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1 Data

In the paper, we make use of two sets of transition rates: the first over 1976-2010 between

the three labor market states E,U,N , and the second over 1994-2010 between the four labor

market states E,U,Nw and Nn.

To measure individuals’transition probabilities pAB from labor force status A ∈ {E,U,N}
to labor force status B ∈ {E,U,N} over 1976-2010, we use matched CPS micro data from
January 1976 through December 2010 and compute the number of workers moving from A

to B each month. We then correct the measured transitions for the 1994 CPS redesign as

described below. To measure individuals’transition probabilities pAB from labor force status

A ∈ {E,U,Nn, Nw} to labor force status B ∈ {E,Nn, Nw} over 1994-2010, we use matched
CPS micro data from January 1994 through December 2010 and compute the number of

workers moving from A to B each month.

In both cases, we then correct the measured transitions for time-aggregation bias.1

1.1 Correction for the 1994 CPS redesign

When measuring transition probabilities over 1976-2010, the 1994 redesign of the CPS (see

e.g., Polivka and Miller, 1998) caused a discontinuity in some of the transition probabilities in

the first month of 1994 (Abraham and Shimer, 2002).

To adjust the series for the redesign, we proceed as follows. We start from the monthly

transition probabilities obtained from matched data for each demographic group. We take the

post-redesign transition probabilities as the correct ones, and we correct the pre-94 value for

the redesign. To do so, we estimate a VAR with the six hazard transition probabilities in

logs estimated over 1994m1-2010m12 and as used in Barnichon and Nekarda (2012), and we

1We also implemented a correction for margin error that restricts the estimates of worker flows to be consistent
with the evolution of the corresponding labor market stocks, as in Poterba and Summers (1986). We did
not correct the data for classification error and spurious transitions (Abowd and Zellner (1985), Poterba and
Summers (1986)), because it is not clear how one should correct for such classification error in the CPS survey
(Elsby, Hobijn and Sahin, 2013). Elsby et al. report alternative correction methods, and the secular trends
appear broadly unchanged.
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use the model backcast the 93m12 transition probabilities2 With these 93m12 values in hand,

we obtain corrected transition probabilities over 1976m2-1993m12 by adding to the original

probability series the difference between the original value in 93m12 and the inferred 93m12

value.

By eliminating the jumps in the transition probabilities in 1993m12, we are assuming

that these discontinuities were solely caused by the CPS redesign. Thus, the validity of our

approach rests on the fact that 1994m1 was not a month with large "true" shocks to the

transition probabilities. We think that this is unlikely because there is no large movements in

the aggregate job finding rate and aggregate job separation rate obtained from duration data

(Shimer, 2012 and Elsby, Michaels and Solon, 2009) that do not suffer from these disconti-

nuities. Indeed, these authors treat the 1994 discontinuity by using data from the first and

fifth rotation group, for which the unemployment duration measure (and thus their transition

probability measures) was unaffected by the redesign. Moreover, Abraham and Shimer (2002)

used independent data from the Census Employment Survey to evaluate the effect of the CPS

redesign on the average transition probabilities from matched data. They found that only λUN

and λNU were significantly affected, and that, after correction of these discontinuities (using

the CES employment-population ratio), none of the transition probabilities displayed large

movements in 1994.

1.2 Correction for time-aggregation bias

The estimated transition probabilities suffer from time-aggregation bias because one can only

observe transitions at discrete (in this case, monthly) intervals (Shimer, 2012).3 We thus need

to correct for time-aggregation bias for each demographic group. To do so, we use Shimer

(2012) and Elsby et al. (2013)’s method that we generalize to a labor market with 4 states

with {E,U,Nw, Nn} (employed, unemployed, "want a job" nonparticipant, "not want a job"
nonparticipant).

We consider a continuous time environment in which data are available only at discrete

dates. For t ∈ {0, 1, 2...}, we refer to the interval [t, t + 1[ as ‘period t’. We assume that the

transition of workers across labor market states can be described by a (four-state) Markov chain

of order 1 with the transition matrix being constant during period t. The number of employed

E, unemployed U , "want a job" nonparticipant Nw and "not want a job" nonparticipant Nn

2The number of lags were chosen to maximize out-of-sample forecasting performances. A similar VAR is
used in Barnichon and Nekarda (2012) to forecast the six flow rates.

