
Appendix

This Appendix contains proofs of results stated in the main text, as well as auxiliary results.

A Proofs of Lemma 1 and Propositions 1 and 2

A.1 Proof of Proposition 1

Fix a continuation value function V i for agent i, given by

V i(zi, Z) = ui(Z) +
(

β0 + β1Z̄
) (

zi − Z̄
)

−K
(

zi − Z̄
)2

. (40)

In equilibrium, agent i achieves the value

sup
z̃

E
[

V i(zi0 + Y i(ẑ), Z) + T i
κ(ẑ, Z) | F i

]

. (41)

Fix reports ẑj = zj0 for j 6= i. Substituting (40) into (41), the quantity inside the expectation
of (41) is

ui(Z) +
(

β0 + β1Z̄
) (

zi0 + Y i(ẑ)− Z̄
)

−K
(

zi0 + Y i(ẑ)− Z̄
)2

+ κ0

(

nκ2(Z) +
n
∑

j=1

ẑj

)2

+ κ1(Z)(ẑ
i + κ2(Z)) +

κ2
1(Z)

4κ0n2
. (42)

We can write

Y i(ẑ) =

∑n
j=1 ẑ

j

n
− ẑi =

Z − zi0
n

− n− 1

n
ẑi,

The terms in (42) that depend on ẑi sum to

(

β0 + β1Z̄
)

(

−n− 1

n
ẑi
)

−K

(

n− 1

n

)2
(

zi0 − ẑi
)2

+ κ0

(

nκ2(Z) + Z − zi0 + ẑi
)2

+ κ1(Z)ẑ
i.

The first derivative of this expression with respect to ẑi is

(

β0 + β1Z̄
)

(

−n− 1

n

)

+ 2K

(

n− 1

n

)2
(

zi0 − ẑi
)

+ 2κ0(nκ2(Z) + Z − zi0 + ẑi) + κ1(Z).

The second derivative of (42) with respect to ẑi is negative because K > 0 and κ0 < 0. It follows
the unique solution of this first order condition is the unique optimal report. Substituting ẑi

with ẑi = zi0 in the first derivative, and then equating the result to 0 implies that
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0 =
(

β0 + β1Z̄
)

(

−n− 1

n

)

+ 2κ0(nκ2(Z) + Z) + κ1(Z),

and thus, for any fixed κ1, κ0, we have that

κ2(Z) = −Z +
−κ1(Z) + (n−1

n
)
(

β0 + β1Z
)

2κ0n
(43)

is the unique κ2(Z) such that agent i optimally reports ẑi = zi0. This reporting strategy
therefore constitutes an ex-post equilibrium of the mechanism game. Because this applies to
all agents, we have

∑

j ẑ
j

n
− ẑi = −

(

zi0 − Z̄
)

.

Thus, zi0 + Y i(ẑ) = Z̄, as desired.
For the special case in which

κ0 =
−K(n− 1)

n2
,

we can define Q ≡
∑

j 6=i ẑ
j/n and calculate that

κ0

(

∑

j

ẑj

)2

−K
(

zi0 + Y i((ẑi, ẑ−i))− Z̄
)2

= κ0(nQ)2 + κ0(ẑ
i)2 + 2κ0nQẑi

−K
(

zi0 +Q− Z̄
)2 −K

(

n− 1

n

)2

(ẑi)2

+ 2K
n− 1

n
ẑi
(

zi0 +Q− Z̄
)

= κ0(nQ)2 + κ0(ẑ
i)2 −K

(

zi0 +Q− Z̄
)2

−K

(

n− 1

n

)2

(ẑi)2 + 2K
n− 1

n
ẑi
(

zi0 − Z̄
)

.

It is thus clear from the first-order optimality condition that the optimal report does not depend
on Q. In this case, ẑi = zi0 is therefore a dominant strategy.

A.2 Proof of Proposition 2

Fix a continuation value as above, and let κ1(Z) = β0 + β1Z̄. We see that

κ2(Z) = −Z − κ1(Z)

2κ0n2
, (44)
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and thus the transfer to trader i is

κ0

(

nκ2(Z) +
n
∑

j=1

ẑj

)2

+ κ1(Z)(ẑ
i + κ2(Z)) +

κ2
1(Z)

4κ0n2

= κ0

(

−Z − κ1(Z)

2κ0n
+ Z

)2

+ κ1(Z)(z
i
0 − Z − κ1(Z)

2κ0n2
) +

κ2
1(Z)

4κ0n2

=
κ2
1(Z)

4κ0n2
+ κ1(Z)(z

i
0 − Z̄)− κ2

1(Z)

2κ0n2
+

κ2
1(Z)

4κ0n2

= κ1(Z)
(

zi0 − Z̄
)

=
(

β0 + β1Z̄
) (

zi0 − Z̄
)

.

From Proposition 1, agent i receives the post reallocation inventory Z̄ in equilibrium. The
equilibrium utility of agent i is then simply

ui(Z) + κ1(Z)
(

zi0 − Z̄
)

= ui(Z) +
(

β0 + β1Z̄
) (

zi0 − Z̄
)

.

Comparing this with V i(zi0, Z), the result follows from the fact that K > 0.
For the uniqueness of κ1(·), note that for IR to hold with probability 1, by continuity, it

must hold in the event that zi0 = Z̄ for all i. In this case, the change in utility for each trader is
just the transfer they receive. By the definition of the transfers, straightforward algebra shows
that for any vector of reports,

∑

i

T i
κ(ẑ, Z) =

∑

i



κ0

(

nκ2(Z) +
n
∑

j=1

ẑj

)2

+ κ1(Z)(ẑ
i + κ2(Z)) +

κ2
1(Z)

4κ0n2





= −n

(

√
−κ0

(

nκ2(Z) +

n
∑

j=1

ẑj

)

− κ1(Z)

2
√−κ0n

)2

.

Plugging in the κ2 of proposition 1 and ẑi = zi0, this equals

− n

(

√
−κ0

−κ1(Z) + (n−1
n
)
(

β0 + β1Z
)

2κ0

− κ1(Z)

2
√−κ0n

)2

,

which is nonnegative if and only if κ1(Z) = β0 + β1Z, completing the proof.
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A.3 Proof of Lemma 1

Because b 6= 0, the following are equivalent

d+
∑

j 6=i

(a + bp+ czjt ) = 0

⇐⇒ −b(n− 1)p = d+ (n− 1)a+ cZ−i
t

⇐⇒ p =
−1

b(n− 1)

(

d+ (n− 1)a+ cZ−i
t

)

.

B A lemma and the Proof of Proposition 3

First, we prove a technical lemma that will be useful in all subsequent proofs.

Lemma 2. Let c 6= 0 be an arbitrary constant, and let Z̄t, σ
2
Z be defined as in the text. Then,

for any t,

E[

∫ t

0

e−csZ̄sds] = Z̄0
1− e−ct

c
, (45)

and

E[

(
∫ t

0

e−csZ̄sds

)2

] =
(1− e−ct)2

c2
Z̄2

0 +
σ2
Z

n2

e−2ct (2ct− 4ect + e2ct + 3)

2c3
. (46)

If c = 0, then the corresponding expectations equal the limits of these expressions, and in
particular

E[

(
∫ t

0

Z̄sds

)2

] = Z̄2
0 t

2 +
σ2
Z

n2

t3

3
. (47)

Proof: Fixing s, because E[(Z̄s)
2] = Z̄2

0 + (σ2
Z/n

2)s by assumption, we can apply Hölder’s
inequality to find that

E[|e−csZ̄s|] ≤ e−cs

√

E[(Z̄s)2] = e−cs

√

Z̄2
0 +

σ2
Z

n2
s.

It follows that, for any t,

∫ t

0

E[|e−csZ̄s|]ds ≤
∫ t

0

e−cs

√

Z̄2
0 +

σ2
Z

n2
sds < ∞.

We may thus apply the Fubini-Tonelli theorem to write that

E[

∫ t

0

e−csZ̄s ds] =

∫ t

0

E[e−csZ̄s] ds = Z̄0

∫ t

0

e−csds = Z̄0
1− e−ct

c
,

where we have used the fact that by definition of Ht, E[Z̄s] = Z̄0. Henceforth, for brevity
we refer to this as the “Hölder’s inequality and Fubini-Tonelli theorem argument.”
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Now, define Wt =
∫ t

0
e−csZ̄s ds. By Ito’s lemma,

W 2
t = 2

∫ t

0

Wse
−csZ̄sds = 2

∫ t

0

∫ s

0

e−csZ̄se
−cuZ̄udu ds

By the Lévy property, E[Z̄u(Z̄s − Z̄u)] = 0. An application of the “Hölder’s inequality and
Fubini-Tonelli theorem argument” gives that

E[

∫ t

0

∫ s

0

e−csZ̄se
−cuZ̄udu ds] =

∫ t

0

∫ s

0

E[e−csZ̄se
−cuZ̄u]du ds

=

∫ t

0

∫ s

0

E[e−cse−cu(Z̄s − Z̄u + Z̄u)Z̄u]du ds

=

∫ t

0

∫ s

0

E[e−cse−cuZ̄2
u]du ds

=

∫ t

0

∫ s

0

e−cse−cu

(

Z̄2
0 +

σ2
Z

n2
u

)

]du ds

=
(1− e−ct)2

2c2
Z̄2

0 +
σ2
Z

n2

e−2ct (2ct− 4ect + e2ct + 3)

4c3
.

Finally, starting at the penultimate line of the above system and plugging in c = 0, we
arrive at

E[

(
∫ t

0

Z̄sds

)2

] = Z̄2
0 t

2 +
σ2
Z

n2

t3

3
. (48)

Now, we are ready to prove proposition 3. The proof proceeds in 4 steps. First, we use
admissibility to restrict the possible set of linear equilibria. Second, we show that in any linear
equilibrium, the value function must take a specific linear-quadratic form. Third, we calculate
the unique value function and linear coefficients consistent with the Hamilton-Jacobi Bellman
(HJB) equation. Finally, we verify that the candidate value function and coefficients indeed
solve the Markov control problem. Throughout, we write simply V (z, Z) in place of V i(z, Z).
As in the text, we let σ2

i ≡ E[(H i
1)

2].

B.1 Admissibility

In this section, we show that if there were a linear equilibrium with c ≥ r/2, then one player
would be using an inadmissible strategy, meaning that the value achieved in the problem

V (zi0, Z0) ≡ sup
D ∈Ai

E

[

zDT π −
∫ T

0

γ
(

zDs
)2

+ Φ(a,b,c)

(

Ds;Zs − zDs )
)

Ds ds

]

(49)

would be negative infinity or undefined. In order to see this, fix candidate demand coefficients
(a, b, c). Then each trader demands a flow D = a+ bφ+ cz, so the market clearing price must
be

φ =
a + cZ̄

−b
.

37



Plugging this price back into agent demands, we can write

D = c(z − Z̄).

It follows that if all agents follow this strategy, the inventory of agent i at time t is

zit = zi0 + c

∫ t

0

zis − Z̄sds+H i
t . (50)

Applying Ito’s lemma for semimartingales to e−ctzit, and multiplying both sides by ect, one
can show29 that

zit = ectzi0 − ectc

∫ t

0

e−csZ̄s ds+ ect
∫ t

0

e−cs dH i
s. (51)

Because e−cs is square integrable, the last term in the expression for zit is a martingale, so
by lemma 2 we have that

E[zit ] = ectzi0 + Z̄0(1− ect),

while

E[(zit)
2] = E[

(

ectzi0 − ectc

∫ t

0

e−csZ̄s ds

)2

] + e2ctE[(

∫ t

0

e−csdH i
s)

2]

= e2ct(zi0)
2 + 2ectzi0Z̄0(1− ect) + (1− ect)2Z̄2

0 +
σ2
Z

n2

(2ct− 4ect + e2ct + 3)

2c

+ e2ctE[(

∫ t

0

e−csdH i
s)

2].

Applying Ito isometry for martingales, and recalling that [H i, H i]t = σ2
i t because H i is

square-integrable, we have

E

[

(
∫ t

0

e−csdH i
s

)2
]

=

∫ t

0

e−2csσ2
i ds =

−σ2
i

2c
(e−2ct − 1).

Thus

E[(zit)
2] = e2ct(zi0)

2+2ectzi0Z̄0(1−ect)+(1−ect)2Z̄2
0+

σ2
Z

n2

(2ct− 4ect + e2ct + 3)

2c
+
σi

2c
(e2ct−1). (52)

Applying the independence of T , H i
t and Tonelli’s theorem, we have

E

[
∫ T

0

(zis)
2 ds

]

=

∫ ∞

0

re−rt

∫ t

0

E[(zis)
2] ds dt ≤

∫ ∞

0

∫ t

0

E
[

re−rs(zis)
2
]

ds dt.

From (52), we see that this quantity is finite if and only if 2c < r. In this case, it is straight-

29This is exactly the derivation of the solution of the Ornstein-Uhlenbeck process.
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forward to show that the quantity in (49) is finite, with

D = c
(

z − Z̄
)

.

B.2 Value function in a linear quadratic equilibrium

Fix demand coefficients (a, b, c) such that c < r/2 and b 6= 0. Agent i demands assets at the
rate Dt = a + bφt + czit, so the market clearing price must be

φt =
a+ cZ̄t

−b
.

Plugging this price back into the demand function of agent i, we can write Dt = c(zit − Z̄t).
Because all traders follow this strategy, the inventory of agent i at time t is

zit = zi0 + c

∫ t

0

(

zis − Z̄t

)

ds+H i
t . (53)

Keeping the coefficients (a, b, c) fixed, we will now prove that in any symmetric affine equi-
librium, the value function

V (zi0, Z0) ≡ sup
D ∈Ai

E

[

zDT π −
∫ T

0

γ
(

zDs
)2

+ Φ(a,b,c)

(

Ds;Zs − zDs )
)

Ds ds

]

(54)

takes the form
V (z, Z) = αi

0 + α1z + α2Z̄ + α3z
2 + α4Z̄

2 + α5zZ̄,

where

α3 =
−γ

r − 2c

α5 =
1

r − c
(
c2

b
− 2α3c)

α4 =
1

r
(
c2

−b
− cα5)

α1 =
1

r − c
(rv +

ac

b
)

α2 =
1

r
(
ca

−b
− cα1)

αi
0 =

1

r
(α3σ

2
i + α4

σ2
Z

n2
+ α5

ρi

n
).
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Given the α coefficients, we have

r
(

αi
0 + α1z + α2Z̄ + α3z

2 + α4Z̄
2 + α5zZ̄

)

= rvz − γz2 + α4
σ2
Z

n2
+ α3σ

2
i + α5

ρi

n
− c(z − Z̄)

a+ cZ̄

−b

+ c(z − Z̄)(α1 + 2α3z + α5Z̄)

Let Yt = 1{T ≤t} and V (z, Z) be defined as above. Let

X =





zit
Zt

Yt





and U(X) = U(z, Z, Y ) = (1 − Y )V (z, Z) + Y vz. Then, by Ito’s lemma for semimartingales,
for any t, we have

U(Xt)− U(X0) =

∫ t

0+

(1− Ys−)Vz(z
i
s−, Zs−) + Ys−v dz

i
s +

∫ t

0+

(1− Ys−)VZ(z
i
s−, Zs−) dZs (55)

+
1

2

∫ t

0+

(1− Ys−)Vzz(z
i
s−) d[z

i, zi]cs +
1

2

∫ t

0+

(1− Ys−)VZZ(z
i
s−) d[Z,Z]

c
s (56)

+

∫ t

0+

(1− Ys−)VzZ(z
i
s−) d[z

i, Z]cs (57)

+
∑

0≤s≤t

U(Xs)− U(Xs−)− [(1− Ys−)Vz(z
i
s−, Zs) + Ys−v]∆zis (58)

−
∑

0≤s≤t

(1− Ys−)VZ(z
i
s−, Zs)∆Zs, (59)

where we have used the fact that
∫ t

0+

∂

∂Y
U(zis−, Ys−) dYs =

∑

0≤s≤t

∂

∂Y
U(zis−, Ys−)∆Ys,

and the fact that [zi, Y ]c = [Z, Y ]c = [Y, Y ]c = 0.
Now, we note that

V (zis, Zs)− V (zis−, Zs−) = α1∆zis + α2
∆Zs

n
+ α4

(

∆Zs

n

)2

+ 2α4
Zs−∆Zs

n2

+ α3(∆zis)
2 + 2α3z

i
s−∆zis + α5z

i
s

∆Zs

n

+ α5Z̄s−∆zis + α5
∆Zs

n
∆zis,

while

VZ(z
i
s−, Zs−)∆Zs =

∆Zs

n

(

α2 + α5z
i
s− + 2α4Z̄s−

)
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Vz(z
i
s−, Zs−)∆zis = ∆zis

(

α1 + α5Z̄s− + 2α3z
i
s−

)

.

