
Online Appendix A

Additional Figures

Appendix Figure A.1 plots the histograms of hourly wages in (nominal) $0.10 bins using

administrative data separately for the states of Minnesota (panel A) and Washington (panel

B). Both are based on hourly wage data from UI records from 2003-2007. Hourly wages

are constructed by dividing quarterly earnings by the total number of hours worked in

the quarter. The counts are normalized by dividing by total employment in that state,

averaged over the sample period. The figure shows very clear bunching at multiples of

$1 in both states, especially at $10. Appendix Figure A.2 plots the overlaid histograms of

hourly wages, pooled across both MN and WA, in real $0.10 bins from 2003q4 and 2007q4,

and shows that the nominal bunching at $10.00 occurs at different places in the real wage

distribution in 2003 and 2007.
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Figure A.1: Histograms of Hourly Wages In Administrative Payroll Data from Min-
nesota and Washington, 2003-2007

Panel A: Minnesota
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Panel B: Washington
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Notes. The figure shows histograms of hourly wages in $0.10 (nominal) wage bins, averaged over
2003q1 to 2007q4, using administrative Unemployment Insurance payroll records from the states
of Minnesota (Panel A) and Washington (Panel B). Hourly wages are constructed by dividing
quarterly earnings by the total number of hours worked in the quarter. The counts in each bin
are normalized by dividing by total employment in that state, averaged over the sample period.
The UI payroll records cover over 95% of all wage and salary civilian employment in the states.
The counts here exclude NAICS 6241 and 814, home-health and household sectors, which were
identified by the state data administrators as having substantial reporting errors.
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Figure A.2: Histograms of Real Hourly Wages In Administrative Payroll Data from
Minnesota and Washington, 2003-2007
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Notes. The figure shows a histogram of hourly wages in $0.10 real wage bins (2003q1 dollars)
for 2003q1 and 2007q1, using pooled administrative Unemployment Insurance payroll records
from the states of Minnesota and Washington. The nominal $10 bin is outlined in dark for each
year—highlighting the fact that this nominal mode is at substantially different part of the real wage
distributions in these two periods. Hourly wages are constructed by dividing quarterly earnings
by the total number of hours worked in the quarter. The counts in each bin are normalized by
dividing by total employment in that state for that quarter. The UI payroll records cover over 95%
of all wage and salary civilian employment in the states. The counts here exclude NAICS 6241 and
814, home-health and household sectors, which were identified by the state data administrators as
having substantial reporting errors.

66



Online Appendix B Bunching in Hourly Wage Data from

Current Population Survey and Supplement

For comparison, we next show an analogous histogram of hourly nominal wage data using

the national CPS data. In Figure B.3, we plot the nominal wage distribution in U.S. in 2003

to 2007 in $0.10 bins. There are notable spikes in the wage distribution at $10, $7.20 (the bin

with the federal minimum wage), $12, $15, along with other whole numbers. At the same

time, the spike at $10.00 is substantially larger than in the administrative data (exceeding

0.045), indicating rounding error in reporting may be a serious issue in using the CPS to

accurately characterize the size of the bunching.

We also use a 1977 CPS supplement, which matches employer and employee reported

hourly wages, to correct for possible reporting errors in the CPS data. We re-weight wages

by the relative incidence of employer versus employee reporting, based on the two ending

digits in cents (e.g., 01, 02, ... , 98, 99). As can be seen in Figure B.4, the measurement error

correction produces some reduction in the extent of visible bunching, which nonetheless

continues to be substantial. For comparison, the probability mass at $10.00 is around

