Appendix to
Technology adoption under uncertainty

A.1 Conceptual model

This appendix includes the formal proof of Propositions 1 through 4 in the main text. We
start by characterizing agents’ decisions and types in a more formal way.

A.1.1 Expected Value of Take-Up

The expected net benefit of take-up (which appears in the take-up decision inequality, equa-
tion (1)) can be rewritten as

EF1|F0 IIlaX(R—FO—Fl, O) = PI(R—FQ—Fl > 0|F0)X [R — F() — EF1|F0(F1|R — F() — F1 > 0)} s

where Pr(R — Fy — Fy > 0|F}) indicates the type-specific (i.e., conditional on Fj) probability
of follow-through and R — Fy — Ep, g, (Fi|R — Fo — F} > 0) is the net benefit, conditional on
follow-through.

A.1.2 Adoption types
Under the distributional assumptions stated in the main text:
[ ] FO 1 F1

o [ takes one of two values: Iy = {fr, fu}, with fr < fu, and Ep g (F1) = g, (fr) fr+
g,(fu)fu, where g;(.) is the probability mass function of Fj

e [y is continuously distributed across agents with cumulative distribution function

Go(.),

we can classify agents in three follow-through types: non-adopters, contingent adopters and
always adopters.



Non-adopters Non-adopters are characterized by the condition on Fj,
R—F, < fL (1)

such that even when the realization of Fj is low (f), their net benefit of follow-through
is negative. The share of non-adopters is given by 1 — Gy(R — f1). Their probability of
follow-through is always 0 and so is their expected private benefit. Non-adopters take-up
only if c — A > 0, or if the subsidy exceeds the cost of take-up. Note that even when they
take-up (purchase the technology), they never follow-through.

Contingent adopters Contingent adopters are characterized by the condition
Ji<R—Fy < fu. (2)

Contingent adopters follow-through when the realization of F; is Fp, but not when the
realization is Fy. The share of contingent adopters is given by Go(R — f1) — Go(R — fu),
with expected private benefit given by

Epr max(R — Fy — F1,0)|R — Fo — Fy > 0] = g, (f1) (R — Fo — f1)

where g, (F}) is their probability of follow-through. The take-up decision of these agents is

characterized by condition Fy < R — f;, — _5;1*(;1 ;-

Always adopters Always adopters are characterized by the condition

fn < R—F,. (3)

Hence, they follow-through whether the draw of Fy is fy or fg: Pr(R— Fy— Fy > 0|Fp) = 1.
The share of always adopters is given by Go(R — fx), and their private benefit given by

]EFMFO [maX(R_FO_FbO)’R_FO_Fl >O] :R—Fo—E(Fl).

They take-up only if Fy < R — E(F;) — 4.

A.1.2.1 Selection and follow-through

Conditions (1), (2), and (3) determine thresholds over the support of Fj that delimit the
shares of always adopters, contingent adopters and never adopters for a given distribution
of Fy. Figure 1 illustrates these thresholds on the probability density function of Fy, g,(Fp).
Note that the bell shaped distribution for Fj shown in Figure 1 is not a necessary assumption
of the model, and is used only to visualize the shares of each agent type as the area under
the curve delimited horizontally by the thresholds in grey: R — fg and R — f.

The thresholds in black correspond to the take-up decision for each agent type. The
take-up threshold for contingent adopters, R — f; — %, is always to the right of the
threshold for contingent adopters provided that the subsidy, A, is less than or equal to
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the total cost of the technology, ¢. Hence, the bigger the subsidy, A, the bigger the share
who take- up, but follow-through only if F} = f. The take-up threshold for always adopters,

R—E(F)— , may be to the left or to the right of the threshold, R — fy, which defines the
group of always adopters. If < A < fg — E(F}), all always adopters will take-up. However,
if & A > fy —E(F)), a bigger sub81dy may increase take-up among always adopters.

In sum, the subsidy A affects follow-through rates conditional on take-up by determining
the shares of always adopters and contingent adopters that take up. When the subsidy is
small, such that A < ¢—0(fyg —E(F})), not all always adopters take-up. When the subsidy is
between ¢ —d(fiy —E(F})) and ¢ all always adopters take-up, but just a fraction of contingent
adopters take-up. For subsidies larger than ¢, all always adopters, all contingent adopters
and some non-adopters take-up.

Proposition 1  Follow-through conditional on take-up increases as a function of the total
(potentially subsidized) take-up cost.

Conditional adopters are the population of interest for understanding the relationship
between uncertainty and technology adoption: they constitute the only group whose follow-
through decision is affected by the shock realization. The share of conditional adopters who
take-up is given by

g1(f1) [Go (R = f1 = 55y) = Go(B = fu)| + Go (R = fu)
- (4)
Go (R fr— 5;1 fL))

if =4 < fy—E(F;) and is 100 percent if <4 > fi —E(F;). These two expressions show how
follow-through depends on A through the take-up decision of the different types of agents:
the larger the subsidy, A, the larger the share of contingent adopters that take-up, reducing
the overall rate of follow-through among those who take-up.

Proposition 2 An increase in uncertainty reduces follow-through conditional on take-up.

Note that in expression (4), an increase in the spread of F; (distance between fy and
fr) results in a bigger increase in the denominator than in the numerator, since part of the
numerator is multiplied by g, (f), which is a number between 0 and 1. Hence, uncertainty
worsens follow-through conditional on take-up.

Proposition 3 An increase in uncertainty weakens the relationship between take-up cost
and conditional follow-through shown in Proposition 1.

Uncertainty increases the share of contingent adopters. This is easy to see since the
share of contingent adopters is determined by the probability mass over the support of Fy
between R— fy and R— fr. The greater the spread of Fy, the bigger the share of contingent
adopters, and the less the take-up decision predicts follow-through. In the extreme case of
no uncertainty, there are no contingent adopters (fy = fr) and all we have is either always
adopters or never adopters. In this case, A increases take-up among always adopters, but



does not lower follow-through conditional on take-up unless adopters are paid to take-up the
technology (A > ¢).

