
Supplementary Appendix A. Choice over several gaso-

line and electric vehicles

Here we expand the model to allow for a richer consumer choice set. For simplicity we

assume there is a single location. There are me electric vehicles and mg gasoline vehicles.

Gasoline vehicles are indexed by the subscript i and electric vehicles are indexed by the

subscript j. Each vehicle has a different purchase price and price of a mile, and we allow

for the possibility of vehicle-specific taxes on miles and purchases. The indirect utility of

purchasing the i’th gasoline vehicle is given by

Vgi = max
x,gi

x + fi(gi) s.t. x + (pgi + tgi)gi = T − pΨi.

The indirect utility of purchasing the j’th electric vehicle is given by

Vej = max
x,ej

x + hj(gj) s.t. x + (pej + tej)ej = T − (pΩj − sj).

The conditional utility, given that a consumer elects gasoline vehicle i, is given by

Ugi = Vgi + εgi.

The conditional utility, given that a consumer elects the electric vehicle j

Uej = Vej + εej

The consumer selects the vehicle that obtains the greatest conditional utility. Following the

same distributional assumptions as in the main text, the probability of selecting the gasoline

vehicle i is

πi =
exp(Vgi/µ)

∑i exp(Vgi/µ) +∑j exp(Vej/µ)
.

The probability of selecting the electric vehicle j is

π̃j =
exp(Vej/µ)

∑i exp(Vgi/µ) +∑j exp(Vej/µ)
.
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And of course ∑i πi +∑j π̃j = 1. The welfare associated with the purchase of a new vehicle is

given by

W = µ ln(∑
i

exp(Vgi/µ) +∑
j

exp(Vej/µ)) +R − (∑
i

δgiπigi +∑
j

δejπ̃jej) ,

where δgi is the damage per mile from gasoline vehicle i and δei is the damage per mile from

electric vehicle j. It is useful to define Gi = πigi and Ej = π̃jej.

Differentiated subsidies on purchase of electric vehicle

Here we consider a policy in which the government selects vehicle-specific tax on the purchase

of electric vehicles. Let sj be the subsidy on the electric vehicle j. Government revenue is

R = −∑ π̃jsj. Now consider a given electric vehicle, say vehicle k. The optimal subsidy on

the purchase of this vehicle, sk, solves the first-order condition

∂W
∂sk

= ∑
i

πi
∂Vgi
∂sk

+∑
j

π̃j
∂Vej
∂sk

+ ∂R

∂sk
−∑

i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.

From the Envelope Theorem, we have

∂Vgi
∂sk

= 0

and, for j ≠ k,
∂Vej
∂s

= 0.

For j = k we have
∂Vej
∂sk

= 1.

Substituting these expressions into the first-order condition gives

∂W
∂sk

= ∂R

∂sk
+ π̃k −∑

i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.

Now
∂R

∂sk
= −π̃k −∑

j

∂π̃j
∂sk

sj.
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Substituting this into the first-order condition gives

∂W
∂sk

= −∑
j

∂π̃j
∂sk

sj −∑
i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.

Because there are no income effects,

∂Gi

∂sk
= gi

∂πi
∂sk

and
∂Ej
∂sk

= ej
∂π̃j
∂sk

.

Substituting these derivatives into the first-order condition gives

∂W
∂sk

= −∑
j

∂π̃j
∂sk

sj −∑
i

δgigi
∂πi
∂sk

−∑
j

δejej
∂π̃j
∂sk

= 0. (A-1)

We have one of these equations for each k. So we must solve the system of me equations for

the me unknowns sj. Since we do not obtain an explicit solution for the optimal taxes on

purchase, we cannot derive analytical welfare approximations to the gains from differentiation

analogous to Proposition 2. We can, of course, obtain exact welfare measures by numerical

methods.

Uniform subsidy on the purchase of an electric vehicle

Now suppose that the government places a uniform subsidy s on the purchase of any electric

vehicle. Expected government revenue is given by R = −∑j π̃js. The optimal s can be found

as a special case of (A-1). Let sk = s for every k. Then (A-1) becomes

∂W
∂s

= −s∑
j

∂π̃j
∂s

−∑
i

δgigi
∂πi
∂s

−∑
j

δejej
∂π̃j
∂s

= 0.

Solving for s gives

s = −∑i
δgigi

∂πi
∂s +∑j δejej

∂π̃j
∂s

∑j
∂π̃j
∂s
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Now since ∑i πi +∑j π̃j = 1 it follows that

∑
i

∂πi
∂s

+∑
j

∂π̃j
∂s

= 0.

Using this gives

s = ∑i
δgigi

∂πi
∂s

∑i ∂πi∂s

− ∑j
δejej

∂π̃j
∂s

∑j
∂π̃j
∂s

.

In the special case in which gi = g and ej = e, we have

s = g∑i
δgi

∂πi
∂s

∑i ∂πi∂s

− e∑j
δej

∂π̃j
∂s

∑j
∂π̃j
∂s

.

The subsidy is a function of the weighted sum of marginal damages from each vehicle in the

choice set, where the weights are equal to the partial derivative of the choice probabilities with

respect to s. This generalizes the result in Proposition 1 in the main text. The informational

requirements of the two results are different, however. To evaluate the optimal subsidy in

Proposition 1, we need only make an assessment of the damage parameters (the δ′s) and the

lifetime miles (e and g). To evaluate the optimal subsidy when there is an expanded choice

set, we need, in addition, the partial derivatives of the adoption probabilities, which requires

a fully calibrated model.

We can also express this result in terms of cross-price elasticities. To see this, consider a

special case in which there are two gasoline vehicles (with probability of adoption π1 and π2)

and a single electric vehicle (with probability of adoption π̃.) The equation for the optimal

subsidy is

s = g (
δg1

∂π1

∂s + δg2
∂π2

∂s
∂π1

∂s +
∂π2

∂s

) − eδe.

From the definition of πi it follows that

∂π1

∂s
= −π1π̃

µ
and

∂π2

∂s
= −π2π̃

µ
.
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Substituting into the expression for s gives

s = g (δg1π1 + δg2π2

π1 + π2

) − eδe.