0.02, which is closer to the mass in the administrative data than in the raw CPS. This is

re-assuring as it suggests that a variety of ways of correcting for respondent rounding

produce estimates suggesting a similar and substantial amount of bunching in the wage

distribution.
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Figure B.3: Histogram of Hourly Wages in National CPS data, 2003-2007
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Notes. The figure shows a histogram of hourly wages by $0.10 (nominal) wage bins, averaged
over 2003q1 and 2007q4, using CPS MORG files. Hourly wages are constructed by average weekly
earnings by usual hours worked. The sample is restricted to those without imputed earnings. The
counts here exclude NAICS 6241 and 814, home-health and household sectors. The histogram
reports normalized counts in $0.10 (nominal) wage bins, averaged over 2003q1 and 2007q4. The
counts in each bin are normalized by dividing by total employment, averaged over the sample
period.
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Figure B.4: Wage Bunching in CPS data, 2003-2007, Corrected for Reporting Error Using
1977 CPS supplement
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Notes. The figure shows a histogram of hourly wages by $0.10 (nominal) wage bins, averaged
over 2003q1 to 2007q4, using CPS MORG files, where individual observations were re-weighted
to correct for overreporting of wages ending in particular two-digit cents using the 1977 CPS
supplement. Hourly wages are constructed by dividing average weekly earnings by usual hours
worked. The sample is restricted to those without imputed earnings. The counts here exclude
NAICS 6241 and 814, home-health and household sectors. The histogram reports normalized
counts in $0.10 (nominal) wage bins, averaged over 2003q1 and 2007q4. The counts in each bin are
normalized by dividing by total employment, averaged over the sample period.
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Online Appendix C

Testing Discontinuous Labor Supply on Amazon Mechani-

cal Turk Observational Data

Our Amazon Mechanical Turk experiment focused on discontinuities at 10 cents, while our

bunching estimator used the excess mass at $1.00. In this appendix we present evidence

from observational data scraped from Amazon Mechanical Turk to show that there is also

no evidence of a discontinuity in worker response to rewards at $1.00. Our primary source

of data was collected by Panos Ipseiros between January 2014 and February 2016, and, in

principle, kept track of all HITs posted in this period.

We keep the discussion of the data and estimation details brief, as interested readers can

see details in Dube et al. (2018). Dube et al. (2018) combines a meta-analysis of experimental

estimates of the elasticity of labor supply facing requesters on Amazon Mechanical Turk

with Double-ML estimators applied to observational data.. That paper does not look at

discontinuities in the labor supply at round numbers.

Following Dube et al. (2018) we use the observed duration of a batch posting as a

measure of how attractive a given task is as a function of observed rewards and observed

characteristics. We calculate the duration of the task as the difference between the first

time it appears and the last time it appears, treating those that are present for the whole

period as missing values. We convert the reward into cents. We are interested in the labor

supply curve facing a requester. Unfortunately, we do not see individual Turkers in this

data. Instead we calculate the time until the task disappears from our sample as a function

of the wage. Tasks disappear once they are accepted. While tasks may disappear due to

requesters canceling them rather than being filled, this is rare. Therefore, we take the time

until the task disappears to be the duration of the posting—i.e., the time it takes for the

task to be accepted by a Turker. The elasticity of this duration with respect to the wage

will be equivalent to the elasticity of labor supply when offer arrival rates are constant
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and reservation wages have an exponential (constant hazard) distribution. We estimate

regressions of the form:

ln(durationh) = β× ln(rewardh) + δrequester + δhourposted + ε

Where h indexes HIT batches,and the specification includes requester fixed effects and

fixed effects for the hour the HIT batch is first posted. We also show specifications that

add keyword combination fixed effects (the keywords allow Turkers to look for particular

tasks), log of the initial number of HITs in the batch, and log of time allotted by the

requester. This will almost always be an overestimate of the actual time taken to complete

the task, but is likely correlated with it. Note that time allotted is also how much time

a Turker has to do the task, and if the task is too long relative to the time allotted, it

may expire before the Turker can complete the task. Hence short time allotted does not

necessarily imply the task is shorter, and Turkers may be averse to tasks that have too little

time allotted.