Thus, the total contribution to the sum in (55) from jumps in zis or Zs is given by

(1− Ys−)

(

α4

(

∆Zs

n

)2

+ α3(∆zis)
2 + α5

∆Zs

n
∆zis

)

because the term −Ys−v∆zis is cancelled by the same term in U(Xs)− U(Xs−).
We note that jumps in zi arise from jumps in H i. We can thus write the sum as

∑

0≤s≤t

∆Ys

(

vzis− − V (zis−, Zs−)
)

+ (1− Ys−)

(

α4

(

∆Zs

n

)2

+ α3(∆H i
s)

2 + α5
∆Zs

n
∆H i

s

)

.

Finally, we note that

∫ t

0+

Vz(z
i
s−, Zs−) dz

i
s =

∫ t

0+

(α1 + α5Z̄s− + 2α3z
i
s−) dz

i
s

=

∫ t

0+

(α1 + α5Z̄s− + 2α3z
i
s−)
(

c(zis − Z̄s)
)

ds

+

∫ t

0+

(α1 + α5Z̄s− + 2α3z
i
s−) dH

i
s.

We let

χs = c(zis − Z̄s)(α1 + α5Z̄s− + 2α3z
i
s−) + α4

σ2
Z

n2
+ α3σ

2
i + α5

ρi

n
+ r(vzis − V (zis, Zs)).
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Plugging in VZZ = 2α4/n
2, Vzz = 2α3, VzZ = α5/n, and evaluating (55) at t = T , we can write

U(XT )− U(X0) =

∫ T

0+

χs ds (60)

+

∫ T

0+

(α1 + α5Z̄s− + 2α3z
i
s−) dH

i
s (61)

+

∫ T

0+

1

n

(

α2 + α5z
i
s− + 2α4Z̄s−

)

dZs (62)

+ α3

(

−σ2
i T +

∫ T

0+

d[H i, H i]cs +
∑

0≤s≤T

(∆H i
s)

2

)

(63)

+
α4

n2

(

−σ2
ZT +

∫ T

0+

d[Z,Z]cs +
∑

0≤s≤T

(∆Zs)
2

)

(64)

+
α5

n

(

−ρiT +

∫ T

0+

d[Z,H i]cs +
∑

0≤s≤T

(∆Zs∆H i
s)

)

(65)

+

∫ T

0

(

vzis− − V (zis−, Zs−)
)

(dYs − r ds), (66)

where we have replaced replaced Ys− = 0 for s ≤ T , by definition. Also, we have used
the fact that [zi, zi]c = [H i, H i]c and [zi, Z]c = [H i, Z]c, since zi is the sum of H i

t and a finite
variation process, where finite variation processes are quadratic pure jump semimartingales
(Protter (2004)).

For any deterministic T , it is well known from the theory of Lévy processes that

E[

(

−σ2
i T + [H i, H i]cT +

∑

0≤s≤T

(∆H i
s)

2

)

]

= E[

(

−σ2
ZT + [Z,Z]cT +

∑

0≤s≤T

(∆Zs)
2

)

]

= E[

(

−ρiT +

∫ T

0+

d[Z,H i]cs +
∑

0≤s≤T

(∆Zs∆H i
s)

)

]

= 0,

and since T is independent of Z,H i, we may apply law of iterated expectations (conditioning
on T ) to show these are still zero for exponentially distributed T .

Now, we let Gi
∞ be the sigma algebra generated by the path of {H i

t , Zt}∞t=0, which is inde-
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pendent of T by assumption. Then

E

[
∫ T

0

[vzis− − V (zis−, Z
i
s−)] (dYs − rds)

]

= E

[

E

[
∫ T

0

[vzis− − V (zis−, Z
i
s−)] (dYs − rds)

∣

∣

∣

∣

Gi
∞

]]

= E

[

E

[

−r

∫ T

0

[vzis− − V (zis−, Z
i
s−)] ds+ vziT − V (ziT , Z

i
T )

∣

∣

∣

∣

Gi
∞

]]

= E

[

−r

∫ ∞

0

re−rt

(
∫ t

0

[vzis− − V (zis−, Z
i
s−)] ds

)

dt

]

+ E

[
∫ ∞

0

re−rt
(

vzit − V (zit, Z
i
t)
)

dt

]

= E

[

−r

∫ ∞

0

(

vzis− − V (zis−, Z
i
s−)
)

∫ ∞

s

re−rt dt ds

]

+ E

[
∫ ∞

0

re−rt
(

vzit − V (zit, Z
i
t)
)

dt

]

= E

[

−
∫ ∞

0

(

vzis− − V (zis−, Z
i
s−)
)

re−rs ds

]

+ E

[
∫ ∞

0

re−rt
(

vzit − V (zit, Z
i
t)
)

dt

]

= 0,

where the fourth equality is a change of order of integration from
∫∞

0

∫ t

0
ds dt to

∫∞

0

∫∞

s
dt ds.

Finally, we have already shown that E[(zis)
2],E[(zis)],E[(Z̄s)

2],E[(Z̄s)] are all integrable (i.e.,
L1) processes. It then follows from Hölder’s inequality that E[zisZ̄s] is also integrable. Then
(α1 + α5Z̄s + 2α3z

i
s) and

(

α2 + α5z
i
s + 2α4Z̄s

)

are square integrable processes, so for fixed T ,

E[

∫ T

0+

(α1 + α5Z̄s− + 2α3z
i
s−) dH

i
s]

= E[

∫ T

0+

1

n

(

α2 + α5z
i
s− + 2α4Z̄s−

)

dZs] = 0,

since H i, Z are martingales. Applying law of iterated expectations conditioning on T , the same
is true by independence when T is exponentially distributed. We have thus shown that taking
an expectation in equation (60) reduces to

E[U(XT )− U(X0)] = E[

∫ T

0+

χs ds]. (67)

Because αi
0 through α5 satisfy the system of equations specified at the beginning of this

proof, we have

E[U(XT )− U(X0)] = E

[
∫ T

0+

c(zis − Z̄s)
a+ cZ̄s

−b
+ γ(zis)

2 ds

]

.
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Note that, by definition, E[U(XT )] = E[vziT ] = E[πziT ], and E[U(X0)] = U(X0) = V (zi0, Z0).
We can thus rearrange to find that

V (zi0, Z0) = E

[

πziT +

∫ T

0+

−c(zis − Z̄s)
a + cZ̄s

−b
− γ(zis)

2ds

]

= E

[

πziT +

∫ T

0+

−c(zis − Z̄s)φt − γ(zis)
2ds

]

,

which completes the proof.

B.3 Solving the HJB equation

For conjectured demand function coefficients a, b, c, the HJB equation is

rV (z, Z) = −γz2 + vz +
σ2
i

2
Vzz(z, Z) +

σ2
Z

2
VZZ(z, Z) + ρiVzZ(z, Z)

+ sup
D

−Φ(a,b,c)(D;Z − z)D + Vz(z, Z)D.

Plugging in

Φ(a,b,c)(D;Z − z) =
−1

b(n− 1)
[D + (n− 1)a+ c(Z − z)]

from Lemma 1 and taking a derivative with respect to D, we have

1

b(n− 1)
(2D + (n− 1)a+ c(Z − z)) + Vz(z, Z) = 0,

or

D = −1

2
[(n− 1)a+ c(Z − z) + b(n− 1)Vz(z, Z)].

From the above, in any linear equilibrium, it must be that Vz(z, Z) = α1 + α5Z̄ + 2α3z.
Then

D = −1

2
[(n− 1)a+ c(Z − z) + b(n− 1)

(

α1 + α5Z̄ + 2α3z
)

], (68)

where the second-order condition is satisfied if and only if b < 0. If agent i is to find the
prescribed linear strategy optimal, then D must take the form D = a + bφ + cz. Further, the
market clearing price must be

φ =
a + cZ̄

−b
.

Recall from the above that

α1 + α5Z̄ =
1

r − c

(

rv − 2α3cZ̄ − c

(

a+ cZ̄

−b

))

. (69)
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Using

Z = n
−bφ − a

c
,

we have

α1 + α5Z̄ =
1

r − c
(rv − 2α3(−bφ − a)− cφ)

D = −1

2
[(n− 1)a+ n(−bφ − a)− cz + b(n− 1)

(

α1 + α5Z̄ + 2α3z
)

].

So, matching coefficients from D, we require that

c =
1

2
[c− 2b(n− 1)α3]

b = −1

2
[−nb + b(n− 1)[

1

r − c
(2α3b− c)]]

a = −1

2
[(n− 1)a− na + b(n− 1)

1

r − c
(rv + 2α3a)].

Cleaning up and rearranging terms,

c = −2b(n− 1)α3 (70)

(n− 2)(r − c) = 2(n− 1)α3b− c(n− 1). (71)

Combining (70, 71), we see from (71) that

c =
−(n− 2)r

2
. (72)

Recalling from the above that

α3 =
−γ

r − 2c
=

−γ

r(n− 1)
,

we have

b =
−(n− 2)r2

4γ
.

Turning to the equation for a, we use the fact that

1

r − c
=

2

nr
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to obtain

−a = b(n− 1)
2

nr
(rv − 2γ

r(n− 1)
a)

a =
(n− 2)r

2γn
(n− 1)

(

rv − 2γ

r(n− 1)
a

)

a

(

1 +
(n− 2)

n

)

=
(n− 2)r2v

2γn
(n− 1)

a =
(n− 2)r2v

4γ
.

Plugging these in, we see that

φ =
a+ cZ̄

−b
= v − 2γ

r
Z̄.

Then returning to α1 + α5Z̄, we see that

α1 + α5Z̄ =
1

r − c

(

rv − 2α3cZ̄ − c

(

a+ cZ̄

−b

))

=
2

rn

(

rv − 2

( −γ

r(n− 1)

)(−(n− 2)r

2

)

Z̄ −
(−(n− 2)r

2

)(

v − 2γ

r
Z̄

))

=
2

rn

(

nrv

2
− γ(n− 2)

(n− 1)
Z̄ − (n− 2)γZ̄

)

= v − 2γ

r
Z̄ +

2γ

r(n− 1)
Z̄.

This must hold for any Z̄ realization, so α1 = v and

α5 = −2γ

r
+

2γ

r(n− 1)
.

Combining this with a
b
= −v from above, we have

α2 =
1

r

(

ca

−b
− cα1

)

=
c

r
(v − v) = 0. (73)

Since c/b = 2γ/r, we see that

c

b
+ α5 =

2γ

r(n− 1)
,

so

α4 =
1

r

(

c2

−b
− cα5

)

=
−c

r

2γ

r(n− 1)
=

γ(n− 2)

r(n− 1)
.
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Finally, plugging in formulas,

αi
0 =

1

r

(

α3σ
2
i + α4

σ2
Z

n2
+ α5

ρi

n

)

=
γ

r2

(

− 1

n− 1
σ2
i +

n− 2

n− 1

σ2
Z

n2
+ 2(

1

n− 1
− 1)

ρi

n

)

=
γσ2

Z

r2n2
− γ

r2(n− 1)

(

σ2
Z

n2
+ σ2

i − 2
ρi

n

)

− 2γρi

r2n
= θi.

Putting this together, we see the unique value function and demand coefficients satisfying
the HJB are given by the constants a, b, c, αi

0, α1 − α5 shown above. Rearranging slightly,

V (z, Z) = αi
0 + α1z + α2Z̄ + α3z

2 + α4Z̄
2 + α5zZ̄

V (z, Z) = αi
0 + α1z + α2Z̄ + α3z

2 + α4Z̄
2 + α5zZ̄ + vZ̄ − vZ̄ +

γ

r
Z̄2 − γ

r
Z̄2

= θi + vZ̄ − γ

r
Z̄2 +

(

v − 2γ

r
Z̄

)

(

z − Z̄
)

− γ

r(n− 1)

(

z − Z̄
)2

.

B.4 Finishing the verification of optimality

We have shown that in a linear equilibrium, value functions are quadratic and in particular
must be twice continuously differentiable. The HJB equation of the previous subsection is thus
a necessary condition. Moreover, there is a unique candidate linear equilibrium which satisfies
this HJB equation. We have therefore shown that if each player follows the proposed linear
strategy, the agents indeed get their candidate value functions as their continuation values. It
remains to show that each agent prefers this to any other strategy.

We adopt the notation of Section (B.2). We fix the demand-function coefficients a, b, c of
the previous subsection, and the corresponding constants αi

0, α1 − α5 for some agent i. Fix an
admissible demand rate process Di, so that the inventory of agent i at time t is

zDt = zi0 +

∫ t

0

Di
sds+H i

t , (74)

and the agent’s expected inventory costs are finite. Following the same steps taken in Section
(B.2), we can show that

E[U(XT )− U(X0)] = E[

∫ T

0

(α1 + α5Z̄s + 2α3z
D
s )D

i
s + α4

σ2
Z

n2
+ α3σ

2
i + α5

ρi

n
+ r[vzDs − V (zDs , Zs)] ds].

Because the function (z, Z) 7→ V (z, Z) = αi
0 + α1z + α2Z̄ + α3z

2 + α4Z̄
2 + α5zZ̄ satisfies

the HJB equation,
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(α1 + α5Z̄s + 2α3z
D
s )D

i
s + α4

σ2
Z

n2
+ α3σ

2
i + α5

ρi

n
+ r[vzDs − V (zDs , Zs)]

≤ Φ(a,b,c)(D
i
s;Zs − zDs )D

i
s + γ(zDs )

2.

Thus

E[U(XT )− U(X0)] ≤ E[

∫ T

0

ΦD
s D

i
s + γ(zDs )

2ds]

Applying the steps of Section (B.2), it follows that

V (zi0, Z0) ≥ E

[
∫ T

0

−ΦD
s D

i
s − γ(zDs )

2ds+ πzDT

]

.

From the analysis of Section (B.2), this inequality is an equality for the proposed linear strategy
Di = c(z − Z̄). It follows this linear strategy is optimal.

C Proof of Proposition 4

The proof proceeds in five steps. First, we use admissibility and the truthtelling property
to restrict the possible set of equilibria. Second, we show that in any equilibrium, the value
function must take a specific linear-quadratic form. Third, we use individual rationality to
restrict the possible mechanism-transfer coefficients, and characterize the optimal mechanism
reports in the equilibrium. Fourth, we calculate the unique value function and linear coefficients
consistent with the HJB equation. Finally, we verify that the candidate value function and these
coefficients indeed solve the Markov control problem. Throughout, we write V (z, Z) in place
of V i(z, Z).