Now consider the cross-price elasticities for the electric vehicle (i.e., the effect of a change

in the price of gasoline vehicle i on the demand for the electric vehicle). For discrete choice

goods, price elasticities are defined with respect to the choice probability. So the cross-price

elasticity is

εi ≡
∂π̃

∂pΨi

pΨi

π̃
= π̃πi

µ

pΨi

π̃
= πi
µ
pΨi.

It follows that

s = g (
δg1

ε1
pΨ1

+ δg2 ε2
pΨ2

ε1
pΨ1

+ ε2
pΨ2

) − eδe.

Supplementary Appendix B. Welfare gains from differ-

entiation: taxation of gasoline and electric miles

Here there are taxes on both gasoline and electric miles. We know that location specific

Pigovian taxes are first-best, but it is useful to derive this result in our model before turning

to other welfare results. For the moment we can drop the location subscript i.

From the Envelope Theorem, we have (under our normalization of the wage rate, the

marginal utility of income is equal to one)

∂Vg
∂tg

= −g,

and
∂Ve
∂tg

= 0.

The first-order condition for tg comes from substituting these expressions into (2) with ρ = tg,
setting the resulting expression equal to zero, and simplifying. This gives

(∂R
∂tg

− πg) − (δg
∂G

∂tg
+ δe

∂E

∂tg
) = 0. (A-2)
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We have taxes on both gasoline and electric miles. Expected revenue is therefore R =
tgπg + te(1 − π)e. Taking the derivative of revenue with respect to tg gives

∂R

∂tg
= G + tg

∂G

∂tg
+ te

∂E

∂tg
.

Using this in the first-order condition gives

((G + tg
∂G

∂tg
+ te

∂E

∂tg
) − πg) − (δg

∂G

∂tg
+ δe

∂E

∂tg
) = 0.

Now, because G = πg, this simplifies to

(tg − δg)
∂G

∂tg
+ (te − δe)

∂E

∂tg
= 0.

Similar calculations with respect to te gives

(tg − δg)
∂G

∂te
+ (te − δe)

∂E

∂te
= 0.

Now, returning the location subscripts, it is clear that the optimal location-specific taxes are

the Pigovian taxes t∗gi = δgi and t∗ei = δei.
Next follow the steps in the proof of Proposition 2, but this time using taxes on miles

rather than a subsidy on the purchase of the electric vehicle. Let W(T ) denote the weighted

average of per capita welfare across locations as a function of the vector of taxes

T = (tg1, tg2, . . . , tgm, te1, te2, . . . , tem).

We have

W(T ) = ∑αiWi(tgi, tei) = µ∑αi (ln(exp(Vei/µ) + exp(Vgi/µ))) +Ri − (δgiGi − δeiEi)).

First consider the second-best uniform taxes on gasoline and electric miles. Here the

central government selects the same taxes tg and te in each location. This implies the values

for ei, gi, Ri, and πi will be the same across locations. Under these conditions, the derivatives
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of W(T ) with respect to tg and te be written as

∑αi ((tg − δgi)
∂G

∂tg
+ (te − δei)

∂E

∂tg
) = 0.

∑αi ((tg − δgi)
∂G

∂te
+ (te − δei)

∂E

∂te
) = 0.

The solution to these equations is t̃g = ∑αiδgi ≡ δ̄g and t̃e = ∑αiδei ≡ δ̄e. In other words, the

second-best uniform tax on gasoline miles is equal to the weighted average of the marginal

damages from gasoline emissions across locations.

Next we want to determine a first-order Taylor series approximation to W(T ) at the

point T̃ = (t̃g, t̃g, . . . , t̃g, t̃e, t̃e, . . . , t̃e). At an arbitrary point, we have

∂W
∂tgi

= αi(tgi − δgi)
∂Gi

∂tgi
+ αi(tei − δei)

∂Ei
∂tgi

and
∂W
∂tei

= αi(tgi − δgi)
∂Gi

∂tei
+ αi(tei − δei)

∂Ei
∂tei

.

At T̃ , taxes equal in each location, so the gasoline miles and electric miles will be the same

each each location. Thus we can drop the subscripts from g, e,G,E and π. From (4) we have

∂G

∂tg
= gπ(1 − π)

µ
(∂Vg
∂tg

− ∂Ve
∂tg

) + π ∂g
∂tg

= −g2π(1 − π)
µ

+ π ∂g
∂tg

.

∂E

∂tg
= −eπ(1 − π)

µ
(∂Vg
∂tg

− ∂Ve
∂tg

) + (1 − π) ∂e
∂tg

= geπ(1 − π)
µ

.

∂G

∂te
= gπ(1 − π)

µ
(∂Vg
∂te

− ∂Ve
∂te

) + π ∂g
∂te

= geπ(1 − π)
µ

.

∂E

∂te
= −eπ(1 − π)

µ
(∂Vg
∂te

− ∂Ve
∂te

) + (1 − π) ∂e
∂te

= −e2π(1 − π)
µ

+ (1 − π) ∂e
∂te

.

This gives

∂W
∂tgi

∣
T̃

= αi(δ̄g − δgi)(−g2π(1 − π)
µ

+ π ∂g
∂tg

) + αi(δ̄e − δei) (ge
π(1 − π)

µ
)
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and
∂W
∂tei

∣
T̃

= αi(δ̄g − δgi) (ge
π(1 − π)

µ
) + αi(δ̄e − δei) (−e2π(1 − π)

µ
+ (1 − π) ∂e

∂te
)

The first-order Taylor series expansion of W at the point T̃ can be written as

W(T ) −W(T̃ ) ≈ ∑
∂W
∂tgi

∣
T̃

(tgi − t̃g) +∑
∂W
∂tei

∣
T̃

(tei − t̃e).

Using the expressions above gives

W(T ∗)−W(T̃ ) ≈ ∑(αi(δ̄g − δgi)(−g2π(1 − π)
µ

+ π ∂g
∂tg

) + αi(δ̄e − δei) (ge
π(1 − π)

µ
)) (t∗gi−t̃g)+

∑(αi(δ̄g − δgi) (ge
π(1 − π)

µ
) + αi(δ̄e − δei) (−e2π(1 − π)

µ
+ (1 − π) ∂e

∂te
)) (t∗ei − t̃e).