Results are shown in Table C.1. There is a clear negative relationship between rewards

and duration. If the distribution of reservation wages has a constant hazard and the rate

at which offers are received is constant, this implies an upward sloping labor supply

curve with a very low elasticity (< 1), but still considerably larger than our experimental

estimate on MTurk.20 We also show analogues of our experimental specifications from our

pre-analysis plan. The first approach tests for a discontinuity by adding an indicator for

rewards greater than or equal to 100 (“Jump at 100”). This level discontinuity is tested in

specifications 3 and 4, and there is no evidence of log durations becoming discontinously

larger above $1.00. The second approach tests for a slope break at $1.00 by estimating a

knotted spline that allows the elasticity to vary between 51 and 95 cents, 95 cents and $1.00,

20In Dube et al. (2018) we implement a more comprehensive adjustment for unobserved heterogeneity
using a double-machine-learning estimator proposed by Chernozhukov et al. (2017); this yields much
smaller labor supply elasticities relative to the fixed-effects specifications, and very close, not only to our
experimental estimates presented above, but also to the precision-weighted mean calculated from a number
of other experimentally estimated elasticities.
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and then greater than $1.00. The slope break specification is tested in specifications 5 and

6, where we report the change in slopes at $1.00 (“Spline”). Again, there is no evidence of

a change in the relationship between log duration and log reward between $0.95 and $1.00

versus greater than $1.00.
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Table C.1: Duration of Task Posting by Log Reward and Jump at $1.00

(1) (2) (3) (4) (5) (6)

Log Reward -0.663*** -0.842*** -0.689** -0.938*** -0.632* -0.976**
(0.171) (0.210) (0.274) (0.338) (0.329) (0.405)

Jump at 100 0.015 0.058
(0.116) (0.165)

Spline -0.243 0.287
(2.361) (3.347)

Additional controls:
Requester x Source FE Y Y Y Y Y Y
Hour Posted FE Y Y Y Y Y Y
Keyword FE N Y N Y N Y
Log Initial HITs N Y N Y N Y
Log Time Alloted N Y N Y N Y

Sample size 22,097 15,684 22,097 15,684 22,097 15,684

Notes. Sample is restricted to HIT batches with rewards between 51 and 149 cents. Columns 3,
4 and 8 estimate a specification testing for a discontinuity in the duration at $1.00, as in our
pre-analysis plan, while columns 5 and 6 estimate the spline specification testing for a change
in the slope of the log duration log reward relationship at $1.00, also from the pre-analysis plan.
Significance levels are * 0.10, ** 0.05, *** 0.01.
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Online Appendix D

Additional Experimental Details and Specifications from Pre-

analysis Plan

Figure D.1 shows screenshots from the experimental layout facing MTurk subjects. while

D.3 shows specifications parallel to those from the main text, except with the number

correct as the outcome, to measure responsiveness of subject effort to incentives. There is

no evidence of any effect of higher rewards on the number of images labelled.

In Tables D.1 and D.2 we show specifications from our pre-analysis plan that parallel

those in 7 and D.3, respectively. These were linear probability specifications in the level of

wages without any controls, instead of the logit specifications with log wages and controls

we show in the main text. We also pool the two different task volumes. The initial focus

of our experiment was to test for a discontinuity at 10 cents, which is unaffected by our

changes in specification. While the elasticity is qualitatively very similar, the logit-log

wage specification shown in the text is closer to our model, a variant of the model specified

by Card et al. (2016), and improves precision on the elasticity estimate.
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Figure D.1: Online Labor Supply Experiment on MTurk

Page 1: Consent Form

The instructions are the same on all subsequent pages, but are collapsed (though they can
be revealed by clicking the “Show” link).

Page 2: Demographic Info Sheet

1

Page 3: Image Tagging Task

Page 4: Option to Continue

2

Notes. The figure shows the screen shots for the consent form and tasks associated with the online labor
supply experiment on MTurk.
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Table D.3: Task quality by offered task reward on MTurk

(1) (2) (3) (4) (5) (6) (7) (8)
Log Wage -0.006 -0.002 0.011 0.001 0.011 0.031

(0.012) (0.017) (0.017) (0.022) (0.033) (0.034)

Jump at 10 -0.002 -0.006
(0.007) (0.013)

Spline -0.019 -0.052
(0.067) (0.127)

Local 0.003 0.012
(0.011) (0.022)

Global -0.003 -0.002
(0.006) (0.012)