3Another issue is classification error (Abowd and Zellner, 1985 and Poterba and Summers, 1986). Although
it is not clear whether one should apply these correction methods on the current CPS survey, Elsby, Hobijn and
Sahin (2013) try different correction methods, and the secular trends are broadly unchanged.
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then satisfies the system

Yt = P̃tYt−1 (1)

with

P̃t =


1− pEU − pENw − pENn

pUE pN
wE pN

nE

pEU 1− pUE − pUNw − pUNn
pN

wU pN
nU

pEN
w

pUN
w

1− pNwU − pNwE − pNwNn
pN

nNw

pEN
n

pUN
n

pN
wNn

1− pNnU − pNnE − pNnNw


t

(2)

where we omit the demographic group subscript i for clarity of presentation.

To recover the hazard rates from the measured transition probabilities (i.e., correct the

transition probabilities for time-aggregation bias), we need to recover the instantaneous tran-

sition matrix Pt in the continuous time system

Yt = PtYt−1 (3)

The first-order differential equation (3) has solution Yt = VtΛtV
−1
t Yt−1 with Vt the matrix of

eigenvectors of Pt and Λt a diagonal matrix with the exponential of the eigenvalues of Pt on

the diagonal. Contrasting with (1), it follows that P̃t has the same eigenvectors as Pt, so that

one can construct Pt from Pt = VtΛtV
−1
t with Vt the matrix of eigenvectors of P̃t and Λt a

diagonal matrix with the log of the eigenvalues of P̃t on the diagonal.

2 Decompositions of ut, lt and mt

This section describes the decomposition of (i) the unemployment rate ut, (ii) the participation

rate lt, and (iii) the share of "want a job" nonparticipants mt.

2.1 Decomposition of ut and lt

We now describe the decomposition of ut and lt underlying Figures 6-9 in the main text.

Denoting ωit = LFit
LFt

the share of group i ∈ {1, ..,K} in the labor force and Ωit = Popit
Popt

the

population share of group i, the aggregate unemployment and participation rates are given by
ut =

K∑
i=1

Ωit
lit
lt
uit

lt =
K∑
i=1

Ωitlit

(4)
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The steady-state unemployment rate of group i, uit = Uit
LFit

, satisfies

uit = u(
{
λABit

}
), A,B ∈ {E,U,N}

=
sit

sit + fit

where sit and fit are  fit = λUEit + λUNit
λNEit

λNEit +λNUit

sit = λEUit + λENit
λNUit

λNEit +λNUit

. (5)

Similarly, the steady-state labor force participation rate of group i, lit = LFit
Popit

satisfies

lit = l
({
λABit

})
, A,B ∈ {E,U,N}

=
sit + fit

sit + fit +
λEUit λUNit +λUEit λENit +λUNit λENit

λNEit +λNUit

. (6)

The identities in (4) are functions of the six hazard rates of each demographic group

(the λABit s, A,B ∈ {E,U,N}, i ∈ {1, ..,K}) and functions of the population shares (Ωit,

i ∈ {1, ..,K}) of each group.
By taking a Taylor expansion of the identities in (4) around the mean of the hazard rates

of each demographic group i (λABit ' EλABit ) and around the mean of the population share

(Ωit ' Ωi ≡ EΩit) of each group, we can decompose the aggregate unemployment rate ut
and labor force participation rate lt into the contribution of changes in demographics and the

contributions of movements in each transition rate (stripped of demographic effects):4{
dut = duΩ

t + duUEt + duUNt + duEUt + duENt + duNUt + duNEt + εut

dlt = dlΩt + dlUEt + dlUNt + dlEUt + dlENt + dlNUt + dlNEt + εlt
(7)

with duΩ
t =

K∑
i=1

βΩ
i (Ωit − Ωi) capturing the contribution of demographics

and duABt =
K∑
i=1

βABi
(
λABit − λABi

)
, A,B ∈ {E,U,N}, βABi the coeffi cients of the Taylor expan-

sion, capturing the contribution of λAB, the transition rate from A to B to the unemployment

4By taking a Taylor expansion around the mean, instead of around an HP-filter trend or around last period’s
value as in Elsby et al. (2009) or Fujita and Ramey (2009), our decomposition has the advantage of covering
all frequencies and hence allows us to analyze low-frequency movements (as well as cyclical movements). The
coeffi cients of the Taylor expansion are available upon request. To guarantee that the approximation remains
good however, we take a second-order approximation, which performs extremely well, as we show in the next
section.
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rate (holding the demographic structure of the population constant). εut is the Taylor approx-

imation error. Similar notations apply to the decomposition of the labor force participation

rate, but substituting βABi with δABi , the coeffi cients of the Taylor expansion of lit.