A.1.2.2 Option value of the contract

The option value associated with the take-up decision when agents are free to follow-through
or not at time 1, i.e. under limited liability, is given by

OV (Fy) = Epyp, max(R — Fy — F1,0) — max (Ep g, (R — Fo — F1),0) (5)

with Ep (R — Fo — F1) = R — Fy — E(Fy), where max (Epr (R — Fy — F1),0) repre-
sents the expected profit associated with making the follow-through decision at time 0, or
the value of the static contract. Note that for non-adopters, the decision to not follow-
through does not change with new information. Hence, Ep g max(R — Fy — F1,0) =
max (Epl‘ m(R—Fy— Fl),O) = 0. Similarly, always adopters’ decision does not change
with new information. Hence, Ep, r, max(R — Fy — Fy,0) = max (Ep, i, (R — Fo — F1),0) =
R— Fy—E(F}). Therefore, the only group with a positive option value is contingent adopters.
For them, Ep |z max(R — Fy — F1,0) > max (EF1|F0(R — Fy— F), O)EFHFO max(R — Fy —
F1,0) > max (Ep |5, (R — Fy — F1),0), since

EFl\FO(R - FO - Fl) =R — Fo — E(Fl)

The share, Go(R — E(F})) — Go(R — F) would take-up under a contract with commitment
(i.e., a static contract where take-up and follow-through decisions are made simultaneously
at time 0) since their expected benefit under commitment, R — Fy — E(F}), is greater than
zero. The share Go(R — Fr) — Go(R — E(F})) would only take-up in the contract without
commitment, since their expected benefit under commitment, R — Fy — E(F}, is less than
zero. Hence, for contingent adopters,

R—Fy—F it Fy<R-E(F
max (Ep p, (R — Fy — F1),0) = e T (51)
0 if Fy>R-— E(Fl)
From the definition in (5), it follows that the option value for contingent adopters with
Fy < R—E(F)) is given by

gl(fL) (R—Fy— fo)— (R—Fy—E(F))
= [g1(fr) =1 (R~ Fo) + a1 (fu)fu
= o1(fu)(fu+ Fo— R);

while the option value for contingent adopters with Fy > R—IE(F}) is equal to their expected
private benefit without commitment: ¢,(fz) (R — Fo — fr).
In summary, the option value as a function of Fj is given by



0 if Fy>R-fL
a(fo)(R—=Fy—fr) if R-EF)<FR<R-fL
g(fu)(fu+Fy—R) if R—fyu<F<R-EFR)
0 if Fy<R-—fy

OV (Fy) =

Proposition 4
The option value associated with take-up is increasing in uncertainty, which results in higher
take-up at all take-up cost levels.

For a given agent with Fy = fj, option value increases with uncertainty. As uncertainty
increases (the distance between fg and fr), so does the likelihood that R— fg < fo < R— fr,
which in turn increases the likelihood that the agent becomes a contingent complier. Hence,
as uncertainty increases, the share of agents with a positive option value from take-up also
increases. As expected, the option value has an asymmetric relationship with the upper and
lower bounds of the shock distribution. One can increase the option value indefinitely by
lowering f7, (which is equivalent to increasing the realization of the positive shock, since fg,
enters as a cost in the profit function). However, lowering fg leads to an increase in the
option value up to the point where R — E(F}) < fo; beyond this, the option value remains
constant and equal to g1(f) (R — Fy — f1), which is equal to the expected private benefit
of the contract to contingent adopters.

As a function of R, the option value for a given individual with Fjy = f; is zero up to the
point where R — f is larger than f,. Beyond this, the agent becomes a contingent adopter
and the option value is increasing with R up to R = fy + E(F}), where it peaks and then
falls up to R = fo+ fu. After this, the option value becomes 0 again since the value of R
is large enough to guarantee follow-through.



A.2 Estimation

The estimation of the model outlined in Section 5 in the main text is done via simulated
maximum likelihood.! This appendix details the estimation procedure used to recover the
structural parameters.

A.2.1 Additional parameters

Our field experiment design included two additional treatment arms in addition to the ones
described in Section 5.3: a “surprise reward treatment” group and a monitoring group. In the
structural estimation, we modify the profit function to account for the variation in choices
that these treatment arms introduce.

Surprise reward treatment Half of the farmers who attended training (52.5 percent)
were assigned to a “surprise reward treatment” and did not learn about the threshold reward
for follow-through (> 35 trees) until after their decision to take-up was made. As explained in
Section 3.2, this treatment arm allows us to explore whether liquidity constraints explain the
absence of selection effects in the data. In order to keep track of the information differences
at the time of take-up in the estimation, we allow for these individuals to have a separate
component in the profit from planting any positive amount of trees (a constant “surprise
treatment” effect, ag). If these individuals had identical beliefs about the costs and benefits
derived from the trees (which in practice means that random parameters Fy, F; and T were
drawn from the same distribution as those in the standard treatment, who learned about the
reward before choosing to take-up), the surprise treatment effect would be zero. However,
we observe reduced form evidence that there was an expectation of a higher profit among
those who did not know about the reward before taking up: their take-up rate is higher
than the rate among farmers who received a reward of zero. The average take-up among
those in the surprise reward treatment was approximately equal to the the take-up rate of
farmers in the standard treatment who drew a reward of ZMK 40,000 before they made their
take-up decision.? Hence, in our estimation, the surprise treatment is left unrestricted and
is estimated to be 91.79 (s.e. 8.11) in the main model and 54.42 (s.e. 10.235) in the model
with a mean shift in F'. Note that this latter coefficient is close to the reduced form effect.

Monitoring group A small share of the program participants, 15.8 percent, were ran-
domly selected to receive regular visits to monitor tree-related activities, which allows us
to more closely observe time use. This group experienced higher follow-through rates than
farmers who were not assigned to the monitoring group,. Though the treatment was not
designed to have an impact and the monitors were explicitly told not to communicate in-
formation about tree cultivation to the farmers, monitoring may have influenced farmers in

1See Train (2009).
2This calculation is performed from the results of a linear regression of take-up on the reward among
those who had knowledge of the reward before deciding to take up.



a number of ways. For example, monitoring could have increased the subjective value of
the trees by making them seem “more important” or decreased the cost of caring for them
by periodically reminding individuals of their location and commitment. Farmers were not
aware that they would be monitored when they made their take-up decision. In order to
account for the observed effect of monitoring in the estimation, we allow the profit of those
in the monitoring group to have a separate component that takes the value of zero if no trees
are cultivated and of aj; when any positive number of trees is cultivated. This parameter is
estimated to be 238.40 (s.e. 36.844) in the main model and 229.53 (s.e. 37.22) in the model
with a mean shift in F.

A.2.2 Objective Function details under Simulated Maximum Like-
lihood

We use simulation methods to evaluate the objective function, equation (9) (from the main
text) , for any given value of the parameters. We use simulated maximum likelihood be-
cause there are several quantities in our objective function that do not have a closed form
expression.

As is usually done in random parameter models, we integrate away the unobserved ran-
dom parameters when writing the analytic probabilities for each outcome. These integrals,
once more, do not have a closed form solution. Hence, we use numerical integration to write
the probability of choosing N trees conditional on parameters pp, 0y, 0, b7, 01, (g, and ;.
Before writing the expression for the simulated probabilities of choosing N trees, we note
one more aspect of our estimation strategy.