η -0.006 -0.002 0.011 0.001 0.011 0.032
(0.012) (0.017) (0.017) (0.023) (0.034) (0.035)

Sample Pooled Pooled Pooled Pooled Sophist. Sophist. Sophist. Sophist.
Sample Size 4073 4073 4073 4031 1407 1407 1407 1396

Notes. The reported estimates are logit regressions of getting at least 1 out of 2 images correctly
tagged on log wages (conditional on accepting the task), controlling for number of images done
in the task (6 or 12), age, gender, weekly hours worked on MTurk, country (India/US/other),
reason for MTurk, and an indicator for HIT accepted after pre-registered close date. Column 1
reports specification 1 that estimates the labor-supply elasticity, without a discontinuity. Col-
umn 2 estimates specification 2, which tests for a jump in the probability of acceptance at 10
cents. Column 3 estimates a knotted spline in log wages, with a knot at 10 cents, and reports
the difference in elasticities above and below 10 cents. Column 4 estimates specification 4,
including indicator variables for every wage and testing whether the different in acceptance
probabilities between 10 and 9 cents is different from the average difference between 12 and 8
(local) or the average difference between 5 and 15 (global). Columns 5-8 repeat 1-4, but restrict
the sample to "sophisticates": Turkers who respond that they work more than 10 hours a week
and their primary motivation is money. Robust standard errors in parentheses.
* p < 0.10, ** p < 0.5, *** p < 0.01
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Online Appendix E

Theoretical extension: An efficiency wage interpretation where

effort depends on wage

In the main paper, we assume that the firm’s ability to set wages comes from monopsony

power. However, it may be recasted in terms of efficiency wages where wage affects

productivity: there, too, the employer will set wages optimally such that the impact of

a small change in wages around the optimum is approximately zero. In this section, we

show a very similar logic applies in an efficiency wage model with identical observational

implications as our monopsony model, with a re-interpretation of the labor supply elasticity

η as capturing the rate at which the wage has to increase to ensure that the no-shirking

condition holds when the firm wishes to hire more workers. Indeed, the observation that

the costs of optimization errors are limited when wages are a choice variable was originally

made by Akerlof and Yellen (1985) in the context of an efficiency wage model.

As in Shapiro and Stiglitz (1984), workers choose whether to work or shirk. Working

entails an additional effort cost e. Following Rebitzer and Taylor (1995), we allow the

detection of shirking, D(l), to fall in the amount of employment l(w).21 Workers quit with

an exogenous rate q. An unemployed worker receives benefit b and finds an offer at rate

s. The discount rate is r. All wage offers are assumed to be worth accepting; once we

characterize the wage setting mechanism, this implies a bound for the lowest productivity

firm. Finally, generalizing both Rebitzer and Taylor (1995) and Shapiro and Stiglitz (1984),

21In Shapiro and Stiglitz (1984), the detection probability is exogenously set. This produces some predic-
tions which are rather strong. For example, the model does not predict wages to vary with productivity, as
the no shirking condition that pins down the optimal wage does not depend on firm productivity. The same
is true for the Solow model, where the Solow condition is independent of firm productivity (see Solow 1979).
As a result, those models cannot readily explain wage dispersion that is independent of skill distribution,
which makes it less attractive to explain bunching. However, if we generalize the Shapiro-Stiglitz model to
allow the detection probability to depend on the size of the workforce as in Rebitzer and Taylor (1995), this
produces a link between productivity, firm size and wages. Going beyond Rebitzer and Taylor, we further
generalize the model to allow for heterogeneity in firm productivity, which produces a non-degenerate
equilbrium offer wage distribution.
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we allow the wages offered by firms to vary; indeed our model will predict that higher

productivity firms will pay higher wages—leading to equilibrium wage dispersion.