Finally, by using equation (3) in the main, we obtain the effect of changes in the share of

"want a job" nonparticipants on unemployment, dumt

dumt =
K∑
i=1

βNUi

[(
λN

wU
i − λNnU

i

)
− λNUi
λNEi

(
λN

wE
i − λNnE

i

)]
(mit −mi) (8)

and a similar expression holds for dlmt with

dlmt =
K∑
i=1

[
δNUi

(
λN

wU
i − λNnU

i

)
+ δNEi

(
λN

wE
i − λNnE

i

)]
(mit −mi) . (9)

The upper panel of Figure 6 in the main text shows duΩ
t , and the middle panel shows du

m
t .

The top panel of Figure 7 in the main text shows duΩ
t , the second panel shows du

NU
t + duNEt ,

the third panel shows duEUt + duENt , and the fourth panel shows duUEt + duUNt . In the second

panel, the dashed line reports dumt . Figures 8 and 9 in the main text are organized in a similar

fashion for the aggregate participation rate.

Finally, we verify that the second-order Taylor expansions behind the stock-flow decompo-

sitions of unemployment and participation, equation (7) do indeed capture, to a good approx-

imation, the movements in unemployment and participation. Figure 1 plots, in plain black,

the steady-state unemployment rate along with, in dashed red, the unemployment rate implied

by (7). We can see that our decomposition does an excellent job at capturing unemployment

movements. Similarly, Figure 2 plots in plain black, the steady-state labor force participation

rate along with, in dashed red, the labor force participation rate implied by (7). Again, our

decomposition does an excellent job at capturing participation movements.

2.2 Decomposition of mt

The accounting identity behind the stock-flow decomposition of mt is given by the steady-

state of the system (1). Specifically, letting λABt denote the hazard rate of transiting from

state A ∈ {E,U,Nw, Nn} to state B ∈ {E,U,Nw, Nn}, in continuous time, we have
• U

Nw

Nn


t︸ ︷︷ ︸

ṡt

= Lt

 U

Nw

Nn


t︸ ︷︷ ︸

st

+

 λEU

λEN
w

λEN
n


t

Popt

︸ ︷︷ ︸
gt
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with

Lt =

(
−λUE − λUNw − λUNn − λEU λN

wU − λEU λN
nU − λEU

λUN
w − λENw −λNwU − λNwE − λNwNn − λENw

λN
nNw − λENw

λUN
n − λENn

λN
wNn − λENn −λNnU − λNnE − λNnNw − λENn

)
t

.

The steady-state of the system, s∗t , is then given by

s∗t = −L−1
t gt. (10)

From the expression for s∗t , (10), we can then define the steady-state variable of interest; in

our case, the share of "want a job" nonparticipants mt =
Nw
t

Nw
t +Nn

t
.We can then decompose the

stock mt into the contribution of the flows using a Taylor expansion of (10) around the mean

of each hazard rate (λABt ' λAB ≡ EλABt )

mt −m =
∑
A 6=B

γAB
(
λABt − λAB

)
+ ηt (11)

with A,B ∈ {E,U,Nw, Nn} and
{
γAB

}
the coeffi cients of the Taylor expansion. Using (11)

and data on transition rates between E, U , Nw and Nn over 1994-2010,5 we can assess the

separate contributions of each hazard rate to movements of mt.

3 Some more facts

This section presents a number of additional facts mentioned in the main text of the paper.

3.1 The behavioral differences between Nw and Nn over time

To verify that the information conveyed by the answer to the question "Want a job" did not

change too much over time, Figure 3 plots the evolution of the relative propensities to join

Unemployment (U) and Employment (E) for "Want a job" (Nw) and "Not want a job" (Nn)

nonparticipants: The solid line depicts pN
wU/pN

nU and the dashed line depicts pN
wE/pN

nE .

We can see that the two ratios are remarkably stable over time.