When using simulation methods to estimate discrete choice models with random parame-
ters, numerical integrals are used to approximate theoretical probabilities. This often results
in a stepwise as opposed to smooth objective function, since small probabilities are hard
to approximate numerically and can be very noisy. In order to smooth the kinks in our
objective function, we add an extreme value distributed error term at the end of the profit
function. This allows us to compute probabilities between 0 and 1 for each draw of the ran-
dom parameters, which results in a smoother objective function. Monte Carlo simulations
suggest this method will not introduce bias our results provided that we choose a relatively
small scale parameter, A, which we refer to as smoothing factor. In the estimation we use a
smoothing factor of 0.5.

Thus, using Train (2009) notation, the simulated probabilities of choosing N trees at
t=1 are

K 1
5 ( ATk 1 exp (5 H(n| Fox, Fir, Tk, Ri
k=1 Zj:o eXp (XH(]|F0]€7 F1k7 Tk7 Rz))
where k indexes each draw of the full random parameter vector, (Fog, Fix, Tk), given the

vector of parameters 6 = (up,0r,,0p, i, o7, s, apr), and farmer-specific treatments A;
and Rz



Similarly, the simulated probability of take-up at ¢t = 0 is given by

P,(TakeUp|0) = (6)
LS 1 (A — ¢+ 0B [maxy I(N|Ty, For, Iy, Th, Ri)| For, Tie] > 0)

where £ indexes each draw of the partial random parameter vector, (Fyx, 7)), given the
vector of parameters 0 = (up,0r,, 0F, pir, o7, s, apr), and farmer-specific treatments A;
and R;. Note that the expected profit conditional of random variables F, and 7', and
observed treatments A and R also involves an integral without a closed form solution. We
therefore use the simulated version of it in expression (6). More specifically,

]E[maXNH(N|Tk7FOk7F17E7RZ'>|FOkaTk'] ==
1M vy (7)
M Zm:l maxny H<N‘F0k:; F1m7Tk7 Ru Az)

where m indexes each of M draws from a normal distribution with mean Fp;, and variance
given by 02F1.

For estimation purposes, we use K = 1500 and M = 100. Each of the k£ draws are
independent across observations. However, the M draws used in (7) are kept constant
across observations. This reduces our computing power substantially without affecting the
independence assumptions across observations (note that (7) is conditioned on Fy, and T,
which are drawn independently for each farmer).

A.2.3 Maximization algorithm

In order to guarantee that the point estimates correspond to the global maximum of the
likelihood function, we first conducted a grid search that would inform our starting values
for the numerical maximization. The grid search was conducted over 80 thousand different
combinations of the parameters and, to minimize computing time, was conducted with a
lower value of K and M (400 and 50 respectively).

In addition, we conducted a three stage recursive maximization (minimization of the
negative likelihood) where in each stage we maximized the simulated likelihood along a
subset of the parameter vector holding the rest constant. This method worked better than
the single step maximization in Monte Carlo simulations. The subsets of parameters in each
of the three stages were (ur,or,p), (0ro,0r1), and (up, aur, as, fshife) respectively.® The
three stages were repeated sequentially until a convergence criterion involving changes in the
parameter values was reached.* In a final stage, we used the resulting parameter estimates as
starting values in a single step numerical maximization. This last step yielded small changes
in the parameter values (the largest change was less than 6 percent and corresponded to the

shift corresponds to the common uniform shock in the mean shifter model discussed in Sections 5 an
3shif ds to th if hock in th hift del di d in Secti 5 and
6.

4The convergence criterion we used was that the square sum of differences between the new parameters
and the starting values (the estimated parameters from the last optimization round) was less than 0.0001.
The number of iterations was very robust to the critical value chosen and never reached more than four
iterations.



monitoring parameter, a;,s; the second largest change was of 4 percent and corresponded
to the standard deviation of Fy, opg). Appendix Table A.2.1 shows the sensitivity of our
three-stage results to starting values slightly above, slightly below and at the parameter
values that maximized the likelihood in our grid search.

A.2.4 Standard errors

Standard errors were computed using the variance of the numerically approximated scores,
which should converge to the negative of the Hessian in the limit provided that the point
estimates are the argmax of the log-likelihood function (Train 2009). We chose this method
instead of the numerical Hessian because it allowed us to choose the size of the step (h)
when calculating the numerical score. Simulated methods often result in “roughness” of the
likelihood function, which, in our case, led to a non-positive definite numerical Hessian.? In
order to verify that we were at a (local) minimum, we plotted the likelihood to verify its
curvature along each parameter, one at a time. Appendix Table A.2.2 shows the sensitivity
of our standard errors to different values of h. We chose the value of h that led to the
smallest gradient.

5The default numerical gradient calculation also led to gradient components that far from zero. In
contrast, all elements of the numerical gradient we “manually” calculated were very close to zero.
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Table A.2.1: Parameter sensitivity to starting values

Panel A. Tuning parameter sets

Estimation Tuning Parameters

Panel B. Choice set of initial parameters

List of Initial Values of Parameters

Name Lambda DiffMinChange k m Up Oy Oro O 0 U (o a, My

Set A 0.5 0.1/0.5/2 1500 100 2 0.5 450 50 0.5 0 0 -100 0

Set B 0.5 0.05/0.05/0.5 1500 100 3.2 1.2 500 100 0.7 100 20

Set C 2 0.1/0.5/2 1500 100 3.8 1.8 0.8 50

Set D 0.5 0.1/0.5/2 2500 200
Panel C. List of runs by initial values and parameters Initial Values of Parameters

Description Tuning Set Ur or Oro OF; 0 Ur a, a, Ury

1 Values close to gridsearch Set A 3.2 1.2 450 100 0.7 100 0 -100 20

2 Values below gridsearch optimum Set A 2 0.5 450 50 0.5 0 0 -100 0

3 Values above gridsearch optimum Set A 3.8 1.8 500 100 0.8 100 0 -100 50

4 Below for muT, above for rho Set A 2 0.5 450 50 0.8 100 0 -100 20

5 Above for muT, below for rho Set A 3.8 1.8 450 100 0.5 100 0 -100 20

6 All values close to gridsearch except for tho Set A 3.2 1.2 450 100 0.8 100 0 -100 20

7 All values close to gridsearch except for muT, sdT Set A 3.8 1.8 450 100 0.7 100 0 -100 20

8 All values close to gridsearch except for muF Set A 3.2 1.2 450 100 0.7 0 0 -100 20

9 Changing DiffMinChange Set B 3.2 1.2 450 100 0.7 100 0 -100 20
10 Changing Lambda Set C 3.2 1.2 450 100 0.7 100 0 -100 20
11 Changing k Set D 3.2 1.2 450 100 0.7 100 0 -100 20