Which can be written as

W(T ∗) −W(T̃ ) ≈ π(1 − π)
µ

(∑αi (g2(t∗gi − t̃g)2 − 2ge(t∗gi − t̃g)(t∗ei − t̃e) + e2(t∗ei − t̃e)2))−

π
∂g

∂tg
∑αi(t∗gi − t̃g)2 − (1 − π) ∂e

∂te
∑αi(t∗ei − t̃e)2.

Substituting in the values t∗gi = δgi, t∗ei = δei, t̃g = δ̄g and t̃e = δ̄e gives

W(T ∗) −W(T̃ ) ≈ π(1 − π)
µ

(∑αi (g2(δgi − δ̄g)2 − 2ge(δgi − δ̄g)(δei − δ̄e) + e2(δei − δ̄e)2))−

π
∂g

∂tg
∑αi(δgi − δ̄g)2 − (1 − π) ∂e

∂te
∑αi(δei − δ̄e)2,

which can be written as

W(T ∗) −W(T̃ ) ≈ π(1 − π)
µ

(∑αi (g(δgi − δ̄g) − e(δei − δ̄e))
2)−

π
∂g

∂tg
∑αi(δgi − δ̄g)2 − (1 − π) ∂e

∂te
∑αi(δei − δ̄e)2.

It is interesting to compare this formula to the corresponding one for purchase subsidies.
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Using the fact that s∗i = (δgig − δeie) and s̃ = (δ̄gg − δ̄ee) in conjunction with the proof of

Proposition 2, we can write the first-order approximation formula for the welfare gain of

differentiated purchase subsidies as

W(S∗) −W(S̃) ≈= π(1 − π)
µ

(∑αi(e(δei − δ̄e) − g(δgi − δ̄g))2)

The first term in the formula for W(T ∗) − W(T̃ ) has exactly the same structure as the

formula for W(S∗) − W(S̃), but the values for π, e, and g will be different across the two

formulas. The formula for W(T ∗) −W(T̃ ) also has two extra terms that correspond to the

price effects of the taxes on the purchase of gasoline and electric miles. Because these price

effects are negative, both of the extra terms increase the benefit of differentiated regulation.

In the special case in which the population in each location is the same and e = g, first term

in the formula for W(T ∗) −W(T̃ ) is proportional to the variance of the difference between

the list of numbers δgi and δei, the second term is proportional to the variance the list of

numbers δgi, and the third term is proportional to the variance of the list of numbers δei.

Supplementary Appendix C. Comparison with Mendel-

sohn (1986)

Applying our approximation methodology to Mendelsohn’s model reveals the differences

in the welfare gains from differentiation in our model and his. In Mendelsohn’s model,

the derivative of the objective function with respect to the policy variable is linear in the

environmental parameter. And the second derivative does not depend on the environmental

parameter. In contrast, in our model, both the first and second derivatives are linear in the

environmental variable.

More formally, consider Mendelsohn’s model and let Q∗ be the optimal differentiated reg-

ulation and Q̄ be the optimal uniform regulation. The first-order Taylor series approximation

to the welfare gain form differentiation is

W (Q∗) −W (Q̄) ≈ ∂W
∂Q

(Q∗ − Q̄).
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Both ∂W
∂Q and (Q∗−Q̄) are linear in the environmental parameter, so the welfare difference is

is quadratic in the environmental parameter. Now consider the second-order Taylor series:

W (Q∗) −W (Q̄) ≈ ∂W
∂Q

(Q∗ − Q̄) + 1

2

∂2W

∂Q2
(Q∗ − Q̄)2.

The first term in this expression is quadratic in the environmental parameter. In the second

term, the second derivative does not depend on the environmental parameter, so the second

term in quadratic in the environmental parameter as well. So we see for both the first

and second order approximations, the welfare difference is quadratic in the environmental

parameter. Because Mendelsohn’s objective is quadratic, the second order approximation is

in fact exact.

In our model, the second-order approximation has a term that is cubic in the envi-

ronmental variable, which implies that the welfare benefit depends on the skewness of the

distribution of this variable. As in Mendelsohn’s model, (S∗ − S̃) is linear in the environ-

mental parameter. So the difference between models is due to differences in the first and

second derivatives. In particular, due to the discrete choice nature of our model, the first

and second derivatives are both linear in the environmental parameter (recall from (9) and

(10) that both derivatives contain s∗i − s̃ terms.)

Our welfare approximation was defined relative to the reference point of uniform regu-

lation. Suppose instead we define the reference point to be the second-best differentiated

regulation. In this case we are measuring the welfare loss of using uniform regulation rather

than differentiated regulation.46 Modifying (9) to evaluate the derivative at S∗ rather than

S̃ gives
∂W
∂si

∣
S∗

= αi
µ
πi(1 − πi)(−s∗i + δgig − δeie) =

αi
µ
πi(1 − πi)(−s∗i + s∗i ) = 0. (A-3)

As we would expect, the first derivative of the welfare function is equal to zero at the second-

best differentiated regulation. Similar modifications of (10) gives

∂2W
∂s2

i

∣
S∗

= − 1

µ
(1 − 2πi)

∂W
∂si

∣
s∗i

− αi
µ
πi(1 − πi) = −

αi
µ
πi(1 − πi), (A-4)

46In the main text we measured the welfare gain of using differentiated regulation rather than uniform
regulation. Because we are using approximation formulas, these two measures will not be exactly the same.
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because the first derivative is zero. Now we want to evaluate W(S̃) −W(S∗). Because the

first derivative is zero at S∗, we have

W(S̃) −W(S∗) ≈ − 1

2µ
∑πi(1 − πi)αi(s∗i − s̃)2.

This expression is quadratic in s∗ − s̃. But also notice that we can’t factor out the π′s,

because they are defined at the points s∗i , and hence are not all the same. So there is not a

simple interpretation in terms of the distribution of the environmental benefits of an electric

vehicle. For this reason, we use the other welfare expression (with the reference point of

uniform regulation) in the main text.