3.2 Strong wage growth over 1995-2000

The second half of the 90s coincides with strong positive growth in real wages for all deciles

of the income distribution. Figure 4 shows the cumulative changes in real wages since 1994

5Recall that transitions in and out of Nw or Nn are only available starting in 1994.
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for different percentiles of the wage distribution.6 Since higher wage leads to higher search

intensity of primary workers, strong wage growth is unlikely to explain the decline in desire to

work through its effect on primary earners. However, large gains in wage income imply large

gains in real family income, which can, through the added-worker effect, lead to lower desire

to work among secondary workers. Figure 5 shows a striking correlation between real median

family income and the fraction of nonparticipants who do not want a job.

4 Amore general accounting framework: Allowing for separate

transition rates for Nw and Nn labor force entrants

The accounting framework underlying our results on the impact of a change in the share of

"want a job" nonparticipants on unemployment and participation were calculated under the

assumption that the transition of workers across labor market states could be described by a

(four-state) Markov chain of order 1, in that only the current labor market state is relevant to

determine an individual transition rate to another state.

This assumption is standard in the "Ins and Outs" literature that uses a two-state (unem-

ployment and employment) or a three-state (unemployment, employment, nonparticipation)

stock-flow accounting model to decompose unemployment fluctuations into the contributions

of its flows.7 This assumption amounts to summarizing worker heterogeneity with one variable:

the current labor market status. Naturally, this assumption is a simplification of reality as it is

well known that labor force entrants have different unemployment outflow rates than job losers

(e.g., Elsby et al., 2009) or that long-term unemployed have lower exit rates than short-term

unemployed.

In our paper, we made the same simplifying assumption in a four-state model of the labor

market, and we posited that once a non-participant joins the labor force, he behaves like

any other unemployed or unemployed worker so that his future transitions do not depend on

whether that individual was formally a "want a job" or a "not want a job" non-participant.

In this section, we test the sensitivity of our results to that approximation by considering

a richer framework in which we relax the assumption that a labor force entrant ("want a job"

or not) behaves like the "average" labor force participant once he entered the labor force.

Specifically, we posit that labor force participants can be of two types: (i) "New" labor force

entrants and (ii) "Old" labor force entrants. Each type is characterized by its own transition

rates, and "New" entrants become "Old" at some constant Poisson rate υ.8

6A very similar picture holds for all the other deciles of the income distribution. Wage measures were
constructed from the CPS Outgoing Rotation Group microdata.

7Fujta and Ramey (2009), Elsby et al. (2009), Shimer (2012), Elsby et al. (2013).
8 In fact, since a nonparticipant can be of two types ("Want a job" or "Not want a job"), we allow labor
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4.1 Model

Specifically, we consider a labor market with 8 states: (E,U,Nw, Nn, UN
w
, EN

w
, UN

n
, EN

n
).

An Old labor force entrant can be employed (E) or unemployed (U) and transit between these

states or leave the labor force to become a "want a job" nonparticipant (Nw) or a "not want

a job" nonparticipant (Nn). A "want a job" nonparticipant (Nw) who joins the labor force

is a New labor force entrant, and he can be unemployed (UN
w
) or employed (EN

w
) and can

then transit between these states or leave the labor force. Similar notations apply for a former

"not want a job" nonparticipant (UN
n
, EN

n
). As stated previously, a New labor force entrant

becomes Old at a rate υ.

Denoting Yt =
(
E,EN

w
, EN

n
, U, UN

w
, UN

n
, Nw, Nn

)′
t
the vector of the number of workers

in each state at date t, we have

Yt = PtYt−1 (12)

with Pt a matrix capturing transition probabilities across states during period t.

For instance, for Et, we have

Et = (1− pEUt − pENw

t − pENn

t )Et−1 + Ut−1p
UE
t + EN

w

t−1(1− e−υ) + EN
n

t−1(1− e−υ) (13)

with (1 − e−υ) capturing the probability that a "New" labor force entrant becomes "Old"

within one period.

Similarly, for EN
w

t , we have

EN
w

t = (1− pEN
w
U

t − pEN
w
Nw

t − pEN
w
Nn

t − (1− e−υ))EN
w

t−1 +Nw
t−1p

NwEN
w

t (14)

and similarly for EN
n
, U , UN

w
and UN

n
.

Equations (13) and (14) show how a labor force entrant who is employed (EN
w
) is allowed

to have different transition rates from an average employed worker (E).