Panel D. Results without Fshifter Values of Structural Parameters at Termination

Description Log-likelihood Ur Or Opy Or; 0 U a, a, Uy
1C Values close to gridsearch 11151.17 3.292  1.262 291.12 190.22 0.658 73.54 -79.56 -134.08 -
2C Values below gridsearch optimum 11160.82 3132 1.213 188.23 13591 0.614 60.20 -73.04 -107.22 -
3C Values above gridsearch optimum 11144.84 3,535 1.399 31211 202.28 0.803 108.10 -94.64 -224.94 -
4C Below for muT, above for rho 11168.35 3.235 1.203 136.22 138.87 0.723 84.73 -35.43 -109.05 -
5C Above for muT, below for rtho 11152.62 3.395 1.330 297.10 202.58 0.600 99.11 -56.53 -150.44 -
6C All values close to gridsearch except for tho 11145.23 3.534  1.364 299.24 200.99 0.775 103.28 -96.51 -221.31 -
7C All values close to gridsearch except for muT, sdT  11147.79 3.426 1.340 297.28 199.67 0.729 97.16 -93.31 -184.77 -
8C All values close to gridsearch except for muF 11153.41 3.269 1.225 276.41 191.96 0.684 73.60 -75.01 -147.78 -
9C Changing DiffMinChange 11145.84 3.416 1.355 288.73 226.57 0.653 107.94 -24.03 -253.77 -
10C Changing Lambda # 8295.695 3117 1.267 300.38 201.87 0.668 75.26 -81.22 -262.02 -
11C Changing k # 11147.7136  3.434 1.388 296.62 203.85 0.631 84.61 -57.01 -129.97 -



Panel E. Results with Fshifter

Values of Structural Parameters at Termination

Description Log-likelihood Ur Or Or Oy 0 Ur a, a, U,
1D Values close to gridsearch 11153.662 3469 1389 27940 181.33 0.658 51.51 -38.56 -113.99 31.75
2D Values below gridsearch optimum 11159.819 2977 1169 214.61 155.62 0.365 44.00 -36.97 -107.84 37.94
3D Values above gridsearch optimum 11141.838 3.550 1.389 301.93 195.60 0.823 76.08 -55.03 -217.74 53.61
4D Below for muT, above for rho 11150.377 3293  1.268 17411 13494 0.753 57.42 -47.36 -158.37 30.79
5D Above for muT, below for rho 11146.150 3319  1.256 287.15 190.26 0.592 5872 -48.54 -222.04 48.25
6D All values close to gridsearch except for rho 11143.875 3.510 1.365 289.78 198.01 0.772 63.46 -40.43 -189.88 47.32
7D All values close to gridsearch except for muT, sdT  11145.224 3.400 1320 288.39 194.84 0.721 71.01 -37.69 -231.67 52.93
8D All values close to gridsearch except for mul? 11145.255 3.381 1.332 22521 15853 0.661 63.87 -65.28 -167.64 31.47
9D Changing DiffMinChange 11150.482 3.255 1.155 267.12 20241 0.622 8517 -37.48 -220.85 21.86
10D Changing Lambda #8296.7806  3.052 1.203 29391 197.92 0.669 5551 -39.43 -252.52 13.73
11D Changing k #11145.1056  3.444 1.390 289.29 199.59 0.629 068.82 -35.18 -173.34 45.78
Panel F. Final niinimization using above results Values of Structural Parameters at Termination
Description Log-likelihood Ur or (o Or; 0 U a, a, Uy
Initial values are 3C results, gradient free algorithm  11142.064 3.539 1.401 307.87 211.42 0.818 107.58 -91.79 -238.40 -
Initial values are 3D results, gradient free algorithm 11138.996 3.579  1.392 290.06 193.05 0.835 74.48 -54.42 -229.53 53.29

Notes: This table list the set of minimization attempts conducted based on grid search results and model exploration. Panels A and B list the choice
set of tuning parameters and initial values that are used. Panel C describes the tuning parameters and initial values used for both models. Panels D
and E follow the same order as Panel C, listing the results and negative log-likelihood values for each run with and without the F shifter. Panel F
takes the best run from Panels D and E and reports the results of an additional minimum search using a gradient free method. # indicates that the

log-likelihood cannot be compared to other values.



Table A.2.2: Alternative standard error calculations

Additive h Values of k
h=k 0.09 0.07 0.05 0.03 0.01 0.009 0.007 0.005 0.003 0.001 0.0005

¢l

SSE(gradient) 0.00020  0.00007  0.00003  0.00030 0.00116 0.00094 0.00047  0.00015 0.00012 0.00123  0.00087

Standard Errors

Ur 0.0788 = 0.0569 @ 0.0536  0.0446  0.0361 0.0363  0.0409  0.0555  0.0742  0.0783  0.0745
or 0.0805 = 0.0661 0.0720  0.0441 0.0353  0.0358  0.0399  0.0499  0.0585  0.0568  0.0537
0 0.0725 = 0.0656 | 0.0578  0.0549  0.0424  0.0407  0.0380  0.0346  0.0293  0.0205  0.0132
Oro 95.341 93.278 | 82250  77.089  58.658  57.753  60.026  57.385  47.803 = 37.121 27.795
(o 50.621 49.953 | 44387  42.643 33717 32925 33923 32853 26950  21.558 = 16.626
U 13.083 = 11.822 = 10.323 7.398 4.578 4.268 3.875 3.441 3.319 1.129 0.587
a, 18.244 | 16.222 = 13914 9.604 6.066 5.725 5.054 4.715 4.839 2.945 1.478
a, 74432 73887 | 069.830  70.173  67.778  67.349  69.312 69247 64716  61.108  59.251
Multiplicative h Values of k
h=x*k 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 0.0005  0.0002  0.0001

SSE (gradient) 0.17430  0.00042  0.00099 0.00035 0.00146 0.00449  0.00667  0.00803 0.00840 0.00953  0.01186

Standard Errors

Ur 0.1847 0.1451 0.1006 0.0584 0.0438 0.0366 0.0252 0.0219 0.0209 0.0205 0.0203
Or 0.0741 0.0420 0.0287 0.0216 0.0170 0.0161 0.0144 0.0137 0.0136 0.0134 0.0129
0 0.1285 0.1066 0.0791 0.0492 0.0374 0.0348 0.0257 0.0213 0.0172 0.0140 0.0111
Oro 12250  111.716 114417  98.676 80.514 56.321 37.237 28.183 22.570 17.511 14.339
Op 6.171 61.562 63.773 54.957 45.919 33.423 20.956 16.169 13.436 10.346 7.947
Ur 27.740 27.335 23.773 19.440 17.004 15.048 11.832 9.402 6.050 3.819 2.419
a, 40.490 46.246 42.654 38.907 33.646 27.268 20.378 15.132 9.517 8.783 6.360