We can write the expected value of not shirking as:

VN(w) = w− e +
(1− q)VN(w)

1 + r
+

qVU

1 + r

The value of shirking can be written as:

VS(w) = w +
(1− q)(1− D)VS(w)

(1 + r)
+
(1− (1− q)(1− D))VU

(1 + r)

Finally, the value of being unemployed is:

VU = b +
sEVN + (1− s)VU

(1 + r)

The (binding) no shirking condition, NSC, can be written as:

VN(w) = VS(w)

Plugging in the expressions above and simplifying we get the no-shirking condition:

w =
r

1 + r
VU +

e(r + q)
D(l)(1− q)

We can further express VU as a function of the expected value of an offer VNand the

probability of receiving an offer, s, as well as the unemployment benefit b. However, for

our purposes, the key point is that this value is independent of the wage w and is taken to

be exogenous by the firm in its wage setting. Since detection probability D(l) is falling in l,

we can now write:

D(l) =
e (r + q)(

w− e + 1
1+r VU

)
(1− q)

81



This generates a relationship between l and w:

l(w) = D−1

 e (r + q)(
w− e + 1

1+r VU
)

(1− q)

 = d


(

w− e + 1
1+r VU

)
(1− q)

e (r + q)


where d(x) = D−1( 1

x ). Since D′(x) < 0, we have d′(x) > 0. This is analogous to the labor

supply function facing the firm: to attract more workers who will work, one needs to pay

a higher wage because detection is decling in employment, D′(l) < 0. Therefore, we can

write the elasticity of the implicit labor supply function as:

l′(w)w
l(w)

=
d′(.)w

d(.)
× 1− q

e(r + q)

.

If we assume a constant elasticity d(x) function with elasticity ρ then the implicit

“effective labor” supply elasticity is also constant:

η =
l′(w)w

l(w)
= ρ× 1− q

e(r + q)

The elasticity is falling in effort cost e, exogenous quit rate q, as well as the discount

rate, r. It is also rising in the elasticity ρ, since a higher ρ means detection does not fall as

rapidly with employment.

The implicit effective labor supply function is then:

l(w) =
wη

C
=

wρ× 1−q
e(r+q)

C

which is identical to the monopsony case analyzed in the main text. For a firm with

productivity pi, profit maximization implies setting the marginal cost of labor to the

marginal revenue product of labor (pi), i.e., wi = η
1+η pi. 22

22We can also solve for VN = (E(w)−e)(1+r)
r−b(1+r) =

(
η

1+η E(p)−e
)

(1+r)

r−b(1+r) . This implies we can write the equi-
librium value of being unemployed as a function of the primitive parameters as follows: VU =
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Finally, we can augment this labor supply function to exhibit left-digit bias. Consider

the case where for wage w ≥ w0 , the wage is perceived to be to equal to w̃ = w + g while

under w0 it is perceived to be w̃ = w. Now, the labor supply can be written as:

l(w) = D−1
(

e(r+q)
(w−e+ 1

1+r VU)(1−q)

)
= d

(
(w−e+ 1

1+r VU)(1−q)
e(r+q)

)
for w < w0

l(w) = D−1
(

e(r+q)
(w+g−e+ 1

1+r VU)(1−q)

)
= d

(
(w+g−e+ 1

1+r VU)(1−q)
e(r+q)

)
for w ≥ w0

Note that under the condition that d(x) has a constant elasticity, the implicit labor

supply elasticity continues to be constant both below and above w0. However, there is a

discontinuous jump up in the l(w) function at w0. Therefore, we can always appropriately

choose a γ such that this implicit labor supply function can be written as:

l(wj, γ) =
wη × γ

1wj≥w0

C
=

wρ× 1−q
e(r+q) × γ

1wj≥w0

C

Facing this implicit labor supply condition, firms will optimize:

Π(p, w) = (p− w)l(w, γ) + D(p)1w=w0

With a distribution of productivity, p, higher productivity firms will choose to pay more,

as the marginal cost of labor implied by the implicit labor supply function is equated with

the marginal revenue product of labor at a higher wage. Intuitively, higher productivity

firms want to hire more workers. But since detection of shirking falls with size, this requires

them to pay a higher wage to ensure that the no shirking condition holds. Similarly, all

of the analysis of firm-side optimization frictions goes through here as well. A low η

due to (say) high cost of effort now implies that a large amount of bunching at w0 can be

consistent with a small amount of optimization frictions, δ.