C.1 Efficient allocations and admissibility

Fix a symmetric equilibrium (a, b, c). First, recall that in a symmetric equilibrium, the market
clearing price φt satisfies na+ nbφt + cZt = 0, which implies that

φt =
a+ cZ̄t

−b
,

and thus a + bφt + czit = c(zit − Z̄t). In equilibrium each trader reports ẑj = zj , so in
equilibrium, the post-mechanism allocation of agent i is

zit +

∑

j ẑ
j
t

n
− ẑit = Z̄t.
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The inventory of agent i at time t is

zit = zi0 + c

∫ t

0

(

zis − Z̄s

)

ds+H i
t −
∫ t

0

(

zis− − Z̄s

)

dNs. (75)

As in the proof of Proposition 3,

e−ctzit = zi0 − c

∫ t

0

e−csZ̄s ds+

∫ t

0

e−cs dH i
s −

∫ t

0

e−cs
(

zis− − Z̄s

)

dNs.

Letting T1 denote the minimum of T and the first jump time of N , we note that

−γE

[
∫ T

0

(zis)
2 ds

]

≤ −γE

[
∫ T1

0

(zis)
2 ds

]

.

For t < T1,

zit = ectzi0 − cect
∫ t

0

e−csZ̄s ds+ ect
∫ t

0

e−cs dH i
s.

So, by lemma 2 and the steps used in the proof of Proposition 3, we know that E
[

∫ T1

0
(zis)

2 ds
]

is finite if and only if 2c < r+λ. This is true regardless of zi0. By a straightforward application
of monotone convergence, as long as 2c < r + λ, this implies that

E

[
∫ T

0

(zis)
2 ds

]

= E

[

lim
n→∞

∫ Tn

0

(zis)
2 ds

]

= lim
n→∞

E

[
∫ Tn

0

(zis)
2 ds

]

< ∞.

C.2 Linear-quadratic value function

Fix a symmetric equilibrium C = (a, b, c). As above, the market clearing price φt satisfies
na + nbφt + cZt = 0, which implies that

φt =
a+ cZ̄t

−b
,

and thus a+ bφt + czit = c(zit − Z̄t).
Recall that the transfers are given by

κ0

(

nκ2(Zt) +
∑

j

ẑjt

)2

+ κ1(Zt)(ẑ
i
t + κ2(Zt)) +

κ2
1(Zt)

4κ0n2
.

Plugging in the formulas for ẑj = zj , we see that for any affine κ1, κ2 functions, this takes
the form

R0 +R1Zt +R2Z
2
t +R3Ztz

i
t +R4z

i
t,

for constants R0 through R4 that depend on κ0, κ1, κ2.
We are now ready to show that, in any linear-quadratic symmetric equilibrium, the value

function
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V (z, Z) = E

[

πziT +

∫ T

0

(−γ(zis)
2 − c(zis − Z̄s)

(

a + cZ̄s

−b

)

ds) +

∫ T

0

T i
κ(ẑs, Zs) dNs

]

takes the form
V (z, Z) = αi

0 + α1z + α2Z̄ + α3z
2 + α4Z̄

2 + α5zZ̄,

where

α3 =
−γ

r + λ− 2c

α5 =
1

r + λ− c
(
c2

b
− 2α3c+ λnR3)

α4 =
1

r
(
c2

−b
+ (λ− c)α5 + λα3 + λn2R2)

α1 =
1

r + λ− c
(rv +

ac

b
+ λR4)

α2 =
1

r
(
ca

−b
+ (λ− c)α1 + λnR1)

αi
0 =

1

r
(α3σ

2
i + α4

σ2
Z

n2
+ α5

ρi

n
+ λR0),

and where R0 through R4 are the previously defined transfer coefficients. Given the α coeffi-
cients, we have

(r + λ)
(

αi
0 + α1z + α2Z̄ + α3z

2 + α4Z̄
2 + α5zZ̄

)

= rvz − γz2 + α4
σ2
Z

n2
+ α3σ

2
i + α5

ρi

n
− c(z − Z̄)

a+ cZ̄

−b

+ c(z − Z̄)(α1 + 2α3z + α5Z̄) + λ(αi
0 + α1Z̄ + α2Z̄ + α3Z̄

2

+ α4Z̄
2 + α5Z̄

2 +R0 +R1Z +R2Z
2 +R3Zz +R4z).

Let Yt = 1{T ≤t} and V (z, Z) be defined as above. Let

X =





zit
Zt

Yt





and U(X) = U(z, Z, Y ) = (1 − Y )V (z, Z) + Y vz. Then, by Ito’s lemma for semimartingales,

50



for any t, we have

U(Xt)− U(X0) =

∫ t

0+

(1− Ys−)Vz(z
i
s−, Zs−) + Ys−v dz

i
s +

∫ t

0+

(1− Ys−)VZ(z
i
s−, Zs−) dZs (76)

+
1

2

∫ t

0+

(1− Ys−)Vzz(z
i
s−) d[z

i, zi]cs +
1

2

∫ t

0+

(1− Ys−)VZZ(z
i
s−) d[Z,Z]

c
s (77)

+

∫ t

0+

(1− Ys−)VzZ(z
i
s−) d[z

i, Z]cs (78)

+
∑

0≤s≤t

U(Xs)− U(Xs−)− [(1− Ys−)Vz(z
i
s−, Zs) + Ys−v]∆zis (79)

−
∑

0≤s≤t

(1− Ys−)VZ(z
i
s−, Zs)∆Zs, (80)

where we have used the fact that
∫ t

0+

∂

∂Y
U(zis−, Ys−) dYs =

∑

0≤s≤t

∂

∂Y
U(zis−, Ys−)∆Ys,

and the fact that [zi, Y ]c = [Z, Y ]c = [Y, Y ]c = 0.
Now, we note that

V (zis, Zs)− V (zis−, Zs−) = α1∆zis + α2
∆Zs

n
+ α4

(

∆Zs

n

)2

+ 2α4
Zs−∆Zs

n2

+ α3(∆zis)
2 + 2α3z

i
s−∆zis + α5z

i
s

∆Zs

n

+ α5Z̄s−∆zis + α5
∆Zs

n
∆zis,

while

VZ(z
i
s−, Zs−)∆Zs =

∆Zs

n

(

α2 + α5z
i
s− + 2α4Z̄s−

)

Vz(z
i
s−, Zs−)∆zis = ∆zis

(

α1 + α5Z̄s− + 2α3z
i
s−

)

.

Thus, the total contribution to the sum in (76) from jumps in zis or Zs is given by

(1− Ys−)

(

α4

(

∆Zs

n

)2

+ α3(∆zis)
2 + α5

∆Zs

n
∆zis

)

because the term −Ys−v∆zis is cancelled by the same term in U(Xs)− U(Xs−).
We note that jumps in zi arise from jumps in both H i and N . By independence, ∆N∆H i =
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∆N∆Z = 0 with probability 1. In summary, we can write the sum as

∑

0≤s≤t

∆Ys

(

vzis− − V (zis−, Zs−)
)

+ (1− Ys−)

(

α4

(

∆Zs

n

)2

+ α3(∆H i
s)

2 + α3∆Ns(z
i
s− − Z̄s−)

2 + α5
∆Zs

n
∆H i

s

)

.

It will be convenient to write

∑

0≤s≤t

(1− Ys−)
(

α3∆Ns(z
i
s− − Z̄s−)

2
)

=

∫ t

0

(1− Ys−)α3(z
i
s− − Z̄s−)

2 dNs

=

∫ t

0

(1− Ys−)α3(z
i
s− − Z̄s−)

2 (dNs − λ ds) +

∫ t

0

(1− Ys−)λα3(z
i
s− − Z̄s−)

2 ds.

Finally, we note that

∫ t

0+

Vz(z
i
s−, Zs−) dz

i
s =

∫ t

0+

(α1 + α5Z̄s− + 2α3z
i
s−) dz

i
s

=

∫ t

0+

(α1 + α5Z̄s− + 2α3z
i
s−)
(

(c− λ)(zis − Z̄s)
)

ds

+

∫ t

0+

(α1 + α5Z̄s− + 2α3z
i
s−) dH

i
s

+

∫ t

0+

(α1 + α5Z̄s− + 2α3z
i
s−)(Z̄s − zis−) d(Ns − λ ds).

We let

χs = c(zis − Z̄s)(α1 + α5Z̄s− + 2α3z
i
s−) + α4

σ2
Z

n2
+ α3σ

2
i + α5

ρi

n
− λ(zis − Z̄s)(α1 + α5Z̄s− + α3(z

i
s− + Z̄s−)) + r(vzis − V (zis, Zs)).
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Plugging in VZZ = 2α4/n
2, Vzz = 2α3, VzZ = α5/n, and evaluating (76) at t = T , we can write

U(XT )− U(X0) =

∫ T

0+

χs ds

+

∫ T

0+

(α1 + α5Z̄s− + 2α3z
i
s−) dH

i
s

+

∫ T

0+

(α1 + α5Z̄s− + 2α3z
i
s−)(Z̄s − zis) d(Ns − λ ds)

+

∫ T

0

α3(z
i
s− − Z̄s−)

2 (dNs − λ ds) +

∫ T

0+

1

n

(

α2 + α5z
i
s− + 2α4Z̄s−

)

dZs

+ α3

(

−σ2
i T +

∫ T

0+

d[H i, H i]cs +
∑

0≤s≤T

(∆H i
s)

2

)

+
α4

n2

(

−σ2
ZT +

∫ T

0+

d[Z,Z]cs +
∑

0≤s≤T

(∆Zs)
2

)

+
α5

n

(

−ρiT +

∫ T

0+

d[Z,H i]cs +
∑

0≤s≤T

(∆Zs∆H i
s)

)

+

∫ T

0

(

vzis− − V (zis−, Zs−)
)

(dYs − r ds),

where we have replaced Ys− = 0 for s ≤ T , by definition. Since H i, Z are finite-variance
processes, we can now apply arguments similar to those used in the proof of Proposition 3 to
show that

E[U(XT )− U(X0)] = E

[∫ T

0+

χs ds

]

.

Because α0 through α5 satisfy the system of equations specified at the beginning of this proof,
we have

E[U(XT )− U(X0)] = E

[
∫ T

0+

χ̄s ds

]

,

where

χ̄s = c(zis − Z̄s)
a + cZ̄s

−b
+ γ(zis)

2 − λ(R0 +R1Zs +R2Z
2
s +R3Zsz

i
s +R4z

i
s).

Using the definitions of U, T , and R0 through R4, as well as the fact that E[vziT ] = E[πziT ],
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we can rearrange to find that

V (zi0, Z0) = E

[

πziT +

∫ T

0+

χ̄s ds

]

= E

[

πziT +

∫ T

0+

−c(zis − Z̄s)
a+ cZ̄s

−b
− γ(zis)

2 + λT i
κ(ẑs, Zs) ds

]

= E

[

πziT +

∫ T

0

−c(zis − Z̄s)
a+ cZ̄s

−b
− γ(zis)

2 ds+

∫ T

0

T i
κ(ẑs, Zs) dNs

]

,

which completes the proof.

C.3 The Mechanism

Fix a symmetric equilibrium. Recall the mechanism transfers are given by

κ0

(

nκ2(Zt) +
∑

j

ẑjt

)2

+ κ1(Zt)(ẑ
i
t + κ2(Zt)) +

κ2
1(Zt)

4κ0n2
.

For the purpose of this proof, we will treat κ1, κ2 as arbitrary affine functions, and show the
κ1, κ2 of the proposition are the unique functions consistent with equilibrium. From the above,
this transfer function with the conjectured reports leads to a linear quadratic equilibrium value
function V (z, Z). Thus, maximizing V (z + y, Z) with respect to y is equivalent to maximizing

α1(z
i + y) + α3(z

i + y)2 + α5Z̄(z
i + y),

which in turn is equivalent to maximizing

(α1 + α5Z̄ + 2α3z
i)y + α3y

2.

Then, when trader i chooses a report z̃, it must be that this maximizes

(α1 + α5Z̄ + 2α3z
i)Y i((z̃, ẑ−i)) + α3Y

i((z̃, ẑ−i))2 + T i
κ((z̃, ẑ

−i), Z).

Taking a first order condition,

−n− 1

n
(α1 + α5Z̄ + 2α3z

i)− 2(n− 1)α3

n
Y i((z̃, ẑ−i)) + κ1(Z) + 2κ0

(

nκ2(Z) + z̃ +
∑

j 6=i

ẑj

)

= 0

Plugging in ẑj = zj0 and the function Y i, we have

− n− 1

n
(α1 + α5Z̄ + 2α3z

i)− 2(n− 1)α3

n

(−(n− 1)z̃

n
+

Z − zi

n

)

+ κ1(Z) + 2κ0

(

nκ2(Z) + z̃ − zi + Z
)

= 0
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The second order condition is satisfied since κ0, α3 < 0. Since κ2 is affine, write κ2(Z) =
â+ b̂Z. The report z̃ = zi satisfies this first order condition if

−n− 1

n
(α1 + α5Z̄)−

2(n− 1)α3

n
Z̄ + κ1(Z) + 2κ0

(

nâ + nb̂Z + Z
)

= 0.

With this,

(nâ + nb̂Z + Z) =
−κ1(Z) +

n−1
n
(α1 + (α5 + 2α3)Z̄)

2κ0

so

κ2(Z) = â + b̂Z = −Z̄ +
−κ1(Z) +

n−1
n
(α1 + (α5 + 2α3)Z̄)

2κ0n
,

implying an equilibrium change in utility of

(−κ1(Z) +
n−1
n
(α1 + (α5 + 2α3)Z̄))

2

4κ0
+ κ1(Z)

(

−Z̄ +
−κ1(Z) +

n−1
n
(α1 + (α5 + 2α3)Z̄)

2κ0n

)

+
κ2
1(Z)

4n2κ0

+ (κ1(Z)− α1 − α5Z̄)z
i + (α1 + α5Z̄)Z̄ − α3(z

i)2 + α3Z̄
2.

This change in utility must be weakly positive for any z and Z. If all traders have z = Z̄, then
we need that

(−κ1(Z) +
n−1
n
(α1 + (α5 + 2α3)Z̄))

2

4κ0

+ κ1(Z)

(−κ1(Z) +
n−1
n
(α1 + (α5 + 2α3)Z̄)

2κ0n

)

+
κ2
1(Z)

4n2κ0

= −
(

(−κ1(Z) +
n−1
n
(α1 + (α5 + 2α3)Z̄))

2
√−κ0

+
κ1(Z)

2n
√−κ0

)2

≥ 0,

which implies that κ1(Z) = α1 + (α5 + 2α3)Z̄. Plugging this in, we see that

â+ b̂Z + zi = zi − Z̄ +
−κ1(Z) +

n−1
n
(α1 + (α5 + 2α3)Z̄)

2κ0n

= zi − Z̄ − α1 + (α5 + 2α3)Z̄

2κ0n2
.

So, we see that nκ2(Z) +
∑

j ẑ
j = −(α1 + (α5 + 2α3)Z̄)/(2κ0n), and thus the equilibrium

transfer to trader i is

(α1 + (α5 + 2α3)Z̄)
2

4n2κ0
+ (α1 + (α5 + 2α3)Z̄)

(

zi − Z̄ − (α1 + (α5 + 2α3)Z̄)

2κ0n2

)

+
(α1 + (α5 + 2α3)Z̄)

2

4n2κ0

= (α1 + (α5 + 2α3)Z̄)
(

zi − Z̄
)

+
(α1 + (α5 + 2α3)Z̄)

2

4n2κ0
− (α1 + (α5 + 2α3)Z̄)

2

2κ0n2
+

(α1 + (α5 + 2α3)Z̄)
2

4n2κ0

= (α1 + (α5 + 2α3)Z̄)
(

zi − Z̄
)

.
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It follows that the equilibrium change in utility for trader i from the mechanism is

(α1 + (α5 + 2α3)Z̄)
(

zi − Z̄
)

+ (α1 + α5Z̄)(Z̄ − zi) + α3(Z̄)
2 − α3(z

i)2

= 2α3Z̄z
i − α3(Z̄)

2 − α3(z
i)2

= −α3(z
i − Z̄)2 ≥ 0,

where the final inequality relies on the fact that α3 is negative in an equilibrium, from the
previous section. Putting this together, as long as κ1(Z) = α1 + (α1 + (α5 + 2α3)Z̄)Z̄ and
κ2(Z) = â + b̂Z are given as above, then in equilibrium all traders will find the mechanism
ex-post individually rational each time it is run, and their strategy ẑi = zi is ex-post optimal.
This is true only if κ1(Z) and κ2(Z) take this form.

