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Source of identifying variation 
One key advantage of our empirical strategy is that it estimates the impact of pollution on health 

over a broad geographic area without requiring a detailed “case study” of each individual location. 

However, this naturally raises questions regarding the ultimate source of our identifying variation. In this 

section, we illustrate the variation in pollution that drives our results and explicitly test for concerns that 

may arise when using variation in pollution without specifying the pollution source. 

To illustrate the relationship between wind and pollution for each of our monitor groups, we first 

estimate the following regression separately for each of the 100 monitor groups described in the main text: 
 

PM2.5𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �𝛽𝛽𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐10𝑏𝑏
34

𝑏𝑏=0

+ 𝑓𝑓�𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� 

+𝛼𝛼𝑐𝑐 + 𝛼𝛼𝑠𝑠𝑠𝑠 + 𝛼𝛼𝑚𝑚𝑚𝑚 + 𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . 
 

(A1) 

 

The variables 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 correspond to temperature bins, while 𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑊𝑊𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 correspond to 

precipitation and wind speed deciles, respectively, following the definitions in equations (1) and (2) of the 

main text. The function 𝑓𝑓() represents all their possible interactions. Likewise, the fixed effects follow 

equations (1) and (2). Equation (A1) differs from the first stage of the instrumental variable regressions 

estimated in the main text in three minor ways: (1) to demonstrate the source of our variation in more detail, 

it employs 10-degree bins for 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 instead of 90-degree bins; (2) because we are interested in the 

relationship between daily wind direction and daily fine particulate matter, it does not include any leads or 

lags (which we use in the main paper because our outcome variable is 3-day mortality); and (3) it does not 

employ county weights. Including more wind-direction bins in our main analysis is impractical due to the 

large number of additional regressors it generates, though we do perform a robustness check to demonstrate 

the invariance of our results to more wind direction bins in Table 9.  

The large number of control variables included in equation (A1) causes estimation to be impossible 

for six of the monitor groups (see notes in Appendix Figure A1). This does not occur in the instrumental 

variable regressions we estimate in the main text because the first stage in those regressions is estimated 

jointly, not separately for each monitor group. (This forces the estimated coefficients on the control 

variables to be constant across all groups, which increases statistical power.) While one could estimate a 

version of equation A1 jointly for all monitor groups, doing so would require us to jointly estimate 3500 

coefficients (35 wind direction bins for 100 monitor groups), which is computationally infeasible given the 

size of our data. Here, our goal is to demonstrate the reasonableness and likely validity of our wind direction 

instrument beyond the robustness checks we perform in the paper, not to show the exact first stage. 
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The estimates 𝛽̂𝛽𝑏𝑏 are plotted as solid black lines in Appendix Figure A1, along with their 

corresponding 95 percent confidence intervals. The San Francisco Bay Area in California (“Santa Clara, 

CA”) and the Boston, MA area (“Middlesex, MA”) are reproduced in Figures 2 and 3 in the main text. 

Our empirical approach raises the concern that a small number of monitors located close to local 

pollution sources may be driving our first-stage results, while monitors located far from those sources may 

exhibit no significant relationship between wind direction and pollution. If this is the case, then our 

estimates of the effect of pollution will be driven by local sources near pollution monitors, resulting in 

potentially significant measurement error. Because we do not observe pollution sources, we cannot test for 

this directly. However, we can provide indirect evidence by testing for the presence of outliers and by 

investigating whether the patterns from our first stage are similar for monitor groups located close together. 

To that end, we conduct two tests. 

In the first test, we split each of our 100 monitor groups into two random subgroups. We then 

estimate equation (A1) separately for each of these 200 subgroups and compare the subgroup estimates to 

each other and to the group average. Intuitively, if a handful of monitors located near local sources is driving 

our first stage, then these estimates should differ significantly from each other. By contrast, if the estimated 

patterns are driven by non-local transport, then the coefficients should be similar. As Figure A1 shows, for 

the vast majority of monitor groups, the coefficients for each of the two subgroups (dashed red lines) are 

qualitatively and quantitatively similar to each other and to the overall group average (solid black line), 

suggesting that our first stage is not driven by locally-produced pollution measured by a handful of nearby 

monitors. 