One consequence of this observational equivalence is that we cannot distinguish be-

tween efficiency wages and monopsony in our observational analysis. However, in our

experimental analysis, we find that the evidence from online labor markets is more consis-

(1 + r)
[

b
r+s −

e
1−b(1+r + ηE(p)

(1+η)(r−b(1+r)

]
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tent with a monopsony interpretation than an effort one, due to the absence of any effect of

wages on the number of images tagged correctly. At the same time, it is useful to note that

many of the implications from this efficiency wage model are quite similar to a monopsony

one: for instance, both imply that minimum wages may increase employment in equilib-

rium, as Rebitzer and Taylor show. Therefore, while understanding the importance of

specific channels is useful, the practical consequences may be less than what may appear

at first blush.
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Online Appendix F

Deconvolution estimator

In this appendix, we describe the deconvolution estimator we use to estimate the distribu-

tions of the the elasticity η and δ. Recall that if we condition on δ > 0,we can take logs of

equation 15 to obtain:

2 ln(ω) = − ln(η(1 + η) + ln(δ) = − ln(η(1 + η)) + E[ln (δ) |δ > 0] + ln(δres)

We make the assumption that δres is lognormally distributed, so that ln(δres) ∼ N(0, σ2
δ ),

and we fix E[ln (δ) |δ > 0] = ln (E(δ|δ > 0)) + 1
2 σ2

δ . We can use the fact that the cumulative

distribution function of 2 ln(ω) is given by 1− φ̂ (exp {2 ln(ω)}) to numerically obtain a

density for 2 ln(ω), where φ̂ is empirically estimated from the shape of the missing mass.

This then becomes a well-known deconvolution problem, as the density of − ln(η(1 + η))

is the deconvolution of the density of 2 ln(ω) by the Normal density we have imposed

on ln(δres). We can then recover the distribution of η,H(η), from the estimated density of

− ln(η(1 + η)).

To see this, consider the general case of when the observed signal (W) is the sum of the

true signal (X) and noise (U). (In our case W = 2 ln(ω)− E[ln (δ) |δ > 0] and U = ln(δres).)

W = X + U

Manipulation of characteristic functions implies that the density of W is fW(x) =

( fX ∗ fU) (x) =
∫

fX(x − y) fU(y)dy where ∗ is the convolution operator. Let Wj be the

observed sample from W.

Taking the Fourier transform (denoted by ∼) , we get that ˜fW =
∫

fW(x)eitxdx =

f̃X × ˜fU. To recover the distribution of X, in principle it is enough to take the inverse

Fourier transform of
˜fW
˜fU

. This produces a “naive” estimator f̂X = 1
2π

∫
e−itx ∑N

j=1
eitWj

N
φ(t) dt, but
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unfortunately this is not guaranteed to converge to a well-behaved density function. To

obtain such a density, some smoothing is needed, suggesting the following deconvolution

estimator:

f̂X =
1

2π

∫
e−itxK(th)

∑N
j=1

eitWj

N

φ(t)
dt

where K is a suitably chosen kernel function (whose Fourier transform is bounded and

compactly supported). The finite sample properties of this estimator depend on the choice

of fU. If ˜fU decays quickly (exponentially) with t (e.g. U is normal), then convergence

occurs much more slowly than if ˜fU decays slowly (i.e. polynomially) with t (e.g. U is

Laplacian). Note that once we recover the density for X = ln(η(1 + η)), we can easily

recover the density for η.

For normal U = ln(δres), Delaigle and Gijbels (2004) suggest a kernel of the form:

K(x) = 48
cos(x)
πx4 (1− 15

x2 )− 144
sin(x)
πx5 (1− 5

x2 )

This estimator also requires a choice of bandwidth which is a function of sample size.

Delaigle and Gijbels (2004) suggest a bootstrap-based bandwidth that minimizes the mean-

integral squared error, which is implemented by Wang and Wang (2011) in the R package

decon, and we use that method here.
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