Finally, since the equilibrium transfers are (α1 + (α5 + 2α3)Z̄)
(

zi − Z̄
)

, we see that the
coefficients Rm in

R0 +R1Zt +R2Z
2
t +R3Ztz

i
t +R4z

i
t,

are given by

R0 = 0

R1 = −α1

n

R2 = −α5 + 2α3

n2

R3 =
α5 + 2α3

n
R4 = α1.

Recall from the previous section that

α3 =
−γ

r + λ− 2c

α5 =
1

r + λ− c
(
c2

b
− 2α3c+ λnR3)

α1 =
1

r + λ− c
(rv +

ac

b
+ λR4),

so, plugging in R3, R4, and rearranging,
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α3 =
−γ

r + λ− 2c

α5 =
1

r − c
(
c2

b
− 2α3c+ 2λα3)

α1 =
1

r − c
(rv +

ac

b
).

C.4 Solving the HJB Equation

From the above, the value function takes the form

V (zi, Z) = αi
0 + α1z

i + α2Z̄ + α3(z
i)2 + α4Z̄

2 + α5z
iZ̄.

The associated HJB equation is

0 = −γ(zi)2 + r(vzi − V (zi, Z)) +
σ2
i

2
Vzz(z, Z) +

σ2
Z

n2
VZZ(z

i, Z) + 2
ρi

n
VzZ(z

i, Z)

+ sup
D,ẑi

−Φ(a,b,c)(D;Z − zi)D + Vz(z
i, Z)D + λ

(

V (zi + Y i((ẑi, ẑ−i)), Z)− V (z, Z) + T i
κ((ẑ

i, ẑ−i), Z)
)

.

From the previous subsection, we know that fixing the equilibrium reports ẑ−i of the other
traders, the report ẑi = zi achieves the supremum in the HJB equation for any D, as long as

κ2(Z) = â+ b̂Z = −Z̄ − α1 + (α5 + 2α3)Z̄

2κ0n2
.

Since Vz = α1 + 2α3z
i + α5Z̄, following steps that are identical to those of the proof of

Proposition 3, and as long as b < 0, the unique demand that achieves the maximum in the HJB
equation is

D = −1

2
[(n− 1)a+ n(−bφ − a)− czi + b(n− 1)

(

α1 + 2α3z
i + α5Z̄

)

].

Plugging in Z = n(−bφ − a)/c,

D = −1

2
[(n− 1)a+ n(−bφ − a)− czi + b(n− 1)

(

α1 + 2α3z
i + α5

−bφ − a

c

)

].

Recall from the previous section that, after plugging in equilibrium transfers,
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α3 =
−γ

r + λ− 2c

α5 =
1

r − c
(
c2

b
− 2α3c+ 2λα3)

α1 =
1

r − c
(rv +

ac

b
).

Then, matching coefficients in the expression for D, we have

c = −1

2
[−c + 2b(n− 1)α3]

b = −1

2
[−nb+ b(n− 1)

(

1

r − c
[2α3b− c− λ2α3

b

c
]

)

a = −1

2
[−a + b(n− 1)

1

r − c

(

rv + 2λα3(
−a

c
) + 2α3a

)

].

This implies that

c = −2b(n− 1)α3

(r − c)(n− 2) =

[

2α3b(n− 1)− c(n− 1)− λ2α3
b

c
(n− 1)

]

r(n− 2) = −2c + λ

c =
λ− r(n− 2)

2

α3 =
−γ

r(n− 1)

b =
rλ− r2(n− 2)

4γ
.

From this, we see that b is strictly negative, satisfying the second order condition, if and
only if λ < r(n− 2).

Next, we have

a =
1

r − c

(

−b(n − 1)rv + 2λα3b(n− 1)
a

c
− 2α3ab(n− 1)

)

=
1

r − c
(−b(n− 1)rv +−λa + ca)

=
2

rn− λ

(

−rλ− r2(n− 2)

4γ
(n− 1)rv + a

−λ− r(n− 2)

2

)

.
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Noting that
λ+ r(n− 2)

rn− λ
+ 1 =

2r(n− 1)

rn− λ
,

we see that

a = −(rλ− r2(n− 2)) v

4γ
.

From this, we see that a = −vb and c = 2γb/r so

φt =
a+ cZ̄t

−b
= v − 2γ

r
Z̄t

and

α1 =
1

r − c
(rv +

ac

b
)

=
1

r − c
(rv − vc) = v.

Likewise,

α5 + 2α3 =
1

r − c
(
c2

b
− 2α3c+ 2λα3) + 2α3

=
1

r − c
(
2γ

r
c+ 2α3(r − c)− 2α3c+ 2λα3)

=
1

r − c
(
2γ

r
c+ 2α3(r + λ− 2c))

=
1

r − c
(
2γ

r
c− 2γ) =

−2γ

r
.

It follows that

α5 =
−2γ

r
− 2α3 =

−2γ

r
+

2γ

r(n− 1)
.

Plugging in α1, α5, α3 into the equilibrium κ2(Z), we see that

κ2(Z) = −Z̄ − α1 + (α5 + 2α3)Z̄

2κ0n2

κ2(Z) = −Z̄ − v − 2γ
r
Z̄

2κ0n2
,

and likewise

κ1(Z) = α1 + (α5 + 2α3)Z̄ = v − 2γ

r
Z̄.
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Recalling that R1 = −α1/n and α1 = v, the formula for α2 is

α2 =
1

r
(
ca

−b
+ (λ− c)α1 + λnR1)

=
1

r
(cv + (λ− c)v − λα1) = 0.

Recalling that

R2 = −α5 + 2α3

n2
=

2γ

rn2
,

the formula for α4 is

α4 =
1

r
(
c2

−b
+ (λ− c)α5 + λα3 + λn2R2)

=
1

r
(
−2γ

r
c+ (λ− c)α5 + λα3 − λ(α5 + 2α3))

=
1

r
(
−2γ

r
c− c(α5 + 2α3) + (2c− λ)α3)

=
1

r
((2c− λ− r)α3 + rα3)

=
1

r
(γ − γ

(n− 1)
) =

γ(n− 2)

r(n− 1)
.

Finally, since R0 = 0, the formula for αi
0 is

αi
0 =

1

r
(α3σ

2
i + α4

σ2
Z

n2
+ α5

ρi

n
+ λR0)

=
1

r
(α3σ

2
i + α4

σ2
Z

n2
+ α5

ρi

n
),

and since α1 − α5 are exactly the same as in proposition 3, αi
0 = θi from the statement of

proposition 3. It follows the value function is the same as that of proposition 3.

C.5 Completing the Verification

We have shown that in a symmetric equilibrium, value functions are linear-quadratic and in
particular must be twice continuously differentiable. The HJB of the previous subsection is
thus a necessary condition, and there is a unique candidate linear-quadratic equilibrium which
satisfies it. We have shown that if each player follows their linear strategy, they indeed get their
candidate value function as a continuation value. It remains to show that each player prefers
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this to any other strategy.
We take the notation of Section C.2. Fix the a, b, c, κ0, κ1(Z), κ2(Z) of the previous subsec-

tion, and the corresponding constants αi
0, α1 − α5 for some player i. We fix some admissible

demand process Di, and report process z̃, by which the inventory of trader i at time t is

z
(D,z̃)
t = zi0 +

∫ t

0

Di
sds+H i

t +

∫ t

0

Y i((z̃s, ẑ
−i
s ))dNs. (81)

Following the steps of the derivation of the value function, we can show that under the laws
of motion implied by Di, z̃,

E[U(XT )− U(X0)] = E[

∫ T

0+

Di
s(α1 + α5Z̄s− + 2α3z

D,z̃
s− ) + α4

σ2
Z

n2
+ α3σ

2
i + α5

ρi

n

+ λY i((z̃s, ẑ
−i
s ))(α1 + α5Z̄s− + 2α3z

D,z̃
s− + α3Y

i((z̃s, ẑ
−i
s ))) + r(vzD,z̃

s − V (zD,z̃
s , Zs))ds].

Since α0 − α5 satisfy the HJB, and using the fact that

E

[
∫ T

0

λT i
κ((z̃s, ẑ

−i
s ), Zs) ds

]

= E

[
∫ T

0

T i
κ((z̃s, ẑ

−i
s ), Zs) dNs

]

,

we have

E[U(XT )− U(X0)] ≤ E[

∫ T

0+

Di
sΦ(a,b,c)(D

i
s;Zs − zD,z̃

s ) + γ(zD,z̃
s )2ds

−
∫ T

0

T i
κ((ẑ

i
s, ẑ

−i
s ), Zs)dNs].

Rearranging, this is

V (zi0, Z0) ≥ E[πzD,z̃
T +

∫ T

0+

−Di
sΦ(a,b,c)(D

i
s;Zs − zD,z̃

s )− γ(zD,z̃
s )2ds

+

∫ T

0

T i
κ((ẑ

i
s, ẑ

−i
s ), Zs)dNs].

Since this holds with equality for the conjectured linear strategy, the linear strategy is
optimal.

D Proof of Proposition 5

The proof proceeds in 6 steps. First, we show that transfers take a particular quadratic form in
any equilibrium. Second, we show that r + λ− 2c > 0 in any equilibrium. (If not, some trader
is using an inadmissible or suboptimal strategy.) Third, we show that, given the quadratic
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form of the transfer function, the value function in any equilibrium must take a particular
linear-quadratic form. Fourth, we characterize the optimal mechanism reports and correspond-
ing equilibrium transfers, and characterize equilibrium individual rationality (IR). Fifth, we
explicitly solve for the coefficients of the value function and for the strategies that attain the
maxima in the HJB equation. Finally, we show that for these candidate optimal strategies,
every trader receives an inferior payoff if using any alternative strategy.

D.1 Equilibrium Transfers

We fix a symmetric equilibrium C = (a, b, c). First, we recall that in a symmetric linear-
quadratic equilibrium, the market clearing price process φ must satisfy

na+ nbφt + cZt = 0,

which implies that

φt =
a+ cZ̄t

−b
,

and a+ bφt + czit = c(zit − Z̄t).
Recall that the transfers are given by

T̂ i(ẑ; p) = κ0

(

−nδ(p) +
n
∑

j=1

ẑj

)2

+ p (ẑi − δ(p)) +
p2

4κ0n2
, (82)

where δ is an affine function. In equilibrium, φt is affine in Zt, and everyone reports ẑj = zj .
It is straightforward to show then that in any symmetric equilibrium, the transfers are of the
form

R0 +R1Zt +R2Z
2
t +R3Ztz

i
t +R4z

i
t

for constants R0 through R4 that depend on δ, κ0, and the equilibrium coefficients (a, b, c).

D.2 Admissibility

Fix a symmetric equilibrium C = (a, b, c). The inventory of trader i is

zit = zi0 + c

∫ t

0

zis − Z̄s ds+H i
t −
∫ t

0

(zis− − Z̄s−) dNs. (83)

Since, for fixed c, this is identical to the same inventory evolution in proposition 4 (section
C.1), the exact same proof can be used to show that

E

[
∫ T

0

(zis)
2 ds

]

is finite if and only if 2c < r + λ.
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D.3 The value function

We claim that in any linear-quadratic symmetric equilibrium, the value function

V (z, Z) = E

[

πziT +

∫ T

0

(−γ(zis)
2 − c(zis − Z̄s)

(

a+ cZ̄s

−b

)

ds) +

∫ T

0

T̂ i(ẑs;φs−) dNs

]

takes the form
V (z, Z) = αi

0 + α1z + α2Z̄ + α3z
2 + α4Z̄

2 + α5zZ̄,

where

α3 =
−γ

r + λ− 2c

α5 =
1

r + λ− c
(
c2

b
− 2α3c+ λnR3)

α4 =
1

r
(
c2

−b
+ (λ− c)α5 + λα3 + λn2R2)

α1 =
1

r + λ− c
(rv +

ac

b
+ λR4)

α2 =
1

r
(
ca

−b
+ (λ− c)α1 + λnR1)

αi
0 =

1

r
(α3σ

2
i + α4

σ2
Z

n2
+ α5

ρi

n
+ λR0).

where R0 through R4 are the previously defined transfer coefficients. Given the α coefficients,
we have

(r + λ)
(

αi
0 + α1z + α2Z̄ + α3z

2 + α4Z̄
2 + α5zZ̄

)

= rvz − γz2 + α4
σ2
Z

n2
+ α3σ

2
i + α5

ρi

n
− c(z − Z̄)

a+ cZ̄

−b

+ c(z − Z̄)(α1 + 2α3z + α5Z̄) + λ(αi
0 + α1Z̄ + α2Z̄ + α3Z̄

2

+ α4Z̄
2 + α5Z̄

2 +R0 +R1Z +R2Z
2 +R3Zz +R4z).

The rest of the proof proceeds exactly as in section C.2, and is thus omitted.

D.4 Optimal Mechanism Reports and Equilibrium IR

In the HJB equation, trader i chooses a demand D and a report ẑi to maximize30

sup
D,ẑi

−DΦ(a,b,c)(D;Z−zi)+DVz(z
i, Z)+λ(V (zi+Y i((ẑi, ẑ−i)), Z)+T̂ i((ẑi, ẑ−i); Φ(a,b,c)(D;Z−zi))).

30For the purpose of this proof, we suppose trader i can observe Zt. We show the corresponding optimal
strategy depends only on the information in information set of trader i (which does not include Zt). Because
the resulting strategy is optimal even in the larger set of strategies, it is optimal with respect to strategies that
are adapted to the information filtration of trader i.
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In any linear symmetric equilibrium, trader i must have a value function of the specified
form. Thus, maximizing V (zi + y, Z) is equivalent to maximizing

α1(z
i + y) + α3(z

i + y)2 + α5Z̄(z
i + y),

which is equivalent to maximizing

(α1 + α5Z̄)y + α3y
2 + 2α3z

iy.

If trader i chooses the auction demand D, thus setting the price φ = Φ(a,b,c)(D;Z − zi) that
would be used in the mechanism if one were held immediately, and given that the total of the
other traders’ reports is

∑

j 6=i z
j = Z − zi, trader i gets a transfer of

κ0

(

−nδ(p) + Z − zi + ẑi
)2

+ p (ẑi − δ(p)) +
p2

4κ0n2
, (84)

and a reallocation of

Y i((ẑi, ẑ−i)) =
Z − zi

n
− n− 1

n
ẑi.

Thus, the optimization problem faced by trader i is equivalent to maximizing the sum of (i)
the quantity −DΦ(a,b,c)(D;Z − zi) +DVz(z

i, Z) and (ii) the product of λ with

E(φ, Z, zi, ẑi) ≡ (α1 + α5Z̄)(
Z − zi

n
− n− 1

n
ẑi) + α3(

Z − zi

n
− n− 1

n
ẑi)2

+ 2α3z
i(
Z − zi

n
− n− 1

n
ẑi) + κ0(−nδ(φ) + Z − zi + ẑi)2 + φ(ẑi − δ(φ)) +

φ2

4κ0n2
,

evaluated at φ = Φ(a,b,c)(D;Z − zi).
The first order condition for optimality of ẑi is

∂E(φ, Z, zi, ẑi)
∂ẑi

= −n− 1

n
(α1 + α5Z̄) +

2(n− 1)2

n2
α3ẑ

i − 2
n− 1

n
α3

Z − zi

n

− n− 1

n
2α3z

i + 2κ0(−nδ(φ) + ẑi + Z − zi) + φ = 0.