Supplementary Appendix D. Car data and EPRI charg-

ing profile

Table A: 2014 Electric vehicles and gasoline equivalent vehicles

Electric Vehicle kWhrs/Mile Gasoline Equivalent MPG NOx VOC PM2.5 SO2

Chevy Spark EV 0.283 Chevy Spark 39/31 0.04 0.127 0.017 0.004
Honda Fit EV 0.286 Honda Fit 33/27 0.07 0.147 0.017 0.005
Fiat 500e 0.291 Fiat 500e 40/31 0.07 0.147 0.017 0.004
Nissan Leaf 0.296 Toyota Prius 48/51 0.03 0.112 0.017 0.003
Mitsubishi i-Miev 0.300 Chevy Spark 39/31 0.04 0.127 0.017 0.004
Smart fortwo electric 0.315 Smart fortwo 38/34 0.07 0.147 0.017 0.004
Ford Focus electric 0.321 Ford Focus 36/26 0.03 0.112 0.017 0.005
Tesla Model S (60 kWhr) 0.350 BMW 740i 29/19 0.07 0.147 0.017 0.007
Tesla Model S (85 kwhr) 0.380 BMW 750i 25/17 0.07 0.147 0.017 0.008
Toyota Rav4 EV 0.443 Toyota Rav4 31/24 0.07 0.147 0.017 0.006
BYD e6 0.540 Toyota Rav4 31/24 0.07 0.147 0.017 0.006

Notes: NOx, VOC, PM2.5, and SO2 emissions rates for gasoline equivalent cars are in
grams per mile.
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Supplementary Appendix Figure 1:  EPRI charging profile.

Source: “Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: 
Nationwide Greenhouse Gas Emissions” Electric Power Research Institute, Inc. 2007.  p. 
4-10.
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Supplementary Appendix E. The effect of temperature

on electric vehicle energy use

Let E68 be the energy usage (in KWhr/mile) at a baseline temperature of 68°F (obtained

from EPA data). In this Appendix, we determine a temperature adjusted energy usage Ẽ.

The range of an electric vehicle R is given by

R = C
E

where C is the battery capacity of the vehicle (in KWhr). We first determined a function

R(T ) that describes the range as a function of temperature and then use this function in

conjunction with weather data to calculate the temperature adjusted energy usage Ẽ for

each county.

There are three recent studies of the effect of temperature on electric vehicle range.

1. Transport Canada. This engineering study considered three different electric vehicles,

three temperatures (68°F, 19.4°F, -4°F), and cabin heat on/off conditions. The original

data is available on the internet (https://www.tc.gc.ca/eng/programs/environment-

etv-electric-passenger-vehicles-eng-2904.htm)

2. AAA. This engineering study considered three different electric vehicles, three tem-

peratures (75°F, 20°F, 95°F). We were unable to obtain the original data, but the

results are summarized on the internet (http://newsroom.aaa.com/2014/03/extreme-

temperatures-affect-electric-vehicle-driving-range-aaa-says)

3. Nissan Leaf Crowdsource. This study summarizes user reported driving ranges at

a variety of temperatures for the Nissan leaf. The results are posted on the internet

(http://www.fleetcarma.com/nissan-leaf-chevrolet-volt-cold-weather-range-loss-electric-

vehicle/)

There is clear evidence in these studies that significant range loss in electric vehicles
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occurs both at low and high temperatures.47 We use a Gaussian function to describe this

range loss

R(T ) = R68e
− (T−68)2

y , (A-5)

where R68 is the range at the baseline temperature of 68°F and y is a parameter to be fitted

from the range loss data. The transport Canada study indicates a 20 percent range loss at

19.4°F with the heat off and a 45 percent range loss at 19.4°F with the heat on. We took

the average of these figures and assumed a 33 percent range loss. This gives48

y = −1(19.4 − 68)2

ln(0.67) .

Temperature data was obtained from the CDC website.49 This gave us the average

monthly temperature in each county for the years 1979-2011. In a given month j with

temperature Tj, the energy usage per mile in that month is given by

Ej =
C

R(Tj)
= E68

R68

R(Tj)
.

Let the total miles driven in month j be denoted by xj, the temperature adjusted energy

usage is given by the formula

Ẽ = ( 1

∑xj
)

12

∑
j=1
Ejxj = ( 1

∑xj
)

12

∑
j=1

⎛
⎝

E68

e−
(Tj−68)2

y

⎞
⎠
xj.

We evaluate this formula assuming the number of miles driven per day is constant over all

months.

47Yuksel and Michalek, forthcoming (2015) use the Nissan Leaf data in their analysis of the effect of
temperature on electric vehicle range.

48The assumed range loss is (R(19.4) −R68)/R68 = −0.33 which implies R(19.4)/R68 = 0.67. Using this in

(A-5), we have 0.67 = e−
(19.4−68)2

y , which we can then solve for y.
49http://wonder.cdc.gov/nasa-nldas.html.
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Supplementary Appendix F. Methods details

Data sources for emissions of gasoline vehicles

The emissions of SO2 and CO2 follow directly from the sulfur or carbon content of the fuels.

Since emissions per gallon of gasoline does not vary across vehicles, emissions per mile can

be simply calculated by the efficiency of the vehicle.50 For emissions of NOx, VOCs and

PM2.5, we use the Tier 2 standards for NOx, VOCs (NMOG) and PM. We augment the

VOC emissions standard with GREET’s estimate of evaporative emissions of VOCs and

augment the PM emissions standard with GREET’s estimate of PM2.5 emissions from tires

and brake wear. Electric vehicles are likely to emit far less PM2.5 from brake wear because

they employ regenerative braking. We had no way of separating emissions into tires and

brake wear separately, so we elected to ignore both of these emissions from electric vehicles.

This gives a small downward bias to emissions of electric vehicles.

Data sources for the electricity demand regressions

The Environmental Protection Agency (EPA) provides data from its Continuous Emissions

Monitoring System (CEMS) on hourly emissions of CO2, SO2, and NOx for almost all

fossil-fuel fired power plants. (Fossil fuels are coal, oil, and natural gas. We aggregate

data from generating units to the power-plant level. Some older smaller generating units

are not monitored by the CEMS data.) CEMS does not monitor emissions of PM2.5 but

does collect electricity (gross) generation. We match emissions data from the 2011 NEI to

annual gross generation reported on the DOE form 923, by plant, to estimate an average

annual average emissions rate expressed as tons of PM2.5/kWh. Power plant emissions of

VOCs are negligible. Based on the NEI for 2008, power plants accounted for about 0.25%

of VOC emissions, but 75% of SO2 emissions and 20% of NOx emissions. In contrast, the

transportation sector accounted for about 40% of VOC emissions.