A, 78.068  111.782 110.726  95.144 76.055 65.208 57.078 55.481 54.674 54.310 54.300



Additive h Values of k
h=k 0.09 0.07 0.05 0.03 0.01 0.009 0.007 0.005 0.003 0.001 0.0005

SSE(gradient) 0.00005  0.00005 0.00014 0.00037 0.00400 0.00425 0.00371 0.00215 0.00054 0.00005 0.00018
Standard Errors

Ur 0.0706 0.0682 0.0570 0.0443 0.0371 0.0372 0.0412 0.0486 0.0597 0.0778 0.0730
Oy 0.0747 0.0799 0.0604 0.0553 0.0352 0.0345 0.0358 0.0379 0.0422 0.0533 0.0499
0 0.0730 0.0645 0.0561 0.0475 0.0303 0.0299 0.0304 0.0301 0.0283 0.0191 0.0156
Orp 84.622 83.916 81.794 77.381 59.699 56.483 51.711 56.478 51.760 38.025 25.406
O 45.427 45.133 43.960 41.906 34.570 33.396 30.393 32.730 28.430 20.956 13.530
Ur 15.470 12.581 9.894 6.373 4.062 3.654 2.976 2.176 1.549 0.534 0.296
a, 20.470 17.634 13.734 9.510 5.561 5.035 4.021 3.800 2.566 1.402 2.400
A, 74.444 74.339 73.968 75.463 69.887 69.394 68.504 71.408 70.636 65.708 61.092
M 26.761 25.478 24.328 23.247 22.047 21.828 21.563 21.827 21.527 20.989 20.369

Panel D. F shifter standard errors - multiplicative b
Multiplicative h Values of k

h=x*k 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001

SSE(gradient) 0.23205 0.00143 0.00059 0.00336  0.00084 0.00107 0.00017 0.00009 0.00006 0.00003 0.00017
Standard Errors

Ur 0.1857 0.1565 0.1018 0.0732 0.0496 0.0378 0.0550 0.0758 0.0719 0.0618 0.0519
Or 0.0839 0.0464 0.0265 0.0169 0.0148 0.0178 0.0348 0.0505 0.0486 0.0416 0.0344
0 0.1275 0.1045 0.0786 0.0572 0.0429 0.0321 0.0307 0.0267 0.0225 0.0173 0.0132
Oro 10.866 94.981 92.906 87.104 84.390 76.228 62.849 54.639 55.037 41.367 28.522
Op; 5.403 61.294 60.337 52.771 47.672 43.032 36.870 32.005 30.577 21.769 14.634
U 41.737 63.408 55.454 43.936 33.010 26.111 15.069 12.822 7.683 7.682 5.593
a, 44.332 42.804 41.230 35.285 32.598 26.815 18.704 13.748 8.751 6.537 4.262
a,, 69.865 97.904 95.421 92.248 83.544 78.012 71.757 68.865 73.371 66.278 61.556
Ur, 40.510 59.306 53.847 47.573 38.949 32.736 25.922 25.112 22.604 21.766 20.548

Notes: These tables display potential standard error calculations based on different estimates of the numerical derivative. Dotted boxes indicate
standard errors reported in the structural parameters table. Panels A and B report the model with no F shifter, while Panels C and D
correspond to the model with the F shifter. The central numerical deriviative is calculated as f(x+h)-f(x-h)/2h. In Panels A and C, the change in
x given by h is additive across all variables, so h = k. In Panels B and D, the change in x is a multiplicative with respect to x, so h = x * k. These
changes in x refer to the transformation of the parameters to an unbounded space -- all standard errors estimates are calculated using these
inputs and the delta method. The calculations are performed on the scores of individual log-likelihoods then summed to estimate the gradient.
SSE(gradient) gives the sum of squared errors of this gradient estimate, where the true value is assumed to be zero for the minimizing



A.3 Deterministic tree survival assumption

One of the assumptions in the specification of the farmer’s optimization problem is that
survival of trees is deterministic, conditional on effort. We allow for the cost of tree cultivation
to be quadratic in the number of trees, which would capture increasing marginal costs of
tree cultivation arising from increasing marginal opportunity cost of time. Our assumption
on deterministic survival can be thought of as a two stage optimization process, where the
farmer decides on the optimal number of trees to keep alive first, and then allocates the
amount of costly effort that guarantees survival to each of those trees. This assumption is
less restrictive than one would think.

The two-stage optimization process is roughly consistent with standard optimization
under probabilistic survival with a few restrictions: that the probability of tree survival for
a single tree as a function of effort, p(e), (a) is independent across trees; (b) attains 1 at
some level of effort, €, and (c) is a convex function of effort up to é; that is lim,._,; p'(e) > 0.
In addition we maintain the standard interior solution assumptions of the profit function:
(d) increasing and convex cost of effort, c(e) (i.e. (e) >0, ’(e) > 0), and (e) diminishing
marginal returns to the additional tree. We can denote this last assumption as g; > g1,
where g; denotes the marginal benefit of the ith tree that survives. Assumption (c) guarantees
that the optimal allocation of effort across two or more trees, given an optimal level of total
effort €, is such that the farmer will allocate € to as many trees as possible up to ke < e. If
ke < e, then only the last tree (k + 1) will be allocated the remaining effort, € — ké, making
its survival probability less than one. This optimal allocation of effort is thus consistent
with deterministic survival of all trees the farmer cultivates, except for possibly the very last
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tree.%

It could be, however, that no amount of effort guarantees the survival of a given tree: i.e.,
the probability function reaches a maximum of p (§> <1ate. In order to explore whether

such a model fits our data better, we simulate farmer’s behavior assuming this is the case. We
keep the parameters that govern farmers’ heterogeneity and shocks from our estimated mean-
shift model, and we add probabilistic survival to the argument of the indicator function for
reaching the 35-tree threshold.” Table A.3.1 replicates the reduced form comparison exercise
in Table 3 of the main text under this alternative assumption. For ease of comparison, Panel
A shows the reduced form results using the observed data (i.e. is identical to Panel A of Table
4 in the main text). Panel B shows the reduced form results with simulated data under our
baseline deterministic tree survival assumption and the estimated parameters of our mean
shifter model (i.e. is identical to Panel C of Table 4). Panels C - E implement the same
regressions, with simulated data from a model that keeps our estimated parameters constant
(Panel B of Table 4), but models tree survival outcomes as stochastic and governed by either
a binomial distribution (Panels C and D) or a beta binomial distribution (Panel E).® Panel

6The proof behind this optimal distribution of effort across trees consists of showing that there are no
interior solutions to the optimization problem where more than one tree is allocated an amount of effort
between 0 and e. We can prove this by contradiction for the case of two trees. The proof can be easily
extended to an unlimited number of trees.