4.2 Data

To measure the transition rates in and out of EN
w
, UN

w
, EN

n
, UN

n
as well as measure υ, we

match the CPS micro data over four consecutive monthly surveys, that is we follow the labor

force status over four consecutive months.9

force participants to be of three types: (i) "new" labor force entrants from "Want a job", (ii) "new" labor force
entrants from "Not want a job" and (iii) "old" labor force entrants.

9The CPS is a rotating panel where individuals are surveyed for four consecutive months, left out for eight
months, and then surveyed again for four consecutive months. It is thus possible to follow an individual for four
consecutive months.
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To measure the transition rates in and out of EN
w
, UN

w
, EN

n
, UN

n
, we proceed as in the 3-

or 4-state case. For instance, we compute the probability pU
NwE

t by calculating the probability

that an individual who is an unemployed at t and was a "want a job" nonparticipant at t− 1

finds a job at time t+ 1. We proceed similarly for the transition rates in and out of EN
n
and

UN
n
.

To measure υ, the rate at which a New labor force entrant becomes Old, we compare

the average transition probabilities of a labor force participant who entered the labor force 2

months ago with the transition probabilities of a labor force participant who entered the labor

force one month ago.

Specifically, denote pABτ the measured transition probability (between state A and B)

of labor force entrants who entered the labor force τ times ago. pAB0 is then the transition

probability of a labor force entrant who just entered the labor force. Denote pAB the transition

probability of Old labor force entrants.

Denote Nτ the number of New labor force entrant who entered the labor force exactly τ

times ago. We have that Nτ evolves according to

dNτ

dτ
= −υNτ

since New labor force entrants become Old at rate υ, which gives that

Nτ

N0
= e−υτ .

We then have that the measured transition probability of labor force entrants who entered

τ periods ago is given by

pABτ = e−υτpAB0 + (1− e−υτ )pAB, (15)

i.e., a weighted average between the transition probability of a New labor force entrant and

that of an Old labor force entrant, with the weight given by Nτ
N0
, the fraction of labor force

entrants who are still New after τ periods.

Rewriting (15) at τ = 1 and τ = 2 and re-arranging, we get

υ = − ln

(
pAB2 − pAB

pAB1 − pAB

)
. (16)

With measures of pAB2 , pAB1 and pAB we can then recover υ through (16).

To measure pAB2 and pAB1 , we use the fact that we can match CPS micro data over four

consecutive monthly surveys. First, to measure pAB1 , the transition probability of a labor force

participant who entered the labor force one month ago, we consider individuals who were
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nonparticipants in month 2, in the labor force in month 3, and we calculate the transition

probabilities between month 3 and 4. Second, to measure pAB2 , the transition probability of a

labor force participant who entered the labor force 2 months ago, we consider individuals who

were nonparticipants in month 1, in the labor force in month 2 and 3, and we calculate their

transition probability between month 3 and 4.

Measuring pAB is more diffi cult, since we cannot follow a worker for more than 3 periods.

Instead, we will approximate pAB with pAB≥3 , the transition rate of individuals who entered the

labor force more than 3 periods ago. To measure pAB≥3 , we consider individuals who were in the

labor force in months 1 and 2, and we calculate their transition probability between month 3

and 4.

Since υ can be calculated from different AB transitions, we use the average value implied

by (16) and obtained for all possible AB transitions with A = {U,E} and B = {U,E,Nw, Nn}.
We obtain υ ' 0.2, which implies that after one quarter, 50 percent of a cohort of New labor

force entrants have become Old.

4.3 Decomposition of ut and lt

After correcting for time-aggregation bias as in the four-state case, we can use the stock-flow

model (12) to quantify the contributions of the trend in the Nw-Nn and Nn-Nw transition

rates on the aggregate unemployment rate. As shown in the main text, these two transition

rates account for most of the fluctuations in the share of "want a job" nonparticipants, and a

variance decomposition exercise using the generalized model (12) gives similar results with a

total contribution of about 75 percent.

From the steady-state of (12), we can proceed as in the four-state case and use a Taylor

expansion around the mean of each hazard rate to decompose the variations in unemployment

dut due to the movements in the flows λN
wNn

t and λN
nNw

t :

dut = φN
wNn (

λN
wNn

t − λNwNn)
+ φN

nNw (
λN

nNw

t − λNnNw)
. (17)

We find that the decline in mt coming from movements in λN
wNn

t and λN
nNw

t alone lowered

unemployment by about .5 ppt and labor force participation by about 1.9 ppt. Thus, the results

are similar (and confirm) the results reported in the paper using the simpler framework. Note

that the results are actually stronger than in the main text, because decomposition (17) only

captures movements in λN
wNn

t and λN
nNw

t which account for "only" 75 percent of the decline

in mt.
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5 A model of family labor supply

We now present a labor supply model with intrafamilial choice. The model is deliberately

stylized and will focus only on individuals’decision to enter the labor force.