The second-order condition is satisfied if α3 < 0 and κ0 < 0. For the candidate equilibrium
strategy ẑi = zi, we have

∂E(φ, Z, zi, ẑi)
∂ẑi

= −n− 1

n
(α1 + α5Z̄) +

2(n− 1)α3

n
(−Z̄) + 2κ0(−nδ(φ) + Z) + φ.

Plugging in

Z = n
−bφ − a

c
,
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which must hold in a symmetric equilibrium, and writing δ(φ) = −â− b̂φ, we have

∂E(φ, Z, zi, ẑi)
∂ẑi

= −n− 1

n

(

α1 + α5
−bφ − a

c

)

+
2(n− 1)α3

n

bφ+ a

c

+ 2κ0

(

nâ+ nb̂φ+ n
−bφ − a

c

)

+ φ.

The candidate equilibrium strategy ẑi is therefore optimal provided that

0 = −n− 1

n
(α1 −

α5a

c
) +

2(n− 1)α3a

nc
+ 2κ0nâ−

2naκ0

c

0 =
n− 1

n
(
α5b

c
) +

2(n− 1)α3b

nc
+ 2κ0n(b̂−

b

c
) + 1,

or equivalently,

â =
a

c
− 1

2nκ0

(−n− 1

n
(α1 −

α5a

c
) +

2(n− 1)α3a

nc
)

b̂ =
b

c
− 1

2nκ0
(
n− 1

n
(
α5b

c
) +

2(n− 1)α3b

nc
+ 1).

These equations imply that

ν ≡ nâ + nb̂
a + cZ̄

−b
+ Z

= − 1

2κ0

(

−n− 1

n
(α1 −

α5a

c
) +

2(n− 1)α3a

nc

)

− 1

2κ0

(

a+ cZ̄

−b

)(

n− 1

n
(
α5b

c
) +

2(n− 1)α3b

nc
+ 1

)

.

Evaluating this expression for ν at φ = −(a + cZ̄)/b, we have

ν =
−1

2κ0

(

φ− n− 1

n
α1 +

n− 1

n
α5

a + bφ

c
+

2(n− 1)α3

n

a+ bφ

c

)

. (85)

Consider the ex-post equilibrium IR condition that the transfer plus V (Z̄, Z) − V (zi, Z)
must be weakly positive. This must hold even when all traders have inventory Z̄ going into the
mechanism. In particular, the sum of the transfers must be weakly positive in this case, but it
is always weakly negative by budget balance, so the transfers must sum to 0. In general, the
sum of the transfers is

−n(
√
−κ0 (−nδ(φ) +

∑

j

ẑj)− φ

2n
√−κ0

)2.
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So, if the transfers are to sum to 0, it must be that

√
−κ0 (−nδ(φ) +

∑

j

ẑj)− φ

2n
√−κ0

= 0

|κ0|(−nδ(φ) +
∑

j

ẑj)− φ

2n
= −κ0(−nδ(φ) +

∑

j

ẑj)− φ

2n
= 0. (86)

Recall from equation (85) that at the equilibrium strategies and the δ(φ) consistent with IC,

−nδ(φ) +
∑

j

ẑj =
−1

2κ0

(

φ− n− 1

n
α1 +

n− 1

n
α5

a+ bφ

c
+

2(n− 1)α3

n

a + bφ

c

)

.

Thus for IR to hold, combining this with equation (86), it must be that

1

2

(

n− 1

n
φ− n− 1

n
α1 +

n− 1

n
α5

a+ bφ

c
+

2(n− 1)α3

n

a + bφ

c

)

=
1

2

(

(
n− 1

n
)φ− n− 1

n
α1 −

n− 1

n
α5Z̄ − 2(n− 1)α3

n
Z̄

)

= 0.

Put differently, for the equilibrium strategies to be IR, we need the condition

φ = α1 + (α5 + 2α3)Z̄. (87)

We conjecture and later verify that (87) holds in equilibrium. Given this, we see that, in
equilibrium,

−nδ(φ) +
∑

j

ẑj =
−φ

2κ0n
.

Likewise, we see that

− δ(φ) + ẑi = â+ b̂
a+ cZ̄

−b
+ zi

= zi − Z̄ − 1

2κ0n

(

φ− n− 1

n
α1 +

n− 1

n
α5

a + bφ

c
+

2(n− 1)α3

n

a+ bφ

c

)

= zi − Z̄ − φ

2κ0n2
.

Now, if we plug δ(φ) = −â− b̂φ into the definition of E(φ, Z, zi, ẑi), we arrive at
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E(φ, Z, zi, ẑi) = (α1 + α5Z̄)(
Z − zi

n
− n− 1

n
ẑi) + α3(

Z − zi

n
− n− 1

n
ẑi)2

+ 2α3z
i(
Z − zi

n
− n− 1

n
ẑi) + κ0(n(â + b̂φ) + Z − zi + ẑi)2 + φ(ẑi + (â+ b̂φ)) +

φ2

4κ0n2
,

The partial derivative of E(φ, Z, zi, ẑi) with respect to φ is then

Eφ(φ, Z, zi, ẑi) = 2κ0nb̂(n(â + b̂φ) + Z − zi + ẑi) + (ẑi + (â+ 2b̂φ)) +
φ

2κ0n2
.

Plugging in the candidate ẑi = zi and the fact from above that â+ b̂φ = −Z̄ − φ/(2κ0n
2),

Eφ(φ, Z, zi, ẑi) = 2κ0nb̂
−φ

2κ0n
+ b̂φ+ (zi − Z̄ − φ

2κ0n2
) +

φ

2κ0n2
= zi − Z̄.

Finally, using the equilibrium reports and the δ consistent with IC, equilibrium transfers
are

κ0

(

−nδ(φ) +
∑

j

ẑj

)2

+ φ(ẑi − δ(φ)) +
φ2

4κ0n2
=

φ2

4κ0n2
+ φ

(

zi − Z̄ − φ

2κ0n2

)

+
φ2

4κ0n2

= φ(zi − Z̄)

=
a+ cZ̄

−b
(zi − Z̄),

which implies that

R0 = 0

R1 =
a

nb

R2 =
c

n2b

R3 =
c

−nb

R4 =
a

−b
.

D.5 Solving the HJB

The optimization solved is

sup
D,ẑi

−DΦ(a,b,c)(D;Z − zi) +DVz(z
i, Z) + λE(Φ(a,b,c)(D;Z − zi), Z, zi, ẑi)

Taking a total derivative with respect to D, ẑi, we need
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−Φ(a,b,c)(D;Z−zi)−DΦ′
(a,b,c)(D;Z−zi)+Vz(z

i, Z)+λΦ′
(a,b,c)(D;Z−zi)Eφ(Φ(a,b,c)(D;Z−zi), Z, zi, ẑi) = 0

Eẑi(Φ(a,b,c)(D;Z − zi), Z, zi, ẑi) = 0,

and both of these must hold with D = a+ bφ+ czi (implying Φ(a,b,c)(D;Z− zi) = a+cZ̄
−b

) and

ẑi = zi. Recall Φ′
(a,b,c)(D;Z − zi) = −1

b(n−1)
. From the above, the second equation is satisfied at

φ = a+cZ̄
−b

and the conjectured ẑi as long as

0 = −n− 1

n
(α1 −

α5a

c
) +

2(n− 1)α3a

nc
+ 2κ0nâ−

2naκ0

c
(88)

0 =
n− 1

n
(
α5b

c
) +

2(n− 1)α3b

nc
+ 2κ0n(b̂−

b

c
) + 1, (89)

where we’ve written δ(φ) as δ(φ) = −â− b̂φ. For the FOC on D, we need

−φ+
1

b(n− 1)
(a + bφ+ czi) + (α1 + 2α3z

i + α5Z̄)−
λ

b(n− 1)
Eφ(φ, Z, zi, ẑi) = 0.

We showed that at equilibrium Eφ = zi − Z̄. Plug in this and Z̄ = −bφ−a

c
, to see that

−φ +
1

b(n− 1)
(a+ bφ + czi) + (α1 + 2α3z

i + α5
−bφ − a

c
)− λ

b(n− 1)
(zi − −bφ − a

c
) = 0,

or, gathering terms,

0 = −1 +
1

(n− 1)
− α5

b

c
− λ

c(n− 1)

0 =
1

b(n− 1)
c+ 2α3 −

λ

b(n− 1)

0 =
1

b(n− 1)
a+ (α1 + α5

−a

c
)− λ

b(n− 1)

a

c
.

Rearranging,

0 = −(n− 2)c− α5(n− 1)b− λ (90)

c = −2α3b(n− 1) + λ, (91)

while from the derivation of the linear quadratic value function,
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α3 =
−γ

r + λ− 2c

α5 =
1

r + λ− c
(
c2

b
− 2α3c+ nλR3),

where R3 is the coefficient on Zz in the transfer. From the last section, in equilibrium we
have R3 = c/(−nb) and thus the relevant system is

α3 =
−γ

r + λ− 2c

α5 =
1

r + λ− c
(
c2

b
− 2α3c−

λc

b
).

Multiplying both sides of the α5 equation by b(n− 1), we have

α5b(n− 1) =
1

r + λ− c
(c2(n− 1)− 2α3b(n− 1)c− λc(n− 1)),

and plugging in the above,

α5b(n− 1) =
nc

r + λ− c
(c− λ),

so

0 = −(n− 2)c− (
nc

r + λ− c
(c− λ))− λ

0 = −(n− 2)c(r + λ− c)− nc(c− λ)− λ(r + λ− c)

0 = −2c2 + c(−(n− 2)(r + λ) + nλ+ λ)− λ(r + λ)

0 = −2c2 + c(−(n− 2)r + 3λ)− λ(r + λ)

c =
(−(n− 2)r + 3λ)±

√

(−(n− 2)r + 3λ)2 − 8λ(r + λ)

4
.

It is clear that either both or neither of these roots are real. By the Descartes rule of signs,
if both are real, they are either both positive, or neither are positive. In particular, assuming
that (−(n− 2)r+3λ)2 − 8λ(r+ λ) > 0 so that both roots exist, if we can show one is negative
then they both are negative. If −(n−2)r+3λ < 0, then the smaller root must be negative and
we are done. If −(n− 2)r + 3λ ≥ 0, then the larger root is positive so both roots are positive.
Thus we see we need that −(n − 2)r + 3λ < 0 and (−(n − 2)r + 3λ)2 − 8λ(r + λ) ≥ 0, which
can be concisely written as

−(n− 2)r + 3λ ≤ −
√

8λ(r + λ).
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Define
F (c, λ) = −2c2 + c(−(n− 2)r + 3λ)− λ(r + λ),

and note from the above that F (c, λ) = 0 implies an equilibrium, as long as c < 0 such that
b < 0 and the second order condition above holds.

We have that Fcc = −4 < 0 and limc→−∞ F = limc→∞ F = −∞. Thus, as c increases from
negative infinity to infinity, Fc crosses from positive to negative exactly once, at

c0 =
−(n− 2)r + 3λ

4
.

Since there are two roots, we see the derivative Fc must be positive at the smaller root c(λ)
and negative at the larger root c(λ), so c(λ) < c0 < c(λ). Fix a λ ∈ (0, λ̄) and consider small,
disjoint neighborhoods around (λ, c(λ)) and (λ, c(λ)). Applying implicit function theorem to
each of these functions,

∂c

∂λ
= −Fλ

Fc

= −−r − 2λ+ 3c

Fc

Since c < 0 in either equilibrium, the numerator is always negative. We just showed Fc is
positive at the smaller root and thus ∂c(λ)

∂λ
> 0 so that c increases monotonically in λ.

Now, recall we have

(r + λ− 2c)α3 = −γ,

which, combined with equation (91), implies

c(r + λ− 2c) = −2α3b(n− 1)(r + λ− 2c) + λ(r + λ− 2c)

c(r + λ− 2c) = 2γb(n− 1) + λ(r + λ− 2c).

Using the above quadratic equation for c, this can be rewritten

c(r + λ)− (c(−(n− 2)r + 3λ)− λ(r + λ)) = 2γb(n− 1) + λ(r + λ− 2c)

c(r + λ)− (c(−(n− 2)r + 3λ)) = 2γb(n− 1)− 2λc

cr(n− 1) = 2γb(n− 1)

c =
2γ

r
b,

which implies that

b =
r2

8γ

(

−(n− 2) +
3λ

r
±
√

(−(n− 2) +
3λ

r
)2 − 8λ(r + λ)

r2

)

.

Note
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[
3λ

r
− (n− 2)]2 − 8λ(r + λ)

r2
=

λ2

r2
− 6λ(n− 2)

r
+ (n− 2)2 − 8λ

r
(92)

= (
λ

r
− (n− 2))2 − 4λn

r
, (93)

so we have shown that

b =
−r2

8γ

(

(n− 2)− 3λ

r
±
√

(
λ

r
− (n− 2))2 − 4λn

r

)

.

Further, since c < 0 and c = 2γ
r
b, we have b < 0, and since c increases monotonically in λ

so does b. Using the relation that c = 2γ
r
b and equation (91), we have that

α3 =
c− λ

−2b(n− 1)
= − γ

r(n− 1)
+

λ

2b(n− 1)
,

while, using (90),

0 = −(n− 2)c− α5(n− 1)b− λ

α5 =
−(n− 2)c− λ

b(n− 1)

= −n− 2

n− 1

2γ

r
− λ

b(n− 1)

=
−2γ

r
− 2α3.

Recall that

α1 =
1

r + λ− c
(rv +

ac

b
+ λR4),

where, based on the transfers, R4 =
−a
b
, so

α1 =
1

r + λ− c
(rv +

ac

b
− aλ

b
),

and from the first order condition for auction demand,

0 =
1

b(n− 1)
a+ (α1 + α5

−a

c
)− λ

b(n− 1)

a

c
.

Plugging in α5 =
−2γ
r

− 2( c−λ
−2b(n−1)

),

0 = α1 +
2γ

r

a

c
⇒ α1 = −a

b
,

and plugging this into the above,
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α1 =
1

r + λ− c
(rv +−cα1 + λα1),

from which it is clear that α1 = v and a = −bv. Returning to the coefficients â, b̂ defining
δ(φ), since a

c
= −v r

2γ
and b

c
= r

2γ
, we have

â =
a

c
− 1

2nκ0
(−n− 1

n
(α1 −

α5a

c
) +

2(n− 1)α3a

nc
)

=
−vr

2γ
− 1

2nκ0
(−n− 1

n
(v − v(

2γ

r
)(

r

2γ
)))

=
−vr

2γ
,

b̂ =
b

c
− 1

2nκ0

(
n− 1

n
(
α5b

c
) +

2(n− 1)α3b

nc
+ 1)

=
r

2γ
− 1

2n2κ0

.

Returning to the system of value function coefficients, it remains to calculate

α4 =
1

r
(
c2

−b
+ (λ− c)α5 + λα3 + λn2R2)

α2 =
1

r
(
ca

−b
+ (λ− c)α1 + λnR1)

αi
0 =

1

r
(α3σ

2
i + α4

σ2
Z

n2
+ α5

ρi

n
+ λR0).

Plugging in the equilibrium formulas for R2, R1, R0,

α4 =
1

r
(
c2

−b
+ (λ− c)α5 + λα3 +

cλ

b
)

α2 =
1

r
(
ca

−b
+ (λ− c)v +

aλ

b
)

αi
0 =

1

r
(α3σ

2
i + α4

σ2
Z

n2
+ α5

ρi

n
),

and using the definitions of a, b, c,

α4 =
1

r
(−2γ

r
c+ (λ− c)(

−2γ

r
− 2α3) + λα3 +

cλ

b
)

α2 =
1

r
(cv + (λ− c)v +−vλ),
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implying α2 = 0 and

α4 =
1

r
(2cα3 + λ(

−2γ

r
− 2α3) + λα3 +

2γλ

r
)

=
1

r
(2c− λ)α3 =

γ

r
+ α3.