In the second test, we first classify monitors into 50 groups instead of 100, using the same 

classification algorithm (kmeans).1 We then match each monitor group from the 50-group classification to 

all overlapping groups from the 100-group classification. That is, for each of the 50 groups, we find all 

monitor groups in the 100-group set that have at least one monitor in common. Each of the 50 groups 

overlaps with 3 to 7 groups from the 100-group classification. This is a much more stringent test than the 

first one because there may be little overlap between monitor groups from these two classifications. 

Nevertheless, we expect to see similar patterns in the first-stage estimates because these overlapping groups 

are located close to each other geographically, and air pollution can be carried by the wind for many 

hundreds of miles. 

                                                           
 
1 We have also replicated all of our results with 50 monitor groups (available upon request). All our estimates are very 
similar, always falling within the confidence intervals of the estimates with 100 monitor groups. Mortality results with 
50 monitor groups for our main sample are reported in column (2) of Table 9 in the main text. 
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Figure A2 shows the estimated wind angle-pollution relationship in each of the 50 groups (solid 

black line) and the corresponding relationships in the overlapping groups from the 100-group classification 

(dashed red lines). Intuitively, if the estimated patterns are driven by non-local transport, then the estimated 

coefficients should be qualitatively and quantitatively similar. Indeed, this is what we see in the vast 

majority of cases. 

 

Medicare sample and mortality data 
The baseline sample used in our analysis consists of all Medicare beneficiaries aged 65-100 and is 

derived from 100% Medicare enrollment information files for years 1999-2011.2 These annual files include 

an observation for each beneficiary enrolled in Medicare for at least one day in that calendar year, whether 

enrolled in Traditional Medicare (fee-for-service) or Medicare Advantage. The enrollment files report a 

variety of demographic and enrollment variables, including unique beneficiary identifiers that can be used 

to link individuals over time; monthly indicators for Medicare eligibility; state, county, and ZIP code of 

residence based on the mailing address for official correspondence; and exact date of birth, date of death, 

and gender. 

The vast majority of elderly living in the United States are enrolled in Medicare. The Left Panel of 

Appendix Figure A3 compares the size of our baseline Medicare sample to Census estimates of the U.S. 

population age 65 and over. To aid comparison, we use Census estimates of the resident population on July 

1 each year and limit the Medicare sample to beneficiaries who reside in the 50 states and the District of 

Columbia and who turned 65 before July 1. Over the period 1999-2011, the Census estimates an average 

of 37.3 million elderly individuals each year, compared to 36.2 million elderly in Medicare. Thus, the 

Medicare sample covers over 97% of elderly living in the U.S., a share which remains roughly constant 

over the sample period. 

The mortality variables used in our analysis are based on dates of death recorded in the Medicare 

enrollment files. Medicare's death data come primarily from the Social Security Administration but are 

augmented based on reviews triggered by hospitalization claims indicating patient death. The annual 

mortality rates in the Medicare data align closely with mortality rates based on National Vital Statistics 

death records and Census population estimates, as shown in the Right Panel of Appendix Figure A3. While 

all recorded deaths in the Medicare data are validated, some death dates in the data are not validated, in 

which case they are assigned the last date in the month of death. Because much of our analysis is performed 

                                                           
 
2 The Research Data Assistance Center (ResDAC) provides a helpful overview of the Medicare enrollment information 
files at http://www.resdac.org/training/workshops/intro-medicare/media/3. 

http://www.resdac.org/training/workshops/intro-medicare/media/3
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at the daily level, we drop individuals who die at any point in the year and who do not have a validated 

death date flag. This restriction affects less than 2% of the deaths in our sample, and the share of deaths 

with unvalidated dates diminishes over time (see Appendix Figure A3). 

Estimating counterfactual life expectancy 
We model counterfactual life expectancies for Medicare beneficiaries by estimating a semi-

parametric Cox proportional hazards model.3 This model assumes that the hazard rate of death for 

individual 𝑖𝑖 can be factored into two separate functions: 

ℎ(𝑡𝑡𝑖𝑖|𝑥𝑥𝑖𝑖,𝛽𝛽) = ℎ0(𝑡𝑡𝑖𝑖)exp [𝑥𝑥𝑖𝑖′𝛽𝛽] 