The hourly electricity load data are from the Federal Energy Regulatory Commission’s

50The carbon content of gasoline is 0.009 mTCO2 per gallon and of diesel fuel is 0.010 mTCO2 per gallon.
For sulfur content we follow the Tier 2 standards of 30 parts per million in gasoline (0.006 grams/gallon)
and 11 parts per million diesel fuel (0.002 grams/gallon).
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(FERC) Form 714. Weekends are excluded to focus on commuting days. See Graff Zivin et

al. (2014) for more details on the CEMS and FERC data.

Details of the AP2 model

AP2 is a standard integrated assessment model in that it links emissions to damages using

six modules. The model first uses an air quality module to map the emissions by sources

into ambient concentrations pollutants at receptor locations. Next, concentrations are used

to estimate exposures using detailed population and yield data for each receptor county in

the lower-48 states. Exposures are then converted to physical effects through the application

of peer-reviewed dose-response functions. Finally, an economic valuation module maps the

ambient concentrations of pollutants into monetary damages. AP2 also employs an algorithm

to determine the marginal damages associated with emissions of any given source.

The inputs to the air quality module are the emissions of ammonia (NH3), fine particulate

matter (PM2.5), sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds

(VOC)—from all of the sources in the contiguous U.S. that report emissions to the USEPA.51

The outputs from the air quality module are predicted ambient concentrations of the three

pollutants—SO2, O3, and PM2.5— at each of the 3,110 counties in the contiguous U.S.

The relationship between inputs and outputs captures the complex chemical and physical

processes that operate on the pollutants in the atmosphere. For example, emissions of

ammonia interact with emissions of NOx, and SO2 to form concentrations of ammonium

nitrate and ammonium sulfate, which are two significant (in terms of mass) constituents of

PM2.5. And emissions of NOx and VOCs are linked to the formation of ground-level ozone,

O3. The predicted ambient concentrations from the air quality module give good agreement

with the actual monitor readings at receptor locations (Muller, 2011).

The inputs to the economic valuation module are the ambient concentrations of SO2, O3,

51There are about 10,000 sources in the model. Of these, 656 are individually-modeled large point sources,
most of which are electric generating units. For the remaining stationary point sources, AP2 attributed
emissions to the population-weighted county centroid of the county in which USEPA reports said source
exists. These county-point sources are subdivided according to the effective height of emissions because
this parameter has an important influence on the physical dispersion of emitted substances. Ground-level
emissions (from vehicles, trucks, households, and small commercial establishments without an individually-
monitored smokestack) are attributed to the county of origin (reported by USEPA), and are processed by
AP2 in a manner that reflects the low release point of such discharges.
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and PM2.5 and the outputs are the monetary damages associated with the physical effects of

exposure to these concentrations. The majority of the damages are associated with human

health effects due to O3 and PM2.5, but AP2 also considers crop and timber losses due to O3,

degradation of buildings and material due to SO2, and reduced visibility and recreation due

to PM2.5. For human health, ambient concentrations are mapped into increased mortality

risk and then increased mortality risks are mapped into monetary damages.52 AP2 uses the

value of a statistical life (or VSL) approach to monetize an increase in mortality risk (see

Viscusi and Aldy, 2003). In this paper we use the USEPA’s value of approximately $600 per

0.0001 change in annual mortality risk.53 This value of an incremental change in mortality

risk yields a VSL of $6 x 106 = $600/0.0001.

AP2 is used to compute marginal ($/ton) damages over a large number of individual

sources (power plants in the present analysis) and source regions (counties within which

vehicles are driven). First, baseline emissions data that specifies reported values for all

emissions at all sources is used to compute baseline damages. (For this paper, we use

emissions data from USEPA (2014) that contains year 2011 emissions.) Next, one ton of

one pollutant, NOx perhaps, is added to baseline emissions at a particular source, perhaps

a power plant in Western Pennsylvania. Then AP2 is re-run to estimate concentrations,

exposures, physical effects, and monetary damage at each receptor conditional on the added

ton of NOx. The difference in damage (summed across all receptors) between the baseline

case and the add-one-ton case is the marginal damage of emitting NOx from the power

plant in Western Pennsylvania.54 This routine is repeated for all pollutants and all sources

in the model, first for full damages, and then second for native damages (which only looks

at receptors in the state or county of interest).

52Because baseline mortality rates vary considerably according to age, AP2 uses data from the U.S. Census
and the U.S. CDC to disaggregate county-level population estimates into 19 age groups and then calculates
baseline mortality rates by county and age group. The increase in mortality risk due to exposure of emissions
is determined by the standard concentration-response functions approach (USEPA, 1999; 2010; Fann et al.,
2009). In terms of share of total damage, the most important concentration-response functions are those
governing adult mortality. In this paper, we use results from Pope et al (2002) to specify the effect of PM2.5

exposure on adult mortality rates and we use results from Bell et al (2004) to specify the effect of O3 exposure
on adult mortality rates.

53Of course not all lifetime vehicle miles are driven in the same year. But we assume that marginal
damages grow at the real interest rate so that there is no need to discount damages from miles over the life
of the vehicles.

54We can also analyze the marginal damages at each receptor.
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Supplementary Appendix G. State electric vehicle in-

centives

The Department of Energy maintains a database of alternative fuels policies by state.55

Using this information, we determined four measures of state electric vehicle policy.56 The

first measure is the actual subsidies for the purchase of an electric vehicle. The second

measure is equal to the total number electric vehicle of policies (including both incentives

and regulations). The third measure is equal to the number of policies that were classified

as by the Department of Energy as incentives. The fourth measure is equal to the number

of incentives that were deemed by us to be significant (thus excluding, for example, an

incentive that would only apply to the first 100 consumers to install electric vehicle charging

equipment).

The four measures are shown in Table B for each state along with the full damage subsidy

and the native damage subsidy. Each of the four measures is more highly correlated with

the native damage subsidy than with the full damage subsidy.

Supplementary Appendix H. Calibration and sensitivity

To analyze welfare issues, we must have a value for µ. We determine this value by calibrating

a numerical version of the model. For this calibration, we assume a specific constant elasticity

functional form for the utility of consuming electric miles and gasoline miles. For gasoline

miles we have

f(g) = kg
g1−γg − 1

1 − γg
and for electric miles we have

h(e) = ke
e1−γe − 1

1 − γe
+H.