The farmer’s maximization problem in the case of two trees is given by

max m(ey,e2) = gip(e1) + gap(ez) — cler + e2)

€1,€2

where g1 > g2 (because of assumption (e)), p(.) meets assumptions (a), (b) and (c), and ¢(.) meets assumption
(d).

For a solution to this problem where both trees receive an amount of effort between 0 and € to exist (i.e.
0 <ef <éand0 < el < é), the following condition needs to be satisfied

g1p'(e7) — ¢ (e] + €3) = gap'(e3) — ¢ (e] + €5)

which can be simplified to
g1 (e]) = gop'(e3)l (8)

Because g1 > go, and p’(e) > 0 for 0 < e < ¢, condition (8) requires that ef < e5. However, it is easy to
see that given a constant total amount of effort, e*, no optimal distribution of this effort, (e, e3) will be such
that e} +e3 = e* and e} < e} as g1p'(e1) > gap'(e2) for all e; < ey. Le., given a constant amount of total
effort, the farmer can always do better reallocating some effort to the tree that has the higher return. Thus,
no interior solution exists where more than one tree is receiving an amount of effort less than the minimum
amount that guarantees survival, e.

"Recall that the continuous component of the profit function confounds marginal costs and benefits. Thus
we cannot introduce probabilistic survival to the benefit portion, without affecting the cost per-tree, which
should remain deterministic.

8We keep the estimated parameters under the deterministic survival assumption instead of reestimating
them under the stochastic survival assumption due mainly to computing time constraints. Thus, the fit of
the model may further improve if we let other parameters adjust instead of keeping them constant. However,
the little sensitivity of the reduced form responses we see in Table A.3.1 leads us to believe that we would
not gain much in terms of fit by reestimating the model under the stochastic survival assumption.
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D assumes that the maximum probability of survival, p(z), is 0.98, while Panel D assumes
that this maximum survival probability is 0.95. We chose relatively high probabilities for the
simulation as lower probabilities result eliminate bunching at 35, and thus are inconsistent
with what we observe in our data (see Figure A.3.1). The beta binomial distribution in
Panel E allows for the maximum probability to vary across farmers according to a beta
distribution with parameters 0.57 and 0.37. The purpose of this exercise is to examine
whether by relaxing the deterministic survival assumption we can do a better job matching
the reduced form results in Panel A than do our main estimates, Panel B.

Overall, we see little improvement when stochasticity is introduced into the tree survival
outcomes. The main model performs least well on the relationship between the take-up sub-
sidy and the positive number of trees and zero trees (Panel B, columns 3 and 4). Both models
overestimate the effect of the reward on the likelihood of reaching the 35-tree threshold and
the number of trees for farmers with any surviving trees (Panel B, columns 6 and 7). The
model variants in Panel C and D show no improvement on any of these dimensions, and in
some cases worsen the fit. Only Panel E improves on the fit compared to our main model
(Panel B), and not by much: the coefficients on the reward for the 35-tree threshold attain-
ment and for positive tree survival are closer to the observed data but qualitative differences
remain. Importantly, these improvement come at the expense of a poorer match in other
responses that are well-fit by our main model, such as the relationship between the reward
and take-up and the relationship between the reward and zero-trees cultivated (columns 5

and 8).
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Table A.3.1: Stochastic tree survival

) @) ©) ) Q) ©) ) ®)
Take- 35-tree  #Htrees |  1.(zero Take- 35-tree  #Htrees | 1.(zero
"P threshold  # trees>0 trees) “P threshold  # trees>0 trees)
Panel A. Observed Data (Repeats Panel A in Reduced Form Table)

Take-up subsidy 0.022%** -0.004 -0.229 -0.003 Reward 0.001* 0.001%¢k  (0,044%x  _0,007%**
(0.005) (0.004) (0.200) (0.005) (0.000) (0.000) (0.013) (0.000)
Observations 1,314 1,092 701 1,092 624 1,092 701 1,092
R-squared 0.071 0.002 0.005 0.001 0.006 0.018 0.022 0.019

Panel B. Mean Shift and No Stochastic Survival (Repeats Panel C in Reduced Form Table)

Take-up subsidy 0.020%** -0.003 -0.002 0.008*%*  Reward 0.001* 0.003%%k  (.094%*+*  _(),007%**
(0.002) (0.003) (0.124) (0.003) (0.000) (0.000) (0.012) (0.000)
Observations 1,314 1,120 605 1,120 624 1,120 605 1,120
R-squared 0.062 0.001 0.000 0.006 0.006 0.107 0.089 0.013

Panel C. Survival probability = 0.98

Take-up subsidy 0.020%** -0.002 0.062 0.009*%  Reward 0.001* 0.003%kk (0, 105%x  _0,007%**
(0.002) (0.003) (0.133) (0.003) (0.000) (0.000) (0.012) (0.000)
Observations 1,314 1,120 603 1,120 624 1,120 603 1,120
R-squared 0.062 0.000 0.000 0.006 0.006 0.108 0.109 0.012

Panel D. Survival probability = 0.95

Take-up subsidy 0.020%** -0.002 0.083 0.008*%  Reward 0.001* 0.003%%k (0, 101%x  _0.007%**
(0.002) (0.003) (0.137) (0.003) (0.000) (0.000) (0.013) (0.000)
Observations 1,314 1,120 596 1,120 624 1,120 596 1,120
R-squared 0.062 0.000 0.001 0.006 0.006 0.095 0.098 0.012

Panel E. Survival probability distributed beta binomal with mean 0.57 and sd 0.37

Take-up subsidy 0.022%** -0.001 -0.038 0.006* Reward -0.000 0.001%kk (0,057 -0.000
(0.002) (0.002) (0.151) (0.003) (0.000) (0.000) (0.013) (0.000)
Observations 1,314 1,099 518 1,099 624 1,099 518 1,099
R-squared 0.071 0.000 0.000 0.003 0.000 0.019 0.034 0.002

Notes: This table shows coefficients from regressions of each of four indicator variables (take-up, binary 35-tree
threshold, tree survival larger than zero, and no tree survival) on each of our randomized treatments (take-up subsidy and
threshold reward) for both non-stochastic and stochastic models. Panel A shows these regression outcomes for the true
data. Panel B shows the fit of the strcutural model by simulating all four outocomes using the model estimates and
examining the how much the linear relationships between outcomes and treatments resemble those in Panel A. These
panels recreate Panels A and C of the reduced form table in the main body of the paper. Panel C here estimates
binomial survival assuming that the probabilty any one tree survives is 0.98. Panel D estimates binomial survival
assuming that the probabilty any one tree survives is 0.95. Panel E assumes that the probability any one tree survives is
distributed beta binomal with mean 0.57 and standard deviation 0.37, corresponding to an alpha parameter of 0.428 and

a beta parameter of 0.318.
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Figure A.3.1: Observed tree survival outcomes