Finally, this implies that

αi
0 =

1

r
(
γ

r

σ2
Z

n2
+ α3(

σ2
Z

n2
+ σ2

i ) + α5
ρi

n
)

=
1

r
(
γ

r

σ2
Z

n2
+ α3(

σ2
Z

n2
+ σ2

i − 2
ρi

n
)− 2γ

r

ρi

n
)

=
1

r
(
γ

r

σ2
Z

n2
+ (− γ

r(n− 1)
+

λ

2b(n− 1)
)(
σ2
Z

n2
+ σ2

i − 2
ρi

n
)− 2γ

r

ρi

n
).

Note that
σ2

Z

n2 + σ2
i − 2ρi

n
is the variance of (Z1

n
−H i

1) conditional on Z0 and thus positive, so
αi
0 declines in λ because b < 0 and b increases with λ.
Finally, we must verify that in equilibrium, φ = α1+(α5+2α3)Z̄. We see from the definitions

of a, b, c that

φ =
a+ cZ̄

−b
= v − 2γ

r
Z̄

while from the definition of α5, α3 we have 2α3+α5 =
−2γ
r
, so this holds with probability 1.

D.6 Finishing the Verification

In this section, we show that at the V (z, Z) and strategies which solve the HJB, using any
alternate admissable strategy leads to an inferior payoff for each trader. We fix some admissible
demand process Di, and report process z̃, by which the inventory of trader i at time t is

z
(D,z̃)
t = zi0 +

∫ t

0

Di
sds+H i

t +

∫ t

0

Y i((z̃s, ẑ
−i
s ))dNs. (94)

Following the steps of the derivation of the value function, we can show that under the laws
of motion implied by Di, z̃,

E[U(XT )− U(X0)] = E[

∫ T

0+

Di
s(α1 + α5Z̄s− + 2α3z

D,z̃
s− ) + α4

σ2
Z

n2
+ α3σ

2
i + α5

ρi

n

+ λY i((z̃s, ẑ
−i
s ))(α1 + α5Z̄s− + 2α3z

D,z̃
s− + α3Y

i((z̃s, ẑ
−i
s ))) + r(vzD,z̃

s − V (zD,z̃
s , Zs))ds].

Since α0 − α5 satisfy the HJB, we have
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E[U(XT )− U(X0)] ≤ E[

∫ T

0+

Di
sΦ(a,b,c)(D

i
s;Zs − zD,z̃

s ) + γ(zD,z̃
s )2ds

−
∫ T

0

T̂ i((ẑis, ẑ
−i
s ); Φ(a,b,c)(D

i
s−;Zs− − zD,z̃

s− ))dNs],

and rearranging, this is

V (zi0, Z0) ≥ E[πzD,z̃
T +

∫ T

0+

−Di
sΦ(a,b,c)(D

i
s;Zs − zD,z̃

s )− γ(zD,z̃
s )2ds

+

∫ T

0

T̂ i((ẑis, ẑ
−i
s ); Φ(a,b,c)(D

i
s−;Zs− − zD,z̃

s− ))dNs].

Since this holds with equality for the conjectured linear strategy, the linear strategy is
optimal.

E Proof of Proposition 6

The proof is extremely similar to proposition 4, so we leave some details to the reader. We
write V (z, Z) rather than V i

M(z, Z) for brevity. For any affine κ1, κ2 functions, the transfers in
equilibrium take the form

R0 +R1Zt +R2Z
2
t +R3Ztz

i
t +R4z

i
t,

for constants R0 − R4. In any symmetric equilibrium, the value function

V (z, Z) = E

[

πziT +

∫ T

0

(−γ(zis)
2 ds) +

∫ T

0

T i
κ(ẑs, Zs) dNs

]

takes the form
V (z, Z) = αi

0 + α1z + α2Z̄ + α3z
2 + α4Z̄

2 + α5zZ̄,

where

74



α3 =
−γ

r + λ

α5 =
1

r + λ
(λnR3)

α4 =
1

r
(λα5 + λα3 + λn2R2)

α1 =
1

r + λ
(rv + λR4)

α2 =
1

r
(λα1 + λnR1)

αi
0 =

1

r
(α3σ

2
i + α4

σ2
Z

n2
+ α5

ρi

n
+ λR0),

and where R0 through R4 are the previously defined transfer coefficients. To see this, note that
given the α coefficients, we have

(r + λ)
(

αi
0 + α1z + α2Z̄ + α3z

2 + α4Z̄
2 + α5zZ̄

)

= rvz − γz2 + α4
σ2
Z

n2
+ α3σ

2
i + α5

ρi

n
+ λ(αi

0 + α1Z̄ + α2Z̄ + α3Z̄
2

+ α4Z̄
2 + α5Z̄

2 +R0 +R1Z +R2Z
2 +R3Zz +R4z).

Let Yt = 1{T ≤t} and V (z, Z) be defined as above. Let

X =





zit
Zt

Yt





and U(X) = U(z, Z, Y ) = (1 − Y )V (z, Z) + Y vz. Then, following the steps of the proof of
proposition 4, if we let

χs = α4
σ2
Z

n2
+ α3σ

2
i + α5

ρi

n
− λ(zis − Z̄s)(α1 + α5Z̄s− + α3(z

i
s− + Z̄s−)) + r(vzis − V (zis, Zs)),

we can show that

E[U(XT )− U(X0)] = E

[
∫ T

0+

χs ds

]

.

Because αi
0 through α5 satisfy the system of equations specified at the beginning of this proof,

we have

E[U(XT )− U(X0)] = E

[
∫ T

0+

χ̄s ds

]

,

75



where
χ̄s = γ(zis)

2 − λ(R0 +R1Zs +R2Z
2
s +R3Zsz

i
s +R4z

i
s).

Using the definitions of U, T , and R0 through R4, as well as the fact that E[vziT ] = E[πziT ],
we can rearrange to find that

V (zi0, Z0) = E

[

πziT +

∫ T

0+

χ̄s ds

]

= E

[

πziT +

∫ T

0+

−γ(zis)
2 + λT i

κ(ẑs, Zs) ds

]

= E

[

πziT +

∫ T

0

−γ(zis)
2 ds+

∫ T

0

T i
κ(ẑs, Zs) dNs

]

,

which completes the proof that the value function V (z, Z) takes the form above. The arguments
of section C.3 go through exactly the same (with these different α coefficients), so it must be
that

κ1(Z) = α1 + (α5 + 2α3)Z̄,

and the equilibrium reports are optimal as long as

κ2(Z) = â+ b̂Z = −Z̄ − α1 + (α5 + 2α3)Z̄

2κ0n2
.

Once again the equilibrium transfers are (α1+(α5+2α3)Z̄)
(

zi − Z̄
)

, so the coefficients Rm

in

R0 +R1Zt +R2Z
2
t +R3Ztz

i
t +R4z

i
t,

are given by

R0 = 0

R1 = −α1

n

R2 = −α5 + 2α3

n2

R3 =
α5 + 2α3

n
R4 = α1.

From above we have that
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α3 =
−γ

r + λ

α5 =
1

r + λ
(λnR3)

α4 =
1

r
(λα5 + λα3 + λn2R2)

α1 =
1

r + λ
(rv + λR4)

α2 =
1

r
(λα1 + λnR1)

so, plugging in R1, R2, R3, R4, and rearranging,

α3 =
−γ

r + λ

α5 =
1

r
(2λα3) =

2λ

r
(
−γ

r + λ
)

α4 =
1

r
(λα5 + λα3 − λ(α5 + 2α3)) =

λ

r
(

γ

r + λ
)

α1 =
1

r
(rv) = v

α2 =
1

r
(λα1 − λα1) = 0.

Thus, letting α1 − α5 be these values and

αi
0 =

1

r
(α3σ

2
i + α4

σ2
Z

n2
+ α5

ρi

n
),

and defining the value function

V (zi, Z) = αi
0 + α1z

i + α2Z̄ + α3(z
i)2 + α4Z̄

2 + α5z
iZ̄,

This solves the associated HJB equation

0 = −γ(zi)2 + r(vzi − V (zi, Z)) +
σ2
i

2
Vzz(z

i, Z) +
σ2
Z

n2
VZZ(z

i, Z) + 2
ρi

n
VzZ(z

i, Z)

+ sup
ẑi

λ
(

V (zi + Y i((ẑi, ẑ−i)), Z)− V (zi, Z) + T i
κ((ẑ

i, ẑ−i), Z)
)

.

Plugging in α1, α3, α5, we have

κ1(Z) = v − 2γ

r
Z̄,
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κ2(Z) = −Z̄ − v − 2γ
r
Z̄

2κ0n2
.

The last part of the verification, demonstrating that alternate strategies do weakly worse,
is exactly the same as in proposition 4 and thus omitted. Rearranging the αi

0 − α5 above gives
the expression in proposition 6, completing the proof.

F The Impaired Mechanism

In this section, we consider an alternate mechanism designed to reduce a fraction ξ of the excess
inventory at each implementation. Its allocations and transfers are given by

Y i(ẑ) = ξ

(

∑

j ẑ
j

n
− ẑi

)

(95)

T i(ẑ, Z) = κ0(nκ2(Z) + ξ
∑

j

ẑj)2 + κ1(Z)(ξẑ
i + κ2(Z)) +

(2ξ − ξ2)κ2
1(Z)

4n2κ0

+ nκ0
1− ξ

ξ
[(ξẑi + κ2(Z))

2 − ((n− 1)κ2(Z) + ξ
∑

j 6=i

ẑj +
ξκ1(Z)

2κ0n
)2],

for a constant κ0 < 0 and affine functions κ1(Z), κ2(Z). It is worth noting that the sum of
these transfers may not be weakly negative for any reports ẑ, but we show in all the equilibria
we consider the transfers sum to zero with probability 1.

F.1 Proof Sketch for Alternate Proposition 4

We provide a sketch of a proof for an alternative version of proposition 4: for any ξ ∈ (0, 1],
there will exist a unique symmetric equilibrium such that, each time the mechanism is run, all
traders reduce a fraction ξ of their inventory imbalance zi − Z̄. The auction price and value
functions are identical, and the auction demands are identical replacing λ with λ(2ξ− ξ2). The
mechanism demands are still ẑi = zi.

Proof sketch: In any such equilibrium, each trader reports ẑi = zi, such that

Y i(ẑt) = ξ(Z̄ − zit)

and the transfers are
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T i(ẑ, Z) = κ0(nκ2(Z) + ξZ)2 + κ1(Z)(ξz
i + κ2(Z)) +

(2ξ − ξ2)κ2
1(Z)

4n2κ0

+ nκ0
1− ξ

ξ
[(ξzi + κ2(Z))

2 − ((n− 1)κ2(Z) + ξ(Z − zi) +
ξκ1(Z)

2κ0n
)2]

= κ0(nκ2(Z) + ξZ)2 + κ1(Z)(ξz
i + κ2(Z)) +

(2ξ − ξ2)κ2
1(Z)

4n2κ0

+ nκ0
1− ξ

ξ

(

ξZ + nκ2(Z) +
ξκ1(Z)

2κ0n

)(

ξzi + κ2(Z)− ((n− 1)κ2(Z) + ξ(Z − zi) +
ξκ1(Z)

2κ0n
)

)

.

For any affine κ1, κ2, it follows that the transfer will be given by

R0 +R1Zt +R2Z
2
t +R3Ztz

i
t +R4z

i
t,

for constants R0−R4. Receiving such transfers at Poisson arrival times must lead to a linear-
quadratic value function, as in the proofs the previous propositions. That is, the equilibrium
continuation value function V for agent i must be

V (zi, Z) = αi
0 + α1z

i + α2Z̄ + α3(z
i)2 + α4Z̄

2 + α5z
iZ̄. (96)

Fix reports ẑj = zj for the other traders. When trader i chooses z̃, they maximize

(α1 + α5Z̄)Y
i((z̃, ẑ−i)) + α3Y

i((z̃, ẑ−i))2 + 2α3Y
i((z̃, ẑ−i))zi + T i((z̃, ẑ−i), Z),

where, writing κ2(Z) = â+ b̂Z and ẑj = zj ,

T i((z̃, ẑ−i), Z) = κ0(ξz̃ + nâ+ nb̂Z + ξ(Z − zi))2 + κ1(Z)(ξz̃ + â+ b̂Z) +
(2ξ − ξ2)κ2

1(Z)

4n2κ0

+ nκ0
1− ξ

ξ
[(ξẑi + â+ b̂Z)2 − ((n− 1)(â+ b̂Z) + ξ

∑

j 6=i

ẑj +
ξκ1(Z)

2κ0n
)2].

Taking a first order condition,

− n− 1

n
ξ(α1 + α5Z̄ + 2α3z

i)− 2(n− 1)α3ξ

n
Y i((z̃, ẑ−i)) + ξκ1(Z)

+ 2κ0ξ(ξz̃ + nâ+ nb̂Z + ξ(Z − zi)) + 2nκ0ξ
1− ξ

ξ
(ξẑi + â+ b̂Z) = 0.

Plugging in z̃ = zi, Y i((z̃, ẑ−i)) = ξ(Z̄ − zi), and dividing through by ξ, we have
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− n− 1

n
(α1 + α5Z̄ + 2α3z

i)− 2(n− 1)α3

n
ξ(Z̄ − zi) + κ1(Z)

+ 2κ0(nâ + nb̂Z + ξZ) + 2nκ0
1− ξ

ξ
(ξzi + â+ b̂Z) = 0.

It is clear that the zi terms will cancel if and only if κ0 = (n − 1)α3/n
2. Given this, the

unique â, b̂ solving this is given by

0 = −n− 1

n
(α1 + α5Z̄)−

2(n− 1)α3

n
ξ(Z̄) + κ1(Z)

+
2(n− 1)α3

n2
(nâ + nb̂Z + ξZ)) +

2(n− 1)α3

n

1− ξ

ξ
(â+ b̂Z),

â+ b̂Z =
nξ

2(n− 1)α2

(

−κ1(Z) + (α1 + α5Z̄)
n− 1

n

)

=
ξ

2nκ0

(

−κ1(Z) + (α1 + α5Z̄)
n− 1

n

)

.

Manipulating the formula for transfers, we can write the equilibrium transfer for trader i,
given ẑi = zi for all i, as

= κ0(nκ2(Z) + ξZ)2 + κ1(Z)(ξz
i + κ2(Z)) +

(2ξ − ξ2)κ2
1(Z)

4n2κ0

+ nκ0
1− ξ

ξ

(

ξZ + nκ2(Z) +
ξκ1(Z)

2κ0n

)(

ξzi + κ2(Z)− ((n− 1)κ2(Z) + ξ(Z − zi) +
ξκ1(Z)

2κ0n
)

)

.

Suppose we define κ1 such that

ξZ + nκ2(Z) +
ξκ1(Z)

2κ0n
= 0.

Then this simplifies to

κ0(nκ2(Z) + ξZ)2 + κ1(Z)(ξz
i + κ2(Z)) +

(2ξ − ξ2)κ2
1(Z)

4n2κ0
,

and summing across traders, this is

nκ0(
ξκ1(Z)

2κ0n
)2 − κ1(Z)(

ξκ1(Z)

2κ0n
) +

(2ξ − ξ2)κ2
1(Z)

4nκ0
= 0.