The hazard rate at time 𝑡𝑡𝑖𝑖, ℎ(𝑡𝑡𝑖𝑖|𝑥𝑥𝑖𝑖,𝛽𝛽), depends on the baseline hazard rate, ℎ0(𝑡𝑡𝑖𝑖), and on a vector of 

individual characteristics, 𝑥𝑥𝑖𝑖. The parameter vector 𝛽𝛽 is estimated by maximizing the log partial likelihood 

function: 
 

ln 𝐿𝐿(𝛽𝛽) = �𝛿𝛿𝑖𝑖 �𝑥𝑥𝑖𝑖′𝛽𝛽 − ln � exp [𝑥𝑥𝑗𝑗′𝛽𝛽]
𝑗𝑗∈𝑅𝑅(𝑡𝑡𝑖𝑖)

�
𝑁𝑁

𝑖𝑖=1

 

 

(A2) 

 

where the indicator variable 𝛿𝛿𝑖𝑖 is equal to one for individuals whose deaths we observe (uncensored 

observations) and equal to zero otherwise. The risk set 𝑅𝑅(𝑡𝑡𝑘𝑘) = {𝑙𝑙: 𝑡𝑡𝑙𝑙 ≥ 𝑡𝑡𝑘𝑘} is the set of observations at risk 

of death at time 𝑡𝑡𝑘𝑘 and consists of all individuals who are alive at that time. Thus, individuals whose deaths 

we do not observe (censored observations) affect the partial likelihood function only through the terms 

indexed by 𝑗𝑗 in equation (A2). 

Once 𝛽̂𝛽 has been obtained by maximizing the log partial likelihood, we nonparametrically estimate 

the baseline hazard function following Breslow (1972):  

 
ℎ�0(𝑡𝑡𝑖𝑖) =

𝑑𝑑𝑡𝑡𝑖𝑖
∑ exp [𝑥𝑥𝑗𝑗′𝛽̂𝛽]𝑗𝑗∈𝑅𝑅(𝑡𝑡𝑖𝑖)

 

 

(A3) 

 

The numerator, 𝑑𝑑𝑡𝑡𝑖𝑖, is the number of deaths that occur at 𝑡𝑡𝑖𝑖. The corresponding baseline survival function 

is calculated as  

𝑆̂𝑆0(𝑡𝑡𝑖𝑖) = exp[−𝐻𝐻�0(𝑡𝑡𝑖𝑖)] 

where 𝐻𝐻�0(𝑡𝑡𝑖𝑖) is the cumulative hazard function, calculated as 𝐻𝐻�0(𝑡𝑡𝑖𝑖) = ∑ ℎ�0(𝜏𝜏)𝑡𝑡𝑖𝑖
𝜏𝜏=1 . The individual-specific 

survival function, which allows us to calculate life expectancy, can then be estimated as: 

                                                           
 
3 We have also estimated fully parametric models that assume survival rates are governed by either the Gompertz or 
Weibull distributions. Those results are very similar.  
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𝑆̂𝑆�𝑡𝑡𝑖𝑖�𝑥𝑥𝑖𝑖, 𝛽̂𝛽� = 𝑆̂𝑆0(𝑡𝑡𝑖𝑖)exp[𝑥𝑥𝑖𝑖
′𝛽𝛽�] 

In practice, the nonparametric estimate of the baseline hazard function is limited to the ten years of Medicare 

data we have available for this survival analysis. We extrapolate the baseline hazard function to future years 

by assuming it follows a log-linear form. As shown in Appendix Figure A4, this appears to be a very 

reasonable assumption.  

We estimate the Cox proportional hazards model (A2) using data from the 2002 cohort of Medicare 

beneficiaries, which we observe beginning on January 1st, 2002. We observe all deaths that occur among 

this cohort on or before December 31, 2011. During this 10-year time period, 50 percent of our sample dies; 

the remaining deaths are censored.4 To ensure that we have accurate measures of beneficiaries’ chronic 

conditions, we limit the sample to Medicare beneficiaries who as of January 1, 2002 had been continuously 

enrolled in fee-for-service Medicare for at least two years. For computational ease, we further limit the 

analysis to a random 5 percent sample of these beneficiaries. The final estimation sample consists of 

1,211,585 individuals.  