We consider a sequential multiple-earner model in which the primary earner makes his/her

work decision independently of the secondary earners. The first secondary earner, say the

spouse, then makes his/her labor supply decision by maximizing utility, taking account of the

primary earner’s income. The next secondary earner, say a teenager living in the household,

then makes his/her labor supply decision in a similar fashion. And so on, for the other family

members.

We posit that there exist search frictions, so that each worker must search in order to get

a job, and a worker can increase his/her job finding probability by increasing the intensity of

search.

In the model, we interpret the nonemployment states —Nonparticipant who does not want

a job (Nn), Nonparticipant who wants a job (Nw) and Unemployed (U)—as arbitrary distinc-

tions introduced by the household survey and its imperfect measurement of search intensity.

Specifically, while search intensity s is a continuous variable, a survey cannot precisely measure

s. Instead, a household survey like the CPS can classify workers into different labor market

states —Nonparticipant who does not want a job (Nn), Nonparticipant who wants a job (Nw)

and Unemployed (U)— that correspond to different intensities of search. Specifically, with s

and s threshold variables such that 0 <s< s, an individual i is considered Nn for s ∈ [0,s[, Nw

s ∈ [s, s[ and U for s ∈ [s,+∞[.

We assume perfect consumption pooling, so that each household member has the same

consumption level and each family member aims to maximize aggregate consumption net of

his/her disutility of searching for work. Finally, the family derives unearned income d that is

independent of labor market status, for instance asset income.

The timing of the model is a follows: in the first stage, the primary worker chooses search

intensity s, suffers a search disutility cost v(s) and finds a job with probability p(s). If un-

matched, the worker gets home production income h. If matched, the job pays a salary w > h.

In the second stage, the first secondary worker solves a similar problem taking the income of

the primary worker as given. As so on for the other family members. Once each family member

has made his/her labor supply decision, all workers get paid, and the family consumes.

In a family of size n, the problem of worker i ∈ {1, n} is then max
{c,si}

nu(c)− v(si)

s.t. nc = p(si)(wi − hi) + d+ hi + Ωi−1
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where c is consumption per capita, si is search intensity, and Ωi−1 =
i−1∑
k=1

ωk is the total income

generated by the "higher-order" workers with ωk = {wk, hk} the income generated by the k-th
member. Ωi−1 is taken as given by the ith worker.

For simplicity, we specify standard functional forms for the functions u(.), v(.) and p(.),

and posit u(c) = ln(c), v(s) = χ
1+σs

s1+σs and p(s) = p0s
η, η < 1.

It is easy to show that s1, the search intensity of the primary worker, is determined by the

first-order condition

χ1s
σs
1 =

np′(s1)(w1 − h1)

p(s1)(w1 − h1) + h1 + d
. (18)

Proceeding similarly for the ith member of the family, si is determined by

χis
σs
i =

np′(si)(w − h)

p(si)(w1 − h1) + h+ d+ Ωi−1
(19)

where the only difference is that for secondary workers, the total income generated by the

"higher-order" workers, Ωi−1, influences the search intensity decision.

From (18) and (19), one can isolate a number of model parameters that influence search

intensity, and thus the fraction of nonparticipants who report wanting a job:

1. Heterogeneous or time-varying preferences: Higher disutility of search lowers desire to

work: ∂si
∂χi

< 0.

If the disutility of search varies with demographic characteristics such as age, gender or

education, search intensity will vary with demographic characteristics, and a change in

the composition of the population will affect the observed average desire to work. In

addition, a change in individual preferences could lead to a decline in desire to work.

For instance, a larger decline in χ for children of working age would lead to a stronger

decline in desire to work among this group.

2. Asset income: Higher asset income lowers search intensity ∂si
∂d < 0.

A prominent example of a change in asset income is the large increase in networth during

the high-tech bubble of the late 90s.

3. Returns to employment:

(a) Higher wage increases desire to work among primary workers: ∂s1
∂w > 0.