As in the main text, we compared the Ford Focus with the Ford Focus Electric. The

exogenous parameters are shown in Table C. The elasticity of demand for gasoline miles

55http://www.afdc.energy.gov/laws/matrix?sort by=tech
56The state electric vehicle policies are changing over time. Our measures were accurate as of January 1,

2015.
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Table B: State electric vehicle policies
State Full Native Actual Significant All incentives All incentives

Damage Damage Subsidy Incentives and regulations
Subsidy Subsidy

Alabama -1537 47 0 1 4 2
Arizona 1093 272 0 5 14 6
Arkansas -1536 -33 0 0 2 0
California 3025 1572 2500 2 45 21
Colorado 1123 320 6000 1 11 5
Connecticut -1719 -126 0 0 7 3
Delaware -2462 -23 0 0 2 0
District of Columbia -801 441 0 1 4 3
Florida -829 296 0 1 8 4
Georgia -955 601 5000 2 8 8
Idaho 702 49 0 0 1 1
Illinois -1475 990 4000 2 13 7
Indiana -2543 241 0 1 9 6
Iowa -4118 -109 0 0 4 2
Kansas -920 124 0 0 1 0
Kentucky -1665 88 0 1 4 1
Louisiana -1452 7 0 0 4 2
Maine -2619 -393 0 0 4 1
Maryland -1945 462 3000 3 12 7
Massachusetts -1498 220 2500 1 7 4
Michigan -2720 291 0 1 6 6
Minnesota -3951 304 0 1 9 2
Mississippi -1793 -51 0 0 2 1
Missouri -1367 129 0 0 6 2
Montana 87 -43 0 0 1 1
Nebraska -3856 -11 0 0 2 1
Nevada 940 150 0 2 9 3
New Hampshire -2252 -324 0 0 2 0
New Jersey -1367 724 0 2 3 2
New Mexico 702 80 0 0 6 3
New York -1122 645 0 0 5 3
North Carolina -1411 205 0 1 12 5
North Dakota -4773 -213 0 0 1 0
Ohio -2437 414 0 0 4 1
Oklahoma -791 209 0 0 5 2
Oregon 841 148 0 0 12 5
Pennsylvania -2472 322 0 0 5 3
Rhode Island -1746 -132 0 0 7 1
South Carolina -1511 48 0 0 6 5
South Dakota -3787 -173 0 0 0 0
Tennessee -1512 61 0 1 3 1
Texas 784 394 2500 1 8 7
Utah 1320 557 650 2 8 4
Vermont -2858 -430 0 0 6 2
Virginia -1532 73 0 2 13 5
Washington 1108 319 0 0 20 6
West Virginia -2930 -87 0 0 4 0
Wisconsin -3720 67 0 0 6 2
Wyoming 381 -42 0 0 0 0

Correlation with full damage subsidy 0.29 0.35 0.51 0.51
Correlation with native damage subsidy 0.50 0.52 0.68 0.77
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(−1/γg) comes from Espey (1998). The elasticity of demand for electric miles (−1/γe) is

assumed to be equal to the elasticity of demand for gasoline miles.

The endogenous parameters are determined as follows. The values for kg and ke are

selected such that the consumer would, in the absence of any policy intervention, consume

150,000 lifetime miles for each type of vehicle. This gives kg = 2.58 × 109 and ke = 8.93 × 108.

The values for µ and H were determined such that two conditions held. First, in the absence

of any policy intervention, the consumer would select the gasoline vehicle with some given

probability. Second, consistent with Li et al (2015)’s observation, at the current federal

subsidy of $7500, half of electric vehicles sales would be due to the subsidy. See Table D.

The expression for welfare W in the main text gives the welfare associated with the

purchase of a new vehicle. For the calculations in Tables 6a and 6b, we multiply the welfare

per new vehicle sale by 15 million (the approximate number of new vehicle sales per year in

the U.S.).

Table C: Exogenous Calibration Parameters (2013 Dollars) : Ford Focus and Ford Focus
Electric

Param. Value Economic Interpretation Source/Notes

I 438641 Income over 10 year vehicle lifetime US BLS : $827 week
pe 0.0389 Price of electric miles ($ per mile) EIA : 0.1212 $ per kWh * 0.321 kWh/mile
pg 0.1126 Price of gasoline miles ($ per mile) CNN : 3.49 $ per gallon / 31 miles/gallon
pΩ 35170 Price of electric vehicle ($) Ford Motors
pG 16810 Price of gasoline vehicle ($) Ford Motors
γg 2 Gives elasticity for gasoline miles of -0.5 Espey 1998
γe 2 Gives elasticity for electric miles of -0.5 Assumption
lmg 150,000 BAU lifetime miles gasoline Assumption
lme 150,000 BAU lifetime miles electric Assumption
L 50% % electric sales from $7500 subsidy Li et al (2015)

A sensitivity analysis of the exogenous calibration parameters is given in Table E. Baseline

corresponds to a BAU probability of 0.01 of selecting the electric vehicle (which corresponds

to the first columns in Table 6a and 6b). Changes in the price of the vehicles and income

have no effect on the results. Changes in the price of miles and the elasticity of demand for

miles have no effect on the benefits of differentiated subsidies, but do effect the benefits of

differentiated taxes. Changes in the lifetime miles driven and percentage of sales due to the

current federal subsidy effect the benefits of both differentiated subsides and differentiated

taxes.
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Table D: Value of µ and H as a function of the probability, with no policy intervention, of
selecting the gasoline vehicle