 The life-years lost analysis presented in the main text varies the set of individual characteristics 

included in the vector 𝑥𝑥𝑖𝑖 in order to understand how they affect the results. As described in the text, we 

estimate the survival model several times, using increasingly large sets of characteristics. Column (2) of 

Table 4 includes no characteristics; column (3) includes age and sex, and column (4) includes age, sex, and 

indicators for 27 different chronic conditions. As we describe in detail below, column (5) utilizes a machine 

learning algorithm to optimally incorporate information from 1,062 variables. Including so many control 

variables creates two challenges. First, some variables may be significant predictors of survival for the 2002 

cohort just by chance, even if they are not good predictors of survival in general. This may cause bias due 

to overfitting (Harrell et al. 1996). Second, computational limitations prevent us from including a large set 

of regressors when performing conventional maximum likelihood estimation on a large sample using 

standard numerical procedures. 

 Recent advances in machine learning techniques help us overcome these challenges and use all 

1,062 variables when predicting individual-level life expectancies (Athey and Imbens 2016). One popular 

method is the Least Absolute Shrinkage and Selection Operator (LASSO) estimator (Tibshirani 1997).5 

LASSO can be implemented by maximizing a penalized version of objective function (A2): 

                                                           
 
4 Although earlier cohorts are observable for a longer period of time, we do not use them because the Medicare 
variables denoting the presence of pre-existing chronic conditions, which are strong predictors of survival, are 
nonexistent or unreliable in earlier years. 
5 We also used other machine learning techniques like ridge regression and elastic net. The results are very similar. 
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ln 𝐿𝐿(𝛽𝛽) = ��𝛿𝛿𝑖𝑖 �𝑥𝑥𝑖𝑖′𝛽𝛽 − ln � exp [𝑥𝑥𝑗𝑗′𝛽𝛽]

𝑗𝑗∈𝑅𝑅(𝑡𝑡𝑖𝑖)

�
𝑁𝑁

𝑖𝑖=1

� − 𝜆𝜆��𝛽𝛽𝑖𝑖�
𝑘𝑘

𝑖𝑖=1
 

 

(A4) 

 

where |𝛽𝛽𝑖𝑖| is the absolute value of 𝛽𝛽𝑖𝑖 (where 𝛽𝛽𝑖𝑖 is element 𝑖𝑖 of the vector 𝛽𝛽)  and 𝑘𝑘 is the number of included 

regressors. We select the optimal penalty parameter λ using 5-fold cross validation.6 We include the 

following 1,062 regressors (not including omitted categories) when estimating this model of life 

expectancy:7 

1. Age in days as of January 1, 2002 

2. Indicator variables for sex and for 7 different races 

3. Indicator variables for the presence of the following 27 different chronic conditions as of December 

31, 2001: acute myocardial infarction, Alzheimer’s disease, senile dementia, atrial fibrillation, 

cataracts, chronic kidney disease, chronic obstructive pulmonary disease (COPD), heart failure, 

diabetes, glaucoma, hip/pelvic fracture, ischemic heart disease, depression, osteoporosis, 

rheumatoid arthritis, stroke, breast cancer, colorectal cancer, prostate cancer, lung cancer, 

endometrial cancer, anemia, asthma, hyperlipidemia, benign prostatic hyperplasia, hypertension, 

and hypothyroidism 

a. Indicator variables for all pairwise interactions of these 27 chronic conditions 

4. Indicator variables for the interaction of 27 chronic conditions with 7 race indicators 

5. Indicator variables for the interaction of 27 chronic conditions with sex  

6. Indicator variables for 12 quantiles (10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9) of the 

beneficiary’s total prior year spending (i.e., spending that excludes payments made by Medicare) 

a. Indicator variables for the same 12 quantiles for each of the following 17 different 

categories of total prior year medical spending: hospice, home health care, hospital 

outpatient, acute inpatient, other inpatient, skilled nursing facility, ambulatory surgery 

center, Part B drugs, evaluation and management, anesthesia, dialysis, other procedures, 

imaging, tests, durable medical equipment, other Part B carrier, Part B physician 

7. Indicator variables for various quantiles (listed in parentheses) of the 2001 total annual number of:  

a. Dialysis events (10, 30, 50, 70, 90) 

                                                           
 