While higher wage increases the incentive to find a job (the substitution effect), it

also raises expected income which lowers the incentive to find a job (the income

12



effect). Overall, the net effect is positive.10 Changes in the returns to working can

come from changes in market wages or from changes in the tax code.

(b) Higher wage has an ambiguous effect on desire to work among secondary workers:

dsi
dw

=
∂si
∂w︸︷︷︸
>0

+
∂si
∂Ωi−1︸ ︷︷ ︸
<0

dΩi−1

dw︸ ︷︷ ︸
>0

Q 0, i > 1.

In addition to the direct effect of higher returns to employment which increases

search intensity, higher employment income lowers secondary workers’search inten-

sity through the added-worker effect: As the family income generated by "higher-

order" workers increases through higher wages, desire to work amongst secondary

workers decline ( ∂si
∂Ωi−1

< 0).

4. Returns to nonparticipation:

(a) Higher income from home production lowers desire to work among primary workers:
∂s1
∂h < 0.

(b) Higher income from home production has an ambiguous effect on desire to work

among secondary workers:

dsi
dw

=
∂si
∂h︸︷︷︸
>0

+
∂si
∂Ωi−1︸ ︷︷ ︸
<0

dΩi−1

dh︸ ︷︷ ︸
Q0

Q 0, i > 1.

The ambiguity occurs through the added-worker effect, as with higher returns to

nonparticipation, but the mechanism is different. Higher returns to nonparticipation

has an ambiguous effect on family income (dΩi−1
dh Q 0), because while higher h raises

Ωi−1 ceteris paribus, it also lowers the search intensity oh higher-order workers,

which lowers their employment rate and thus Ωi−1.

10Naturally, this prediction stems from our choice of functional forms for the utility function. We think
our model specification is reasonable, because its prediction is (i) in line with standard labor supply models,
in which higher wages raise participation, and (ii) consistent with empirical evidence that higher returns to
working increases participation of unmarried individuals (e.g., Eissa and Leibman, 1996).

13



References

[1] Abowd, J. and A. Zellner. "Estimating Gross Labor-Force Flows," Journal of Business and

Economic Statistics 3(3): 254-283, 1985.

[2] Abraham, K. and R. Shimer. “Changes in Unemployment Duration and Labor-Force At-

tachment.”in The Roaring Nineties, Russell Sage Foundation, 2002.

[3] Barnichon, R. and C. Nekarda. “The Ins and Outs of Forecasting Unemployment: Using

Labor Force Flows to Forecast the Labor Market, Brookings Papers on Economic Activity,

Fall 2012.

[4] Elsby, M. R. Michaels and G. Solon. “The Ins and Outs of Cyclical Unemployment,”

American Economic Journal: Macroeconomics, 2009.

[5] Elsby, M. B. Hobijn and A. Sahin. “On the Importance of the Participation Margin for

Labor Market Fluctuations,”Working Paper, 2013.

[6] Polivka, A. and S. Miller. “The CPS After the Redesign: Refocusing the Economic Lens.”

in Labor Statistics and Measurement Issues, edited by John Haltiwanger, Marilyn Manser,

and Robert Topel. University of Chicago Press, 1998

[7] Poterba, J. and L. Summers “Reporting Errors and Labor Market Dynamics,”Economet-

rica, Econometric Society, vol. 54(6), pages 1319-38, November 1986.

[8] Shimer, R. "Reassessing the Ins and Outs of Unemployment," Review of Economic Dy-

namics, vol. 15(2), pages 127-148, April, 2012.

14



pp
t o

f U
r

1976 1981 1986 1991 1996 2001 2006
3

4

5

6

7

8

9

10

11

12

Uss

Approximation

Figure 1: Steady-state unemployment rate ("Uss") and unemployment predicted by our ac-
counting decomposition ("Approximation"), 1976-2010.
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Figure 2: Steady-state labor force participation rate ("LFPRss") and participation rate pre-
dicted by our accounting decomposition ("Approximation"), 1976-2010.
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Figure 4: Cumulative change in real hourly wages of all workers, by wage percentile, 1995-2011.
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Figure 6: Demographic determinants of desire for work. Coeffi cient estimates of regression of
"desire for work" on individual characteristics, 1988-2010. The black bars denote the point
estimates and the red bars denote ±2 standard-errors.
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