Some calculation shows that the above κ1 is the unique one such that the transfers sum to
zero with probability 1, which must be the case for IR and budget balance to hold. Plugging
in the formula for κ2, we see we need
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0 = ξZ +
ξ

2κ0

(

−κ1(Z) + (α1 + α5Z̄)
n− 1

n

)

+
ξκ1(Z)

2κ0n

0 = 2κ0nZ +
(

−nκ1(Z) + (α1 + α5Z̄)(n− 1)
)

+ κ1(Z)

κ1(Z) = (α1 + α5Z̄) +
2κ0n

n− 1
Z

= α1 + (α5 + 2α3)Z̄.

This is the unique κ1(Z) consistent with budget balance and ex-post IR. The HJB equation
is

rV (zi, Z) = −γ(zi)2 + rvz +
σ2
i

2
Vzz(z

i, Z) +
σ2
Z

n2
VZZ(z

i, Z) + 2
ρi

n
VzZ(z

i, Z)

+ sup
D,z̃

−Φ(a,b,c)(D;Z − zi)D + Vz(z
i, Z)D + λ

(

V (zi + Y i(z̃, ẑ−i), Z)− V (zi, Z) + T i((z̃, ẑ−i), Z)
)

.

We just showed that given V is quadratic, so at the unique candidate equilibrium realloca-
tions,

V (z + Y i(z̃, ẑ−i), Z)− V (z, Z) = (α1 + α5Z̄)ξ(Z̄ − z) + α3ξ
2(Z̄ − z)2 + 2α3ξz(Z̄ − z).

By the above, the equilibrium transfer is

κ0(
ξκ1(Z)

2κ0n
)2 + κ1(Z)(ξ(z

i − Z̄)− ξκ1(Z)

2κ0n
) +

(2ξ − ξ2)κ2
1(Z)

4n2κ0

= κ1(Z)ξ(z
i − Z̄).

Plugging in κ1(Z) = α1 + (α5 + 2α3)Z̄ and summing the transfer and the change in contin-
uation value, this is

(α1 + α5Z̄)ξ(Z̄ − z) + α3ξ
2(Z̄ − z)2 + 2α3ξz(Z̄ − z)− (α1 + α5Z̄ + 2α3Z̄)ξ(Z̄ − z)

= α3ξ
2(Z̄ − z)2 − 2α3ξ

(

z2 + Z̄2 − 2zZ̄
)

= −α3(2ξ − ξ2)(Z̄ − z)2.

Plugging this in, the HJB becomes

rV (zi, Z) = −γ(zi)2 + rvzi +
σ2
i

2
Vzz(z

i, Z) +
σ2
Z

n2
VZZ(z

i, Z) + 2
ρi

n
VzZ(z

i, Z)

+ sup
D

−Φ(a,b,c)(D;Z − zi)D + Vz(z
i, Z)D − λ(2ξ − ξ2)α3

(

zi − Z̄
)2

.
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This is exactly the HJB from the proof of proposition 4, replacing λ with λ∗ = λ(2ξ − ξ2).

G Discrete Time Results

In this appendix, we analyze discrete time versions of the models of sections 3, 4, and 5. The
focus is the existence of a subgame perfect equilibrium in each complete information game,
which corresponds to a Perfect Bayes equilibrium of each incomplete information game. We
also show convergence results for the models of sections 3 and 4. All the results are presented
informally, with focus on the calculation of the equilibrium, but these arguments can all be
made fully rigorous.

The primitive setting, other than mechanisms, is identical to Duffie and Zhu (2017). Specif-
ically, n > 2 traders trade in each period k ∈ {0, 1, 2, ...}, where trading periods are separated
by clock time ∆ so that the k-th auction occurs at time k∆.

In each period k, each trader i submits an auction order xik(pk) for how many units of asset
they wish to purchase if the auction price is pk. We focus on affine equilibria in which each
trader chooses

xik(pk) = a+ bpk + czik,

where zik is trader i’s inventory entering period k, for constants a, c and b 6= 0. If n − 1
traders use such a strategy with the same constants a, b, c, then there is a unique market clearing
price Φ(a,b,c)(D,Z − z) for any demand D submitted by trader i, which is given by

Φ(a,b,c)(D,Z − z) =
(n− 1)a+ c(Zk − zik) +D

−b(n− 1)
.

Each trader also submits a contingent mechanism report ẑik(pk). With probability q, a
mechanism occurs: each trader receives a net reallocation

Y i(ẑ) =

∑n

j=1 ẑjk

n
− ẑik

and a transfer which will be described shortly and might depend upon pk. With probability
1−q, a double auction occurs, and each trader receives xik(pk) units of asset at a cost pkxik(pk).
If trader i ends period k with inventory z+ik, then in between periods k and k + 1, they receive
flow expected utility

−γ

r
(1− e−r∆)(z+ik)

2 + v(1− e−r∆)(z+ik)

which can be motivated as in Duffie and Zhu. Let 1Mk equal 1 if and only if a mechanism
occurs in period k, and let 1c

Mk = 1 − 1Mk . Then, in any equilibrium in which mechanisms
implement efficient allocations, the equilibrium inventory evolves as

zi,k+1 = wi,k+1 + 1MkZ̄k + 1c
Mk

(

(1 + c)zi,k − cZ̄k

)

where wi,k+1 is an i.i.d zero mean finite variance random variable.
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G.1 Observable Z

Suppose the aggregate Zk is observable and the transfers are given by

T i
κ(ẑ, Z) = κ0(nκ2(Zk) +

∑

j

ẑjk)
2 + κ1(Zk)(ẑik + κ2(Zk)) +

κ1(Zk)
2

4κ0n2
.

Just as in the continuous time proof, at the equilibrium reports for affine κ1, κ2, this must
take the form

R0 +R1Zk +R2Z
2
k +R3Zkzik +R4zik.

We solve for a subgame perfect equilibrium in which all traders submit

xik(pk) = a+ bpk + czik,

ẑik(pk) = zik.

In such an equilibrium, the continuation value V (z, Z) must be linear quadratic. Specifically,
the continuation value is

V (z, Z) = E[
∞
∑

k=0

e−r∆k[q
(

R0 +R1Zk +R2Z
2
k +R3Zkzik +R4zik −

γ

r
(1− e−r∆)(Z̄k)

2 + v(1− e−r∆)(Z̄k)
)

+ (1− q)
(

−xik(pk)pk −
γ

r
(1− e−r∆)(xik(pk) + zik)

2 + v(1− e−r∆)(xik(pk) + zik)
)

]]

Given zi0 = z, Z0 = Z and

∑

i

xikpk = 0

zi,k+1 = wi,k+1 + 1Mk

(

zik +

∑n
j=1 ẑjk

n
− ẑik

)

+ 1c
Mk (zik + xik(pk)) .

Fix the conjectured equilibrium a, b, c with truthtelling (ẑik = zik), so that

zi,k+1 = wi,k+1 + 1MkZ̄k + 1c
Mk

(

(1 + c)zi,k − cZ̄k

)

. (97)

The expression for V (z, Z) can be decomposed into a linear combination of discounted sums
of moments of zik, Zk. We calculate these now. Straightforward calculation shows
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E[

∞
∑

k=0

e−r∆kZk] =
Z0

1− e−r∆
= S0Z0

E[
∞
∑

k=0

e−r∆kZ2
k ] =

Z2
0

1− e−r∆
+

σ2
Ze

−r∆

1− e−r∆
= S0Z

2
0 + S1,

where σ2
Z ≡ V ar(

∑

i wi,k+1). Subtracting Z̄i,k+1 from both sides of equation (97), rearrang-
ing, and taking an expectation gives

E[zi,k+1 − Z̄k+1] = (1− q)(1 + c)E[zi,k − Z̄k].

Some calculation then shows

E[

∞
∑

k=0

e−r∆kzik] =
zi0 − Z̄0

1− e−r∆(1 + c)(1− q)
+

Z̄0

1− e−r∆
= S2(zi0 − Z̄0) + S0Z̄0,

as long as |e−r∆(1 + c)(1 − q)| < 1. Subtracting Z̄i,k+1 from both sides of equation (97),
then multiplying both sides by Z̄i,k+1, and taking an expectation gives

E[zi,k+1Zk+1 − Z̄2
k+1] = (

ρi

n
− σ2

Z

n2
) + (1− q)(1 + c)E[zi,kZ̄k − Z̄2

k ],

where ρi = E[wi,k+1(
∑

iwi,k+1)]. Then we see that

E[

∞
∑

k=0

e−r∆kzikZ̄k] = E[

∞
∑

k=0

e−r∆k
(

zikZ̄k − Z̄2
k

)

] + S0Z̄
2
0 +

S1

n2

= zi0Z̄0 − Z̄2
0 + e−r∆

∞
∑

k=1

e−r∆(k−1)
E[zikZ̄k − Z̄2

k ] + S0Z̄
2
0 +

S1

n2

= zi0Z̄0 − Z̄2
0 + e−r∆

E[
∞
∑

k=0

e−r∆k

(

(
ρi

n
− σ2

Z

n2
) + (1− q)(1 + c)E[zi,kZ̄k − Z̄2

k ]

)

+ S0Z̄
2
0 +

S1

n2

= zi0Z̄0 − Z̄2
0 +

e−r∆(ρ
i

n
− σ2

Z

n2 )

1− e−r∆
+ (1− e−r∆(1− q)(1 + c))(S0Z̄

2
0 +

S1

n2
)

+ (1− q)(1 + c)e−r∆
E[

∞
∑

k=0

e−r∆kzikZ̄k],

and rearranging delivers
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E[

∞
∑

k=0

e−r∆kzikZ̄k] = S0Z̄
2
0 +

S1

n2
+

zi0Z̄0 − Z̄2
0 +

e−r∆( ρ
i

n
−

σ2
Z

n2
)

1−e−r∆

1− (1− q)(1 + c)e−r∆
= S2zi0Z̄0 + (S0 − S2)Z̄

2
0 + S3.

Finally, squaring both sides of equation (97) and taking an expectation shows that

E[
(

zi,k+1 − Z̄k+1

)2
] = (

σ2
Z

n2
− 2

ρi

n
+ σ2

i ) + (1− q)(1 + c)2E[
(

zi,k − Z̄k

)2
],

where σ2
i = E[w2

i,k+1]. Then

∞
∑

k=0

e−r∆
E[
(

zi,k − Z̄k

)2
] =

(

zi,0 − Z̄0

)2
+

(
σ2
Z

n2
−2 ρi

n
+σ2

i )e
−r∆

1−e−r∆

1− e−r∆(1− q)(1 + c)2
= S4

(

zi,0 − Z̄0

)2
+ S5,

as long as |S−1
4 | = |1− e−r∆(1− q)(1 + c)2| < 1. It follows that

∞
∑

k=0

e−r∆
E[z2i,k] = S4

(

zi,0 − Z̄0

)2
+ S5 + 2

(

S2zi0Z̄0 + (S0 − S2)Z̄
2
0 + S3

)

−
(

S0Z̄
2
0 +

S1

n2

)

.

In summary, letting

S0 =
1

1− e−r∆

S1 =
σ2
Ze

−r∆

1− e−r∆

S2 =
1

1− e−r∆(1− q)(1 + c)

S3 = S2

e−r∆(ρ
i

n
− σ2

Z

n2 )

1− e−r∆

S4 =
1

1− e−r∆(1− q)(1 + c)2

S5 = S4

(
σ2

Z

n2 − 2ρi

n
+ σ2

i )e
−r∆

1− e−r∆

and assuming |S−1
2 |, |S−1

4 | are strictly less than 1,
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E[

∞
∑

k=0

e−r∆kzik] = S2(zi0 − Z̄0) + S0Z̄0,

E[
∞
∑

k=0

e−r∆kzikZ̄k] = S2zi0Z̄0 + (S0 − S2)Z̄
2
0 + S3

E[
∞
∑

k=0

e−r∆kZ̄k] = S0Z̄0

E[

∞
∑

k=0

e−r∆kZ̄2
k ] = S0Z̄

2
0 +

S1

n2
,

E[

∞
∑

k=0

e−r∆z2i,k] = S4

(

zi,0 − Z̄0

)2
+ S5 + 2

(

S2zi0Z̄0 + (S0 − S2)Z̄
2
0 + S3

)

−
(

S0Z̄
2
0 +

S1

n2

)

.

Suppose that

V (z, Z) = αi
0 + α1z + α2Z̄ + α3z

2 + α4Z̄
2 + α5zZ̄.

Then the utility for having inventory z, Z immediately after an auction or mechanism is

V +(z, Z) = −γ

r
(1− e−r∆)(z)2 + v(1− e−r∆)z + E[e−r∆V (z + wi,k+1, Z +

∑

i

wi,k+1)]

= −γ

r
(1− e−r∆)(z)2 + v(1− e−r∆)z

+ e−r∆

(

αi
0 + α3σ

2
i + α4

σ2
Z

n2
+ α5

ρi

n
+ α1z + α2Z̄ + α3z

2 + α4Z̄
2 + α5zZ̄

)

= u(Z) + (e−r∆α3 −
γ

r
(1− e−r∆))(z − Z̄)2 + (v(1− e−r∆) + e−r∆α1)z

+
(

e−r∆α5 + 2(e−r∆α3 −
γ

r
(1− e−r∆))

)

zZ̄.

We have thus shown the continuation value maximized in the mechanism takes the form of
section 2, with

β0 = (v(1− e−r∆) + e−r∆α1)

β1 =
(

e−r∆α5 + 2(e−r∆α3 −
γ

r
(1− e−r∆))

)

.

Transfers in the mechanism thus must be run with κ1(Zk) = β0 + β1Z̄k to be IR. From
proposition 1, in the equilibrium of the mechanism game we seek (with observable Z), each
trader submits ẑik = zik as long as

κ2(Zk) = −Z̄k +
−(β0 + β1Z̄k)

2κ0n2
,
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so that the sum is

nκ2(Zk) +
∑

i

ẑik =
−(β0 + β1Z̄k)

2κ0n
.

Returning to the continuation value, in equilibrium at each mechanism event all traders
receive a transfer equal to κ1(Zk)(zik − Z̄) =

(

β0 + β1Z̄k

)

(zik − Z̄). The equilibrium price must
equal pk = (a+ cZ̄)/− b and the equilibrium demand xik = c(zik − Z̄k). Thus, plugging in, the
candidate equilibrium continuation value is

V (z, Z) = E[
∞
∑

k=0

e−r∆k[q
(

(β0 + β1Z̄k)(zik − Z̄k)−
γ

r
(1− e−r∆)(Z̄k)

2 + v(1− e−r∆)(Z̄k)
)

+ (1− q)

(

−c(zik − Z̄k)
a + cZ̄k

−b
− γ

r
(1− e−r∆)((1 + c)zik − cZ̄k)

2

)

+ (1− q)
(

v(1− e−r∆)((1 + c)zik − cZ̄k)
)

]].

Collecting terms,

V (z, Z) =
(

qβ0 + (1− q)[
ca

b
+ v(1− e−r∆)(1 + c)]

)

E[
∞
∑

k=0

e−r∆kzik]

+

(

qβ1 + (1− q)[
c2

b
+ 2

γ

r
(1− e−r∆)(1 + c)c]

)

E[

∞
∑

k=0

e−r∆kzikZ̄k]

− γ

r
(1− e−r∆)(1− q)(1 + c)2E[

∞
∑

k=0

e−r∆kz2ik]

+ ǫ(Z).

Plugging in definitions above, it follows that

α1 = S2

(

qβ0 + (1− q)[
ca

b
+ v(1− e−r∆)(1 + c)]

)

α3 = −γ

r
(1− e−r∆)(1− q)(1 + c)2S4

α5 = S2

(

qβ1 + (1− q)[
c2

b
+ 2

γ

r
(1− e−r∆)(1 + c)c]

)

− γ

r
(1− e−r∆)(1− q)(1 + c)2(2(S2 − S4)).