6 See Simon et al. (2011) for a detailed discussion of the algorithm we employ to implement the Cox proportional 
hazards estimator with a LASSO penalty term. The efficiency of this algorithm allows us to estimate a survival model 
with both many regressors and a large number of observations. 
7 Variable names correspond to the descriptions given by ResDAC: http://www.resdac.org/cms-data/files/mbsf/data-
documentation  

http://www.resdac.org/cms-data/files/mbsf/data-documentation
http://www.resdac.org/cms-data/files/mbsf/data-documentation
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b. Home health visits, hospital outpatient emergency room visits (10, 30, 50, 70, 90, 95)  

c. Anesthesia events, hospital outpatient visits, other Part B carrier events, acute inpatient 

stays, durable medical equipment (10, 30, 50, 70, 90, 99) 

d. Part B drug events (10, 50, 70, 90, 99, 99.5) 

e. Other procedures events, evaluation and management events, imaging events, hospital 

outpatient emergency room visits, tests events, Part B physician events (10, 30, 50, 70, 90, 

99, 99.5) 

8. Fourth-order polynomials in each of 37 different variables that have been merged to the 

respondent’s 5-digit ZIP code of residence. All variables are standardized so that they follow a 

normal distribution with mean 0 and variance 1. These zipcode-level data are obtained from the 

2007-2011 and 2008-2012 American Community Surveys. The variables include data on the 

following categories (number of variables in parentheses if more than one): travel time to work (2), 

fraction below the poverty line (3), median household income, aggregate household income, 

aggregate household social security income, aggregate household retirement income, fraction in 

labor force, heating fuel sources (3), aggregate number of vehicles, median home value, fraction 

immigrant, gini index of household income, fraction with less than high school education, median 

year housing built, fraction on disability (2), fraction with hearing difficulties  (2), fractions with 

vision difficulty (2), fraction with cognitive difficulty (2), fraction with ambulatory difficulty (2), 

fraction with self-care difficulty (2), fraction with independent-living difficulty (2), fraction with 

any health coverage, (2)and fraction with private health coverage (2). 

The counterfactual life expectancy that forms the basis of the estimate in Column (5) of Table 4 is based 

on estimating (A4) when including the 1,062 regressors listed above.  

The dashed lines in Appendix Figure A5 show the distribution of estimated counterfactual life 

expectancies for the subsample of Medicare beneficiaries who were used to estimate our survival model. 

The range of the distribution is wider when the model includes all 1,062 predictors (the dashed black line) 

than when it includes only age and gender as predictors (the dashed red line). The model based on age and 

sex corresponds to a typical life table and consists of only 68 (= (100 − 67 + 1) × 2) values. The 

maximum and minimum values in this table correspond to life expectancies for a 67-year-old female and a 

100-year-old male, respectively. By contrast, the LASSO model generates a much larger set of predictions, 

some of which lie outside of the range of a basic life table. 

The solid lines in Appendix Figure A5 show how the distribution of predicted values changes when 

it is limited to the subset of beneficiaries who died during the 2002 calendar year. The distribution produced 

by the model that includes only age and sex—given by the solid red line—shifts to the left because these 
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decedents are older than the average Medicare beneficiary and thus have below-average life expectancies. 

The distribution for the LASSO model—given by the solid black line—shifts to the left even more. This 

indicates that beneficiaries who died within one year of January 1, 2002 were not only older than the average 

beneficiary in that year, but also they were less healthy than average, as captured by variables like prior 

medical spending and prior chronic conditions. Accounting for these additional variables reduces (on 

average) the predicted life expectancies for these Medicare beneficiaries. This demonstrates that the Cox 

LASSO model that incorporates data from many variables generates predictions that are more accurate than 

a simple Cox model that accounts only for age and sex. 

To further validate these estimates, we perform a similar exercise that incorporates Medicare data 

from individuals not included in our estimation sample. We first use the estimates from our model to predict 

life expectancy for Medicare beneficiaries as of January 1 of each calendar year. For each of these years, 

we then calculate the average life expectancy for all fee-for-service beneficiaries who die during that year 

(“decedents”). We focus on this group because these decedents form the basis of the life-years lost estimates 

reported in Table 4.  

Appendix Figure A6 displays the results of this exercise. The solid green line, which serves as a 

baseline, displays our estimate of the unconditional life expectancy (11.6 years) for all Medicare 

beneficiaries. The solid red line displays the average life expectancy among decedents, as predicted by a 

Cox proportional hazards model that conditions on age and gender. Because the typical decedent is older 

than the average beneficiary, the predictions from this model are about 2.5 years lower than the baseline. 