Fraction
2
|

0 10 20 30 40 50
Tree survival

Notes: Histogram of tree survival outcomes for all farmers assigned a positive

reward for reaching the 35-tree survival threshold. The threshold is shown
by the dashed vertical line.
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A.4 Tables and figures

19



Table A.4.1: Balance

Respondent is head of household
Age, respondent

Female headed household

Years of education, respondent
Household size

Ordinal discount rate (1 - 5)
Non-agricultural assets

Years working with Dunavant

Total landholdings (hectares)
Number of fields

Average distance from home to plots
Poor soil fertility

Regular interaction with lead farmer
Affiliated with CFU or COMACO
Prior knowledge of Faidherbia
Prior planting of Faidherbia
Knowledge of risks to tree survival

N

A=0 A>0 R=0 Reward > 0 Surprise=0  Surprise N
Mean [SD] Mean [SD] Mean [SD] reward
0] @ ©) @ ©) © 0
0.735 0.001 0.694 0.0000 0.702 0.038 1292
[0.442] [0.003] [0.463] [0.0003] [0.458] [0.025]
37.872 -0.074 37.439 0.0071 37.25 1.284* 1266
[13.710] [0.100] [12.808] [0.0073] [13.684] [0.709]
0.135 0.001 0.149 0.0001 0.119 0.009 1292
[0.343] [0.003] [0.358] [0.0002] [0.324] [0.017]
5.342 -0.039 5.284 0.0033 5.363 -0.009 1292
[3.276] [0.028] [3.133] [0.0022] [3.331] [0.177]
5.465 -0.036** 5.328 0.0003 5.246 0.208* 1292
[2.142] [0.015] [2.390] [0.0013] [2.217] [0.114]
2.454 -0.001 2.538 0.0004 2.43 0.106 1262
[1.627] [0.013] [1.714] [0.0010] [1.612] [0.095]
9.806 -0.101** 9.343 -0.0013 9.08 0.314 1292
[5.789] [0.041] [5.625] [0.0034] [5.506] [0.287]
4.228 -0.033 3.776 -0.0015 3.865 0.069 1292
[3.748] [0.035] [3.404] [0.0022] [3.4906] [0.214]
3.02 -0.022 2.881 0.0000 2.873 0.056 1290
[2.248] [0.023] [2.188] [0.0014] [2.253] [0.115]
2.874 0.001 2.866 0.000 2.886 -0.054 1292
[1.065] [0.009] [1.194] [0.0008] [1.122] [0.070]
20.532 -0.084 19.416 -0.0202 18.397 0.91 1292
[24.195] [0.230] [22.430] [0.0122] [20.625] [1.068]
0.108 -0.001 0.104 0.0000 0.106 -0.029* 1292
[0.310] [0.002] [0.307] [0.0002] [0.308] [0.017]
0.415 0.004 0.448 -0.0006** 0.412 0.007 1290
[0.493] [0.004] [0.499] [0.0003] [0.493] [0.029]
0.037 0.002 0.037 0.000 0.042 0.003 1292
[0.189] [0.002] [0.190] [0.0001] [0.202] [0.012]
0.08 -0.002 0.664 0.000 0.04 0.027 1292
[0.467) [0.004] [0.474] [0.0003] [0.480] [0.025]
0.111 -0.001 0.09 0.0001 0.088 0.014 1292
[0.314] [0.002] [0.287] [0.0002] [0.283] [0.014]
1.72 -0.005 1.701 0.0000 1.648 -0.013 1292
[0.905] [0.006] [0.785] [0.0005] [0.816] [0.046]
325 967 134 1041 614 678

Notes: Means ate reported for the base group in columns 1, 3 and 5. Coefficients and standard deviations from a regression of
the household variable on treatment are reported in other columns. * p < 0.10 ** p < 0.05 *** p < 0.01.
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Table A.4.2: Attrition across data collection phases

Takeup Baseline Endline Tree monitoring
Mean [SD]
0 @ © @
Take-up subsidy 6.1564 0.0029* 0.0000 0.0000
[4.5399] [0.0016] [0.0020] [0.0007]
Reward ('000 ZMK) 09.3347 0.0001 0.0000 0.0000
[48.4713] [0.0001] [0.0001] [0.0000]
Surprise reward treatment 0.5239 0.0097 0.0124 0.0025
[0.4996] [0.0088] [0.0124] [0.0061]
N, outcome = 1 1317 1292 1232 1083

Notes: Attrition across data collection rounds by treatment. Column 1 shows means and standard
deviations for each treatment. Each cell in columns 2 - 4 shows the coefficient from a regression of an
indicator being present at the data collection stage regressed on each treatment with standard errors
clustered at the farmer group level. Column 4 is conditional ontake-up (N=1092). For observations
missing the reward variable (surprise reward treatment, no take up), a missing variable dummy for the
reward is added to the regression. Reported coefficients are among non-missing reward values. * p <
0.10 ** p < 0.05 *** p < 0.01.

Table A.4.3: Incentive spillovers within group

Dependent variable is tree survival

0 @

Average reward in group (excl. own) 0.262 0.578%*
(0.240) (0.317)
Own reward 0.319%* 0.642**
(0.0569) (0.253)
Group reward x own reward -0.0230
(0.0182)

N 1088 1088

Notes: OLS regressions of tree survival on average draw in farmer group,
conditional on take-up, and own draw. Standard errors are clustered at the
group level. * p<0.10 ** p<0.05 *** p<0.01.
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Table A.4.4: Correlation between farmer observables and program outcomes

o) @ ©) @ G) ©
Take-up 35-tree threshold Tree survival
Household head at training 0.0705%  0.0651** 0.0041 0.0010 0.4308 0.2770
[0.02606] [0.0229] [0.0326] [0.0328] [1.2126] [1.1939]
Female household head 0.0298 0.0275 -0.0257 -0.0248 0.2531 0.2885
[0.0325] [0.0292] [0.0379] [0.0352] [1.4998] [1.3798]
Respondent education 0.0009 0.0002 0.0084 0.0079 0.3926* 0.3668*
[0.0035] [0.0033] [0.0044] [0.0042] [0.1831] [0.1744]
Household size 0.0089 0.0104* 0.0082 0.0063 0.2118 0.1240
[0.0051] [0.0049] [0.0058] [0.0057] [0.2066] [0.1994]
Non-agricultural assets 0.0001 0.0017 0.0001 -0.0003 -0.0468 -0.0606
[0.0020] [0.0019] [0.0030] [0.0029] [0.1080] [0.1018]
Years working with Dunavant 0.0050 0.0062 0.0071 0.0077 0.1467 0.1845
[0.0041] [0.0034] [0.0040] [0.0041] [0.1623] [0.1598]
Land size (hectares) 0.0052 0.0052 -0.0037 -0.0043 -0.0041 -0.0261
[0.0043] [0.0040] [0.0064] [0.0062] [0.2521] [0.2424]
Number of fields 0.0108 0.0051 -0.0017 -0.0042 0.7444 0.6132
[0.0100] [0.0089] [0.0127] [0.0120] [0.5520] [0.5467]
Distance from home to plots -0.0006 -0.0002 0.0003 0.0003 -0.0217 -0.0196
[0.0007] [0.00006] [0.0007] [0.0007] [0.0266] [0.0252]
Poor soil fertility -0.0310 -0.0200 -0.0171 -0.0237 -1.7101 -1.9494
[0.0354] [0.0360] [0.0517] [0.0491] [1.9597] [1.9100]
Sees YGL often 0.0251 0.0250 -0.0243 -0.0142 0.5124 0.9962