Recalling the expressions for β0, S2, the α1 equation implies
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β0 = v(1− e−r∆) + e−r∆α1

= v(1− e−r∆) +
e−r∆

1− e−r∆(1− q)(1 + c)

(

qβ0 + (1− q)[
ca

b
+ v(1− e−r∆)(1 + c)]

)

,

so, conjecturing and later verifying that 1− e−r∆(1− q)(1 + c)− qe−r∆ 6= 0,

β0 =

(

1− e−r∆(1− q)(1 + c)

1− e−r∆(1− q)(1 + c)− qe−r∆

)(

v(1− e−r∆) +
e−r∆(1− q)

1− e−r∆(1− q)(1 + c)
[
ca

b
+ v(1− e−r∆)(1 + c)]

)

.

A similar calculation shows that

β1 = e−r∆S2qβ1 + e−r∆S2

(

(1− q)[
c2

b
+ 2

γ

r
(1− e−r∆)(1 + c)c]

)

− e−r∆γ

r
(1− e−r∆)(1− q)(1 + c)2(2(S2 − S4)) + 2(e−r∆α3 −

γ

r
(1− e−r∆)).

and thus

β1 =

(

1− e−r∆(1− q)(1 + c)

1− e−r∆(1− q)(1 + c)− qe−r∆

)

× [e−r∆S2

(

(1− q)[
c2

b
+ 2

γ

r
(1− e−r∆)(1 + c)c]

)

− e−r∆γ

r
(1− e−r∆)(1− q)(1 + c)2(2(S2 − S4)) + 2(e−r∆α3 −

γ

r
(1− e−r∆))].

Putting this all together, the continuation value for trader i in a symmetric equilibrium,
immediately after an auction or mechanism is run, is

V +(z, Z) = u(Z)+
(

−γ

r
(1− e−r∆)(1− q)(1 + c)2S4e

−r∆ − γ

r
(1− e−r∆)

)

(z−Z̄)2+(β0+β1Z̄)(z−Z̄).

Plugging in the definition of S4, this simplifies slightly to

V +(z, Z) = u(Z) +
−γ

r
(1− e−r∆)

1− e−r∆(1− q)(1 + c)2
(z − Z̄)2 + (β0 + β1Z̄)(z − Z̄).

Trader i can choose any quantity x to purchase a price

Φ(x) =
1

−b(n− 1)
((n− 1)a+ c(Z − z) + x) .

With observable Z, their order x is irrelevant to their payoff and continuation in the
event of a mechanism. They thus maximize
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−x
1

−b(n − 1)
((n− 1)a+ c(Z − z) + x) + V +(z + x, Z)

Differentiate with respect to x:

−Φ(x) +
x

b(n− 1)
+ (β0 + β1Z̄)−

2γ
r
(1− e−r∆)

1− e−r∆(1− q)(1 + c)2
(z + x− Z̄),

and this must equal 0 with Φ = φ, Z̄ = −a−bφ

c
, and x = a + bφ + cz. The second order

condition is met if and only if b < 0. This also implies x = c(z − Z̄), so

(z + x− Z̄) = (1 + c)z + (1 + c)
a+ bφ

c
.

Plugging this in and gathering coefficients on φ, z, 1,

0 = −1 +
1

n− 1
− bβ1

c
−

2γ
r
(1− e−r∆)

1− e−r∆(1− q)(1 + c)2
(1 + c)

b

c

0 =
c

b(n− 1)
−

2γ
r
(1− e−r∆)

1− e−r∆(1− q)(1 + c)2
(1 + c)

0 =
a

b(n− 1)
+ (β0 −

a

c
β1)−

2γ
r
(1− e−r∆)

1− e−r∆(1− q)(1 + c)2
(1 + c)

a

c
.

We seek a, b, c, β1, β0 such that these three equations and the two equations defining β0, β1

all hold. Let ω be the larger root of

e−r∆ω2 + (n− 1)(1− e−r∆)ω − 1 = 0,

so

ω =
−(n− 1)(1− e−r∆) +

√

(n− 1)2(1− e−r∆)2 + 4e−r∆

2e−r∆
.

Then in Duffie and Zhu, when q = 0, we can set a = rv
2γ
(1 − ω), b = − r

2γ
(1 − ω), and

c = −(1 − ω), and see that

(1 + c)(1− e−r∆)

1− e−r∆(1 + c)2
=

1−e−r∆ω2

n−1

1− e−r∆ω2
=

1

n− 1
.

It follows the above system holds with β0 = v, β1 =
−2γ
r
. Now, let ω̂ be the larger root of

e−r∆(1− q)ω̂2 + (n− 1)(1− e−r∆)ω̂ − 1 = 0,

so

ω̂ =
−(n− 1)(1− e−r∆) +

√

(n− 1)2(1− e−r∆)2 + 4(1− q)e−r∆

2(1− q)e−r∆
.
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This implies that, letting a, b, c be as before but replacing ω with ω̂,

(1 + c)(1− e−r∆)

1− e−r∆(1− q)(1 + c)2
=

1−e−r∆(1−q)ω̂2

n−1

1− e−r∆(1− q)ω̂2
=

1

n− 1
.

It is straightforward to show that a, b, c defined with ω̂, and β0 = v, β1 = −2γ
r

once again
solve the above system. We now must verify that they satisfy the definitions of β0, β1. Note
that under the conjectured values,

qβ0 + (1− q)[
ca

b
+ v(1− e−r∆)(1 + c)] = v

(

q + (1− q)[−(1 + c) + 1 + (1− e−r∆)(1 + c)]
)

= v
(

1− e−r∆(1 + c)(1− q)
)

,

from which it can be seen that β0 = v is consistent with the earlier system. We noted above
that

(

−γ

r
(1− e−r∆)(1− q)(1 + c)2S4e

−r∆ − γ

r
(1− e−r∆)

)

=
−γ

r
(1− e−r∆)

1− e−r∆(1− q)(1 + c)2
.

Plugging this into the definition of β1, we have

β1 =

(

1− e−r∆(1− q)(1 + c)

1− e−r∆(1− q)(1 + c)− qe−r∆

)

× [e−r∆S2

(

(1− q)[
c2

b
+ 2

γ

r
(1− e−r∆)(1 + c)c]

)

− e−r∆γ

r
(1− e−r∆)(1− q)(1 + c)2(2(S2 − S4)) + 2

−γ

r
(1− e−r∆)

1− e−r∆(1− q)(1 + c)2
].

Rearranging, we see that

e−r∆γ

r
(1−e−r∆)(1−q)(1+c)2(2S4)+2

−γ

r
(1− e−r∆)

1− e−r∆(1− q)(1 + c)2
= 2(1−e−r∆)

γ

r
[e−r∆(1−q)(1+c)2S4−S4],

where e−r∆(1 − q)(1 + c)2S4 − S4 = −1. Pulling together S2 terms and noting (1 + c)c −
(1 + c)2 = −(1 + c), we have

β1 =

(

1− e−r∆(1− q)(1 + c)

1− e−r∆(1− q)(1 + c)− qe−r∆

)

× [e−r∆S2

(

(1− q)[
c2

b
− 2

γ

r
(1− e−r∆)(1 + c)]

)

− 2(1− e−r∆)
γ

r
].

Multiplying and dividing the last term by S2, we arrive at
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β1 =

(

1− e−r∆(1− q)(1 + c)

1− e−r∆(1− q)(1 + c)− qe−r∆

)

× [e−r∆S2

(

(1− q)
c2

b
− 2

γ

r
(1− e−r∆)er∆

)

],

and applying the definition of S2,

β1 =
e−r∆

(

(1− q) c
2

b
− 2γ

r
(1− e−r∆)er∆

)

1− e−r∆(1− q)(1 + c)− qe−r∆
.

Finally, plug in the conjectured a, b, c, so that c2

b
= (2γ/r)c, and rearrange to find

β1 = −2
γ

r

e−r∆
(

−(1 − q)c+ (1− e−r∆)er∆
)

1− e−r∆(1− q)(1 + c)− qe−r∆
= −2

γ

r
.

Thus the conjectured equilibrium is an equilibrium (filling in the implied αi
0, α2, α4). Finally,

note that

1− ω̂

∆
=

(n− 1)(1− e−r∆) + 2(1− q)e−r∆ −
√

(n− 1)2(1− e−r∆)2 + 4(1− q)e−r∆

2(1− q)e−r∆∆
.

Suppose that q = λ∆, so this becomes

1− ω̂

∆
=

(n− 1)(1− e−r∆) + 2(1− λ∆)e−r∆ −
√

(n− 1)2(1− e−r∆)2 + 4(1− λ∆)e−r∆

2(1− λ∆)e−r∆∆
.

Multiply the denominator and numerator by er∆ and take derivatives of the numerator and
denominator:

(n− 1)(er∆ − 1) + 2(1− λ∆)−
√

(n− 1)2(1− er∆)2 + 4(1− λ∆)er∆

2(1− λ∆)∆
.

[2(1− 2λ∆)]−1
(

(n− 1)(rer∆)− 2λ
)

−.5

(

(n− 1)2(1− er∆)2 + 4(1− λ∆)er∆
)−.5 (−2rer∆(n− 1)2(1− er∆) + 4r(1− λ∆)er∆ − 4λer∆

)

2(1− 2λ∆)
.

Let ∆ → 0:

1

2
((n− 1)r − 2λ)− .5

(4)−.5 (4r − 4λ)

2
=

(n− 2)r − λ

2
.

We thus see that
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lim
∆→0

−(1− ω̂)

∆
=

−(n− 2)r + λ

2

which is the instantaneous demand in the continuous time model. It is immediate that
a, b converge to their corresponding limits, and since the strategies converge so too must the
continuation values, for properly defined shocks.

G.2 Unobserved Z

Let the transfer T̂ i be defined exactly as in the continuous time model. As in the continuous
time proof, in an equilibrium with truthtelling and affine δ, the transfers take the form

R0 +R1Zk +R2Z
2
k +R3Zkzik +R4zik.

The value function is thus linear-quadratic, so just as in the previous section, the equilibrium
value function immediately after an auction or mechanism V +(z, Z) is linear quadratic in z, Z
and thus can be rewritten

V +(z, Z) = υ0 + υ1z + υ2Z̄ + υ3z
2 + υ4Z̄

2 + υ5zZ̄,

for constants υ0 − υ5. Then, following the steps of section D.4, maximizing

V +(z + Y i((ẑi, ẑ−i)), Z) + T̂ i((ẑi, ẑ−i);φ)

is equivalent to maximizing

E(φ, Z, zi, ẑi) ≡ (υ1 + υ5Z̄)(
Z − zi

n
− n− 1

n
ẑi) + υ3(

Z − zi

n
− n− 1

n
ẑi)2

+ 2υ3z
i(
Z − zi

n
− n− 1

n
ẑi) + κ0(−nδ(φ) + Z − zi + ẑi)2 + φ(ẑi − δ(φ)) +

φ2

4κ0n2
,

Following the exact same steps as in the proof of proposition 5, we can show that Eφ = z − Z̄

when evaluated at the equilibrium φ and ẑi = zi, for the δ(φ) = −â − b̂φ consistent with
equilibrium. Also, the equilibrium transfers must equal

(υ1 + (υ5 + 2υ3)Z̄)(z
i − Z̄),

so it is straightforward to show the formulas for β0, β1 from the previous section apply again
(for possibly different (a, b, c)).

Returning to the discrete time first order condition, the argument to be maximized when
trader i submits an order x and report ẑi is now

(1− q)

(

−x
1

−b(n − 1)
((n− 1)a+ c(Z − z) + x) + V +(z + x, Z)

)

+ qE(φ, Z, zi, ẑi)

Taking a derivative with respect to x, setting equal to 0, and using the result that Eφ = z−Z̄
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at the equilibrium φ, ẑ ,

(1−q)

(

−φ +
x

b(n− 1)
+ (β0 + β1Z̄)−

2γ
r
(1− e−r∆)

1− e−r∆(1− q)(1 + c)2
(z + x− Z̄)

)

− q

b(n − 1)
(z−Z̄) = 0.

Plug in x = a + bφ + cz, Z̄ = −a−bφ

c
, and x = a + bφ + cz. The second order condition is

met if and only if b < 0. This also implies x = c(z − Z̄), so

(z + x− Z̄) = (1 + c)z + (1 + c)
a+ bφ

c
.

The above can thus be rewritten

(1− q)

(

−φ+
a+ bφ + cz

b(n− 1)
+ (β0 + β1

−a− bφ

c
)−

2γ
r
(1− e−r∆)

1− e−r∆(1− q)(1 + c)2
((1 + c)z + (1 + c)

a + bφ

c
)

)

− q

b(n− 1)
(z +

a+ bφ

c
) = 0.

Gathering terms on φ, z, 1:

0 = (1− q)

(

−1 +
1

n− 1
− bβ1

c
−

2γ
r
(1− e−r∆)

1− e−r∆(1− q)(1 + c)2
(1 + c)

b

c

)

− q

c(n− 1)

0 = (1− q)

(

c

b(n− 1)
−

2γ
r
(1− e−r∆)

1− e−r∆(1− q)(1 + c)2
(1 + c)

)

− q

b(n− 1)

0 = (1− q)

(

a

b(n− 1)
+ (β0 −

a

c
β1)−

2γ
r
(1− e−r∆)

1− e−r∆(1− q)(1 + c)2
(1 + c)

a

c

)

− qa

bc(n− 1)
.

We seek a, b, c, β1, β0 such that these three equations and the two equations defining β0, β1

all hold. Conjecture that for some ω̃ ∈ (0, 1), there is an equilibrium with a = rv
2γ
(1 − ω̃),

b = − r
2γ
(1− ω̃), and c = −(1− ω̃). Starting with the coefficients on z, this means we need

0 = (1− q)

(

2γ

r(n− 1)
−

2γ
r
(1− e−r∆)

1− e−r∆(1− q)ω̃2
ω̃

)

+
2γq

r(n− 1)(1− ω̃)
.

Multiply through by r
2γ
,

0 = (1− q)

(

1

(n− 1)
− (1− e−r∆)ω̃

1− e−r∆(1− q)ω̃2

)

+
q

(n− 1)(1− ω̃)
. (98)

Suppose there exists a ω̃ ∈ (0, 1) such that this holds. Straightforward calculation shows
that plugging in β0 = v, β1 =

−2γ
r
, the coefficients on φ, 1 above all equal 0.

Following the steps in the last section, in any equilibrium, we have

93



β1 =
e−r∆

(

(1− q) c
2

b
− 2γ

r
(1− e−r∆)er∆

)

1− e−r∆(1− q)(1 + c)− qe−r∆
.

Plugging in the conjectured a, b, c,

β1 =
e−r∆

(

−2γ
r
(1− q)(1− ω̃)− 2γ

r
(1− e−r∆)er∆

)

1− e−r∆(1− q)ω̃ − qe−r∆
.

For β1 = −2γ
r
to be consistent, it must be that

1− e−r∆(1− q)ω̃ − qe−r∆ = e−r∆
(

(1− q)(1− ω̃) + (1− e−r∆)er∆
)

,

but this holds for any ω̃. Likewise, conjecturing that β0 = v, at the conjectured a, b, c,

qβ0 + (1− q)[
ca

b
+ v(1− e−r∆)(1 + c)] = qv + (1− q)[v(1− ω̃) + v(1− e−r∆)ω̃]

= v
(

1− (1− q)ω̃e−r∆
)

and thus β0 = v is consistent with

β0 = v(1− e−r∆) +
e−r∆

(

qβ0 + (1− q)[ ca
b
+ v(1− e−r∆)(1 + c)]

)

1− e−r∆(1− q)(1 + c)
.

We have thus shown that, as long as ω̃ satisfies (98), the conjectured a, b, c satisfy the first
order condition and comprise a subgame perfect equilibrium. In unreported numerical exercises,
we find for very small ∆ there exists a root ω̃ such that −(1− ω̃)/∆ is equal to the order flow
coefficient c from proposition 5, up to machine precision error.
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