This is clearly a more accurate prediction, since these decedents by definition died within one year of when 

their life expectancy was estimated. For the sake of comparison, we also include predictions based on a 

period life table published by the Social Security Administration. Because that life table also conditions on 

age and sex, its predictions are nearly identical to those of the Cox model. Finally, the solid black line 

displays estimates based on the LASSO estimation of the Cox proportional hazards model with 1,062 

regressors. This reduces the prediction by yet another 2.5 years. The estimates decline slightly over time, 

which likely reflects the improvement in the recording of chronic conditions in later years.8 

  

                                                           
 
8 Medicare data on chronic conditions become increasingly incomplete in earlier years beginning in 2006. Because 
beneficiaries in these earlier years are less likely to have their chronic conditions recorded in the data, their estimated 
life expectancy is higher than beneficiaries in later years, who are more likely to have chronic conditions. 
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Appendix Figure A1. Relationship between wind direction and PM 2.5 concentrations for each of 
the 100 monitor groups employed in the main text. Grey area represents the 95 percent confidence 
interval for the overall estimate (solid black line). Dashed red lines display estimates for two 
subgroups to which counties in each group were randomly assigned. Graph titles report the most 
populous county in the group. Graphs are ordered alphabetically by state and county. Six pollution 
monitor groups with fewer than 1,000 PM 2.5 readings are not shown. Two subgroups are omitted 
due to insufficient number of observations (one in the Sangamon, IL group and one in the Potter, TX 
group). 
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Appendix Figure A2. Relationship between wind direction and PM 2.5 concentrations for each 
monitor group in the 50-monitor group classification and for corresponding monitor groups in 
the 100-monitor group classification. Grey area represents the 95 percent confidence interval 
for the 50-monitor-group estimate (solid black line). Dashed red lines correspond to point 
estimates for all monitor groups in the 100-monitor-group classification that have at least one 
monitor in common with the group from the 50-monitor-group classification. Graph titles report 
the most populous county in the group. Graphs are ordered alphabetically by state and county. 
Three pollution monitor groups with fewer than 1,000 PM 2.5 readings are not shown. 
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Appendix Figure A3. Population and Mortality Among U.S. Elderly, 1999-2011.  

Left Panel: Census population estimates are derived from U.S. Census Bureau files. Estimates for 1999-2009 are intercensal estimates 
of the July 1 resident population age 65 and over; estimates for 2010-2011 are postcensal estimates of the July 1 resident population age 
65 and over. Medicare beneficiaries for a given calendar year include all individuals age 65-100 in the corresponding annual Medicare 
enrollment file, limited to those who turned 65 before July 1 of the year and have a ZIP code of residence located in the 50 states or the 
District of Columbia. 

Right Panel: National vital statistics mortality data come from the Compressed Mortality File (CMF), which is produced by the National 
Center for Health Statistics and is based on death certificates filed in the 50 states and the District of Columbia. To obtain vital statistics 
mortality rates, we divide total CMF deaths among the 65 and over population in a given year by the Census population estimates shown 
in the Left Panel. The dashed lines report annual mortality rates based on death dates recorded in the Medicare annual enrollment files. 
The figure reports both the total mortality rate in the Medicare sample, as well as the mortality rate among the analytical sample used in 
the paper which excludes individuals who have a validated death that year but do not have a validated death date flag. 
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Appendix Figure A4. Log of the baseline hazard rate for the Medicare 2002 cohort. The red points in the figure 
correspond to the log of the baseline hazard rate of mortality for the Medicare 2002 cohort, as estimated by equation 
(A3) when using age and gender as controls. The coefficients on age and gender were estimated using the Cox 
proportional hazards model (A2). The figure also displays a dotted line of best fit. 
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Appendix Figure A5. Kernel density plot of life expectancy estimates for Medicare beneficiaries alive on 
January 1, 2002. The dashed lines display the distributions of life expectancy for all Medicare beneficiaries alive on 
January 1, 2002. The solid lines limit the distribution to the subset of those beneficiaries who later died during the 
2002 calendar year. The red lines display estimates from a Cox proportional hazards model that includes only age and 
gender as regressors. The black lines display estimates generated by estimating model (A3) using LASSO with 1,062 
regressors.  
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Appendix Figure A6. Average ex ante life expectancy for Medicare fee-for-service beneficiaries who later die 
within one year, by year. Estimates for “Medicare FFS average” are produced by estimating (A1) with no covariates. 
Estimates for “Cox (age sex)” are produced by estimating (A1) using only age and gender as predictors. Estimates for 
“Cox (LASSO)” are produced by estimating (A3) with 1,062 included regressors. Estimates for “SSA (age sex)” are 
obtained from the 2011 period life table for the Social Security area population (source: 
https://www.ssa.gov/oact/STATS/table4c6.html, accessed August 7, 2015). 