[0.0194]  [0.0181]  [0.0280]  [0.0270]  [1.1066]  [1.0389]
Affiliated with CFU or COMACO  0.0422 0.0052 0.0793 0.0635  4.9661%  4.0746
[0.0482]  [0.0430]  [0.0721]  [0.0709]  [23327]  [2.3833]

Prior knowledge of Faidherbia 0.0377 0.0352 0.0423 0.0442 0.7249 0.8228
[0.0288] [0.0252] [0.0344] [0.0321] [1.3283] [1.1978]
Prior planting of Faidherbia -0.0758 -0.0644 0.0643 0.0779 4.3897* 5.0115%

[0.0461] [0.0364] [0.0561] [0.0573] [2.1425] [2.1682]
Knowledge of risks to tree survival 0.0159 0.0157 0.0390%* 0.0402%* 1.6840%* 1.7570+*
[0.0137] [0.0114] [0.0127] [0.0128] [0.5754] [0.5794]

Constant 0.62307%**  (.3444*+* 0.0542 -0.0318 8.1421** 2.6194
[0.0648] [0.0842] [0.0620] [0.0762] [2.6058] [3.0433]

R squared 0.0296 0.1898 0.0247 0.0750 0.0314 0.1083

Treatment controls no yes no yes no yes

Obs 1288 1080 1080

Dep. Var. Mean 0.8385 0.2528 17.6000

Notes: OLS regressions of outcomes on observables collected as part of the baseline survey, during training. The outcome
in columns 3 and 4 is an indicator for reaching the reward threshold (= 35 trees). Even columns include controls for the
experimental treatments: subsidy level, reward level, reward timing and monitoring, * p<0.10 ** p<0.05 *** p<0.01.
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Table A.4.5: Effect of reward timing on tree survival outcomes

) @ ®
Surprise = 0 Surprise =1  Reward x Surprise
Mean/[SD] Mean/[SD] Coef/(SE)
R=0 11.02 11.32
[14.33] [16.00]
R = (0,70000)] 14.71 15.87 0.85
[16.80] [16.87] (2.72)
R = (70000,150000] 20.32 21.05 0.43
[17.99] [17.48] (2.66)

Notes: Outcome is tree survival (continuous), conditional on take up. Columns 1
and 2 show means and standard deviations in each reward category, by the reward
timing condition. Surprise = 1 indicates that farmers learned about the reward
only after the take-up decision. Column 3 reports estimated coefficients and
standard errors clustered at the farmer group level for a linear regression of tree
survival on reward category interatcted with the surprise reward treatment. We
report the coefficient on the interaction term only.

Table A.4.6: Knowledge

and experience with the technology

0 @ ©) @
Knowledge of risks to tree survival (1-5) 4.5035%+* 4.4380%**
[0.7828] [0.7762]
Change in risk knowledge 2.4856%+* 2.4897H+*
[0.4819] [0.4779]
Prior planting of Faidherbia 5.1819** 4.4554x* 4.0145%*
[2.1442] [1.9009] [1.9328]
Any prior planting in group 1.5780 1.8883
[1.7852] [1.7111]

Notes: OLS regressions of tree survival on proxy measures of knowledge and learning. The sample is
restricted to farmers in both the baseline and endline surveys. Knowledge of risks to tree survival counts
the number of risks that the farmer was able to recall. Change in risk knowlege measures how that number
changed between the endline and the baseline. Prior planting of Faidherbia is an indicator for whether the
farmer had adopted the technology prior to the program. Any prior planting in group is an indicator for
whether anyone in the farmer group had adopted. All columns control for the remaining variables shown in
the balance tables and also for treatment variables. * p<0.10 ** p<0.05 *** p<(0.01.
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Table A.4.7: Procrastination

Dependent variable: Take-up Survival Survival Take-up Take-up
M @ © @ ©)
Panel A: Self-described procrastinator
Binary Procrastination Measure -0.0080 -0.8574 -1.3361 -0.0273 -0.0016
[0.0208] [1.1563] [1.1410] [0.0440] [0.0651]
Take-up subsidy 0.0227%** -0.0513 -0.0184  0.0206%*F  0.0233***
[0.0044] [0.2004] [0.1952] [0.0047] [0.0058]
Reward in '000 ZMK 0.0669%** 0.0007**
[0.0114] [0.0003]
Procrastination x subsidy 0.0031 -0.0028
[0.0047] [0.0069]
Constant 0.4507***%  9.0534*** 4.3205 0.46226+%  (0.3980%**
[0.0783] [3.1850] [3.1716] [0.0804] [0.1088]
N 1275 1071 1071 1275 603

Panel B: Reports procrastination on other activities

Binary Procrastination Measure -0.0302 0.0622 0.1404 -0.0938 -0.0521
[0.0278] [1.2728] [1.2767] [0.0629] [0.0767]

Take-up subsidy 0.023 7%+ -0.1045 -0.0745 0.0197**%  0.0205%**
[0.0044] [0.2021] [0.1958] [0.0043] [0.0050]
Reward in '000 ZMK 0.0686%** 0.0006%*
[0.0119] [0.0003]
Procrastination x subsidy 0.0102 0.0076
[0.0066] [0.0080]

Constant 0.4589%**  8,8880*** 3.8534 0.4766%**  0.4333%**
[0.0801] [3.1334] [3.1569] [0.0800] [0.1014]

N 1223 1030 1030 1223 576

Notes: OLS regressions of take up and survival on indicators of procrastination. Standard errors
clustered at the group level are in brackets. Columns 2 and 3 condition on take-up. Column 5
conditions on knowing the reward before take-up (excludes the surprise reward treatment). See text
for a description of the procrastination measures used in the regressions. * p<(0.10 ** p<(.05 ***
p<0.01.
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