Probability H µ

0.99 1688947865 10664
0.95 1688967313 10037
0.90 1688976546 9249

Table E: Sensitivity of Exogenous Calibration Parameters

Parameter Welfare Loss Welfare Loss Gain from
Subsidy Tax Differentiation

Federal State Federal State Subsidy Tax

Baseline 2023.6 2000.3 162.7 89.5 23.4 73.2
Gasoline Miles Elasticity + 33% 1393.9 1370.5 121.2 62.6 23.4 58.6
Gasoline Miles Elasticity 33% 2640.0 2616.6 201.6 114.3 23.4 87.3
Electric Miles Elasticity + 33% 2002.4 1979.0 162.1 89.5 23.4 72.5
Electric Miles Elasticity 33% 2043.9 2020.5 163.3 89.6 23.4 73.7
Lifetime Miles Electric 16.6% 2036.2 2007.2 167.5 89.6 28.9 77.9
Lifetime Miles Electric - 16.6% 2010.3 1992.1 158.1 89.5 18.2 68.6
Lifetime Miles Gas +16.6% 2351.1 2325.2 188.7 105.2 25.9 83.5
Lifetime Miles Gas -16.6% 1696.5 1675.4 137.2 74.2 21.2 63.1
Purchases due to subsidy +10% 2029.4 1998.6 169.3 90.8 30.8 78.5
Purchases due to subsidy - 10% 2019.0 2001.7 157.4 88.5 17.3 68.9
Price of Electric Vehicle +16.6% 2023.6 2000.3 162.7 89.5 23.4 73.2
Price of Electric Vehicle -16.6% 2023.6 2000.3 162.7 89.5 23.4 73.2
Price of Gas Vehicle + 16.6% 2023.6 2000.3 162.7 89.5 23.4 73.2
Price of Gas Vehicle -16.6% 2023.6 2000.3 162.7 89.5 23.4 73.2
Price of Electric Miles +16.6% 2016.1 1992.7 162.7 89.5 23.4 73.1
Price of Electric Miles -16.6% 2033.6 2010.2 162.7 89.6 23.4 73.1
Price of Gas Miles + 16.6% 1768.1 1744.8 147.8 80.1 23.4 67.7
Price of Gas Miles 16.6% 2367.3 2343.9 181.5 101.5 23.4 80.1
Income + 16% 2023.6 2000.3 162.7 89.5 23.4 73.2
Income -16% 2023.6 2000.3 162.7 89.5 23.4 73.2

Note: $ Million/year
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We conducted a final sensitivity analysis with respect to the price of gasoline and electric

miles. Up to now, we have assumed (in both the theoretical model and the empirical calcu-

lations) that these prices are the same across locations. In this final sensitivity analysis, we

drop this assumption and employ state-specific prices for electric miles and region-specific

prices for gasoline miles (using data from EIA.gov). In this analysis, the second best uniform

federal subsidy is no longer given by the expression in Proposition 2, and in fact does not

have a closed form expression. Likewise for the second best uniform federal taxes. So we

determine the these quantities numerically. The benefits of differentiated subsidies, state

vs. federal, is $23.2 million (compared to a baseline of $23.4 million) and the benefits of

differentiated taxes is $68.4 million (compared to a baseline of $73.2 million).

Supplementary Appendix I. Single tax policies

Suppose that local government i uses both a tax on gasoline miles and a tax on electric miles.

As is well known, the government can obtain the first-best outcome by utilizing the Pigovian

solution. Here taxes are equal to the marginal damages, so that tgi = δgi and tei = δei.
Now suppose for some reason the government can only tax gasoline miles. What is the

optimal gasoline tax, accounting for the externalities from both gasoline and electric vehicles?

The answer to this question is given in the next Proposition.

Proposition 3. The optimal tax on gasoline miles alone in location i is given by

t∗gi =
⎛
⎜
⎝
δgi + δei

⎛
⎜
⎝

ei

−gi ( pG
gi(pg+t∗g)

εg
εG
+ 1)

⎞
⎟
⎠

⎞
⎟
⎠
,

where εg is the own-price elasticity of gasoline and εG is the own-price elasticity of the

gasoline vehicle.

The optimal tax on gasoline miles alone is less than the Pigovian tax on gasoline miles.

This occurs because the consumers have the option to substitute into the electric vehicle and

thereby avoid taxation on the externalities they generate.

Proof of Proposition 3.
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Throughout the proof we can drop the subscript i. The first-order condition for tg is the

same as (A-2):

(∂R
∂tg

− πg) − (δg
∂G

∂tg
+ δe

∂E

∂tg
) + ∂R

∂tg
= 0.

In this case there is only a single tax, so expected tax revenue is given by

R = tgπg,

and hence
∂R

∂tg
= G + tg

∂G

∂tg
.

Using this in the first-order condition gives

((G + tg
∂G

∂tg
) − πg) − (δg

∂G

∂tg
+ δe

∂E

∂tg
) = 0.

Now, because G = πg, this simplifies to

(tg − δg)
∂G

∂tg
− (δe)

∂E

∂tg
= 0.

Solving for tg gives

tg =
⎛
⎝
δg + δe

∂E
∂tg

∂G
∂tg

⎞
⎠
.

Now from (3), (4), and (5), we have

∂π

∂tg
= −π(1 − π)

µ
g,

∂G

∂tg
= −π(1 − π)

µ
g2 + π ∂g

∂tg
.

and
∂E

∂tg
= π(1 − π)

µ
eg + (1 − π) ∂e

∂tg
.

Now because there are no income effects, tg does not effect the choice of e, so this latter
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equation simplifies to
∂E

∂tg
= π(1 − π)

µ
eg.

Substituting these into the first-order condition for tg and simplifying gives

tg =
⎛
⎜⎜
⎝
δg + δe

⎛
⎜⎜
⎝

e
∂g
∂tg

µ

(1−π)g − g

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
.

We can further express this equation in terms of elasticities. The own-price elasticity of

gasoline miles is

εg =
∂g

∂tg

pg + tg
g

.

For discrete choice goods, price elasticities are defined with respect to the choice probability.

The own-price elasticity of the gasoline vehicle, given a change in the price of the gasoline

vehicle, is

εΨ = ∂π

∂pΨ

pΨ

π
= π(1 − π)

µ
( ∂Vg
∂pΨ

− ∂Ve
∂pΨ

)pΨ

π
= π(1 − π)

µ
(−1 − 0)pΨ

π
= −(1 − π)pΨ/µ.

Substituting the elasticities into the first-order condition for tg gives

tg =
⎛
⎜
⎝
δg + δe

⎛
⎜
⎝

e

−g ( pΨ

g(pg+tg)
εg
εΨ
+ 1)

⎞
⎟
⎠

⎞
⎟
⎠
.