  

https://www.ssa.gov/oact/STATS/table4c6.html
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Appendix Figure A7. Mortality effect of one-day increase in fine particulate matter (PM 2.5) over longer time 
periods. Dependent variable is the mortality rate per million beneficiaries over the number of days indicated on the 
x-axis. PM 2.5 is instrumented for using daily wind direction, as described in the main text. All regressions include 
county, month-by-year, and state-by-month fixed effects; two lags of the instrument; flexible controls for 
temperatures, precipitation, and wind speed; and the appropriate number of leads of these weather controls and 
instruments (number of days minus one). Estimates are weighted by the number of beneficiaries. 



APPENDIX TABLES

Table A1: Additional IV estimates of effect of PM 2.5
(1) (2) (3)

1-day mortality, 75+
year olds

3-day mortality, 75+
year olds

Same-day ER
admissions rate

PM 2.5 (µg/m3) 0.560*** 0.930*** 1.144***
(0.063) (0.111) (0.156)

Effect of 10 µg/m3 increase in PM 2.5, as percent of daily mean 2.734 4.544 1.924
F-statistic 248 248 237
Observations 1,600,846 1,600,846 1,518,549

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Table reports IV estimates of equation (1) from the main text. Standard errors
(in parentheses) clustered by county. Dependent variable is shown in the column heading. All regressions include county, month-by-year, and
state-by-month fixed effects, as well as flexible controls for temperatures, precipitation, and wind speed; two leads of the weather controls; and two
leads and lags of the instruments. Estimates are weighted by the relevant population.
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Table A2: IV estimates of effect of PM 2.5 on same-day mortality when controlling for other pollutants
(1) (2) (3) (4) (5)

Panel A: all beneficiaries

PM 2.5 (µg/m3) 0.266*** 0.224*** 0.239*** 0.268*** 0.209***
(0.042) (0.045) (0.073) (0.076) (0.073)

Carbon monoxide 0.007** 0.008** 0.006* 0.007**
(0.003) (0.004) (0.004) (0.003)

Nitrogen dioxide -0.041 -0.041 -0.105
(0.141) (0.135) (0.140)

Ozone -0.055 -0.052
(0.063) (0.061)

Sulfur dioxide 0.395**
(0.182)

F-statistic 85 22 15 14 14
Dep. var. mean 132 132 132 132 132
Observations 333,903 333,903 333,903 333,903 333,903

Panel B: fee-for-service beneficiaries

PM 2.5 (µg/m3) 0.367*** 0.380*** 0.385*** 0.466*** 0.397***
(0.062) (0.069) (0.118) (0.124) (0.118)

Carbon monoxide -0.002 -0.001 -0.004 -0.003
(0.004) (0.006) (0.006) (0.005)

Nitrogen dioxide -0.016 -0.035 -0.133
(0.222) (0.208) (0.225)

Ozone -0.136 -0.135
(0.092) (0.088)

Sulfur dioxide 0.524*
(0.273)

F-statistic 81 21 15 14 13
Dep. var. mean 156 156 156 156 156
Observations 293,973 293,973 293,973 293,973 293,973

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Standard errors (in parentheses) clustered by county. Table reports IV estimates of
equation (1) from the main text, with the addition of the endogenous variables carbon monoxide, sulfur dioxide, nitrogen dioxide, and/or ozone,
which are instrumented for using wind direction. Dependent variable is the 1-day mortality rate per million beneficiaries (Panel A) or per million
fee-for-service (FFS) beneficiaries (Panel B). The sample is restricted to county-days where readings for carbon monixide, ozone, sulfur dioxide,
nitrogen dioxide, and PM 2.5 are simultaneously available. All regressions include county, month-by-year, and state-by-month fixed effects; flexible
controls for temperatures, precipitation, and wind speed; two leads of the weather controls; and two leads and lags of the instruments. Estimates are
weighted by the number of Medicare beneficiaries in Panel A and by the number of FFS beneficiaries in Panel B.
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