61H (φ0)

−1 −E [RR′]−1 (B1 − B2E [RX ′])

M61H (φ0)
−1 −B2

)

.

Equation (43)

To derive (43) in the Appendix start by observing that moment (30) in the main text implies

the following characterization of λ0 and β0 :

[

E [RY ]

E
[

v0 (W )−1 (X − e0 (W ))Y
]

]

=

[

E [RR′] E [RX ′]

0 IK

](

λ0

β0

)

.
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After some calculation we get that

λ0 = E [RR′]−1
E [R (Y −X ′β0)]

= E [RR′]−1
E [R (a0 (W ) +X ′ (b0 (W )− β0)) + U0]

= E [RR′]−1
E [R (a0 (W ) +X ′ (b0 (W )− β0))] ,

where the last line uses Lemma 1 of the main text.

Equation (50)

To derive equation (50) in the Appendix expand the variance of b0 (W ) +

∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0 as follows:

V
(

b0 (W ) +∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0
)

=∆(J)
∗ V

(

k(J) (W )
) (

∆(J)
∗
)′

+ V (b0 (W ))

+ 2E
[

(b0 (W )− β0)
{

∆(J)
∗
(

k(J) (W )− µ(J)
)}′
]

=∆(J)
∗ V

(

k(J) (W )
) (

∆(J)
∗
)′

+ V (b0 (W ))

+ 2E [(b0 (W )− β0)

×
{

b0 (W ) +∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0
]

× − (b0 (W )− β0)}′
]

=∆(J)
∗ V

(

k(J) (W )
) (

∆(J)
∗
)′ − V (b0 (W ))

− 2E [(b0 (W )− β0)

×
{

b0 (W ) +∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0
}′
]

.

(67)
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