∎

Supplementary Appendix J. CAFE standards

Consider an automobile manufacturer that produces three models a, b, and g with corre-

sponding fuel economies in miles per gallon fa < fb < fg. As the notation indicates, vehicle

g will play the role of the gasoline vehicle in the main text (and thereby be the substitute

for the electric car.) The sales are each model are na, nb and ng. The CAFE standard

requires that fleet fuel economy (defined as the sales-weighted harmonic mean of individual
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fuel economies) exceeds a given value k. So we have

na + nb + ng
na

fa
+ nb

fb
+ ng

fg

≥ k.

Suppose initially that the cafe standard is binding, which implies that the market would

prefer to swap from a high MPG vehicle purchase to a low MPG vehicle purchase, but

cannot do so because of the standard. It is helpful to write the initial condition in terms of

gallons per mile rather than miles per gallon:

na

fa
+ nb

fb
+ ng

fg

na + nb + ng
= 1

k
.

We want to analyze the impact of selling an electric vehicle on the composition of the

fleet, under the assumption that the total amount of vehicles sold stays the same. For CAFE

purposes, the electric vehicle is assigned it’s MPG equivalent, which is typically much greater

than the MPG of the most efficient gasoline vehicle Let this be denoted by fe where fe > fg.
Since the total amount of vehicles sold stays the same, the sale of an electric vehicle leads

to a reduction in sales of another type of vehicle. This clearly raises the fleet fuel economy,

the CAFE standard is no longer binding, and so the previously restricted swap from high to

low MPG may now be allowed to take place. Assume that the electric vehicle sale replaces

a sale of a model g vehicle, and that the desired swap is from b to a. Also assume that the

footprint of g and e are the same, and the footprint of b and a are the same. (This keeps

the value of k constant.) The swap of a for b can be done if the resulting fleet fuel economy

satisfies the standard:
na+1
fa

+ nb−1
fb

+ ng−1
fg

+ 1
fe

na + nb + ng
≤ 1

k
. (A-6)

Using the initial condition this becomes

1

k
+

1
fa
+ −1

fb
+ −1
fg
+ 1
fe

na + nb + ng
≤ 1

k
,

and so the condition becomes
1

fa
− 1

fb
≤ 1

fg
− 1

fe
. (A-7)
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The right-hand-side of (A-7) specifies the maximum feasible increase in gallons per mile

that may occur in the rest of the fleet due to the sale of an electric vehicle. If the CAFE

constraint binds in the resulting fleet (which we would generally expect to be the case),

then this maximum will be obtained. And of course this increase in gallons per mile has an

associated cost to society from emissions damage.

We see that CAFE regulation induces an additional environmental cost from electric

vehicles due to the substitution of a low MPG vehicle for a high MPG vehicle We can sketch

a back-of-the-envelope calculation for the magnitude of this CAFE induced environmental

cost and its effect on the second-best subsidy on electric vehicles as follows. Assume that

vehicle a and vehicle b are in the same Tier 2 “bin”. For vehicles in the same bin, the vast

majority of environmental damages are due to emissions of CO2. In addition, without a

explicit model of the new vehicle market, we don’t know which location the vehicle a will be

driven. So we are content to calculate the CAFE induced environmental cost due to CO2

emissions only. Let δa and δb be the damage (in $ per mile) due to CO2 emissions from

vehicle a and b, respectively.57 It follows that the additional environmental cost is give by

(δa − δb)g.

Next we integrate CAFE standards with the model in the main part of the paper. We

do not try to model both supply and demand for the market for vehicles. Rather we sim-

ply assume that the consumer chooses between the electric vehicle and vehicle g, and this

choice induces a change in the composition of the rest of the fleet due to CAFE regulation

considerations. The basic single-location welfare equation becomes

W = µ (ln(exp(Ve/µ) + exp(Vg/µ))) +R − (π(δb + δg)g + (1 − π)(δee + δag)).

We see that if the consumer selects the gasoline vehicle, then the fleet consists of this gasoline

vehicle in conjunction with vehicle b. But if the consumer selects the electric vehicle, then

the fleet consists of the electric vehicle in conjunction with vehicle a. (We are ignoring the

utility benefit generated by the switch from b to a.) Following similar arguments as in the

57For example, δa =
$0.403

fa
, where the numerator is the CO2 damages per gallon in our model.
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proof of Proposition 1, the optimal subsidy is determined to be

s∗ = ((δg − (δa − δb))g − δee).

We see that the optimal subsidy is decreased by the amount equal to the CAFE induced

environmental cost (δa − δb)g. Using our Ford Focus baseline numbers, the CAFE induced

environmental cost turns out to be $1439.58

Starting in 2017, CAFE regulation will make things worse, because it will allow the

manufacturer to claim credit for two electric vehicle sales for each actual sale of an electric

vehicle. Thus (A-6), the condition for the swap from b to a becomes

na+1
fa

+ nb−1
fb

+ nc−1
fc

+ 2
fe

na + nb + nc + 1
≤ 1

k
.

Notice that we are keeping the actual amount of vehicles sold constant, but the CAFE

regulation enables the manufacturer to do the calculation as if they had sold one additional

electric vehicle. Using the initial condition, this can be written as

1
fa
+ −1

fb
+ −1

fc
+ 2
fe

na + nb + nc
≤

na

fa
+ nb

fb
+ nc

fc

na + nb + nc
(na + nb + nc + 1) − (na

fa
+ nb
fb
+ nc
fc

) .

Which simples to
1

fa
− 1

fb
≤ ( 1

fc
− 1

fe
) + (1

k
− 1

fe
) . (A-8)

Comparing (A-7) with (A-8), we see that the effect of double counting the electric vehicle is

to more than double the CAFE induced environmental cost of the electric vehicle, provided

the gallons per mile used by vehicle c is smaller than CAFE limit on gallons per mile 1/k.

58The right-hand-side of (A-7) is given by 1/30 − 1/105 = 0.0238. Assuming this equation holds with
equality, we have (δa−δb) = 0.403∗0.0238. Multiplying by a lifetime of 150,000 miles gives $1439. We should
also note that the EPA posted MPG number for a given vehicle is different from the CAFE MPG number
for that same vehicles. On average, the EPA number is eighty percent of the CAFE number. We use the
EPA number in the calculation of the additional environmental cost because it more accurately reflects real
word gasoline consumption.
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