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The appendix follows the organization of the paper. Appendix A describes the data
sources and the cleaning process, Appendix B presents results on the first step estimator,
the convergence of assignment probabilities to those for a limit game, details on RSP+C
mechanisms. Appendix C presents technical details relevant for Section 5, including proofs
and additional results on identification and testable restrictions of equilibrium behavior.
Appendix D proves consistency of our two-step approach and details the Gibbs’ sampler

used in Section 6.

A Data Appendix

The primary data for the study come from Cambridge Public Schools. Under a non-disclosure
agreement, we use data from student registration records, assignment files, and data on
student characteristics.

The student registration records contain the school/program the student is registered at,
student’s grade, language spoken at home, and the paid-lunch status at registration.

The assignment files include the rank-order list of the student, sibling or proximity pri-
ority at the ranked school, the randomly generated tie-breaker used in the assignment, and
the paid-lunch/free-lunch status of the student. Cambridge pre-assigns about 40% of the
students to public elementary schools via arrangements with pre-kindergarten schools. The
assignment files provide detail on whether the student is pre-assigned and if the student
participated in the school choice process (the Cambridge mechanism) studied in this paper.

We also obtained reports from the school district containing the overall capacity of each
school/program in each year and the numbers assigned through each process. We use these

reports as the primary source for computing the number of seats available at various schools
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and programs in the mechanism. In rare cases, the rank order lists, the random tie-breaker
and the priority codes indicated an inconsistency in the capacity data. We used the knowl-
edge of the mechanism to adjust these capacities and were able to compute the correct
assignment for almost all students with these modified capacities.

The student characteristics file duplicates several of the variables in the registration and
school choice ranking and assignment file. Importantly, it also includes the home address of
the student. The Network Analyst Toolbox in ArcGIS and information in ESRI’s Datamaps
10.1 on the US road network was used to compute the distance by road between the student’s
home and the school address based on brochures from the relevant years. This computation
ignores one-way restrictions because Cambridge uses walking distance to compute proximity
priority.

These files were merged using a unique student identifier.! Schools and programs are also

uniquely identified in the dataset.

B Limits: Equilibrium, Mechanisms and Convergence

This section presents several definitions and results on mechanisms and their convergence.
Section B.1 presentes examples of RSP+C mechanisms. Section B.2 proves consistency
and asymptotic normality of our estimator. Section B.4 discusses existence and (generic)
uniqueness of market-clearing cutoffs. Section B.8 shows that equilibria of large-market

mechanisms converge to limit equilibria.

B.1 Report-Specific Priority and Cutoff Mechanisms

This section formally shows that several school choice mechanisms belong to the class of
Report-Specific Priorities + Cutoff (RSP+C) mechanisms. For simplicity, we assume that
each school has only one program, and that there are no priorities. These examples can be
easily modified to accomodate these details.

In the interest of completeness, we start by formally defining the two most commonly
used mechanisms, the Student Proposing Deferred Acceptance Mechanism, and the Boston
Mechanism (also known as the Immediate Acceptance Mechanism).

The Student Proposing Deferred Acceptance mechanism: For reports Ry, ..., Ry

and priorities ¢y, ..., ty,

Step 1: Students apply to their first listed choice and their applications are tentatively held

in order of priority and a tie-breaker until the capacity has been reached. Schools reject
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the remaining students.

Step k: Students that are rejected in the previous round apply to their highest choice that
has not rejected them. Schools pool new applications with those held from previous
steps, and tentatively hold applications in order of priority and a tie-breaker until ca-
pacity has been reached. The remaining students are rejected. The algorithm continues
if any rejected student has not been considered at all their listed schools. Otherwise,

each student is assigned to the school that currently holds her application.

This mechanism is strategy-proof for the students if the students can rank all J schools
(Dubins and Freedman, 1981; Roth, 1982), but provides strategic incentives for students if
students are constrained to list K < J schools (see Abdulkadiroglu et al., 2009; Haeringer
and Klijn, 2009, for details).

The Boston mechanism (or Immediate Acceptance mechanism): For reports Ry, ..., Ry

and priorities ¢y, ..., ty, each school

Step 1: Assign students to their first choice in order of priority and a random tie-breaker

until the capacity has been reached. Reject the remaining students.

Step k: Assign students that are rejected in the previous round to their k-th choice in order
of priority and a random tie-breaker until the capacity has been reached. Schools reject
the remaining students. Continue if any rejected student has not been considered at
all their listed schools.

This mechanism is a canonical example for one that provides strategic incentives to students
(Abdulkadiroglu et al., 2006).

Our next result shows that all mechanisms in table 1 except the TTC is report-specific
priority + cutoffs mechanisms. As we discuss below, our convergence result will require an
additional assumption that the mechanism uses a random number to break ties.

A researcher with data from one of these mechanisms will need to verify that priorities
used by the mechanism satisfy our assumptions above before applying the methods that
follow. An important restriction is that the function f does not depend on the reports and
priorities of the other agents. This may rule out some mechanisms that use the reports of

other agents to determine eligibility in a program.

Proposition B.1. The Deferred Acceptance mechanism, the Boston mechanism, Serial Dic-
tatorship, First Preferences First, Chinese Parallel Mechanism and the Pan London Admis-

stons scheme with tie-breakers are RSP+C mechanisms.



Proof. We assume that there are no priority types for simplicity, though the proof can
be easily rewritten to incorporate finitely many priority types as done for the Cambridge
Controlled Choice Plan.

Deferred Acceptance:
We show that Deferred Acceptance is equivalent to a report-specific priority + cutoff mech-

anisms with
fi(R,v) =v;.

Let v; be supremum of the priority scores of the rejected students in school j. We claim that
p™ = v are the cutoffs with the desired properties (if a school does not reject any students,
set p; = 0).

Let v} be the supremum the priority scores of students that were rejected in round r. Set
v; =0 if no students are rejected. Observe that for each school, v; < y?“. If the algorithm

terminates in round k, then % =

7 = v;. The algorithm terminates in finitely many rounds for

every n.

Assume that student ¢ is assigned to school j" and consider any school j with jR;j". Let
r be round in which student ¢ was rejected by j. By definition, it must be that v;; < v].
Therefore, v;; < v; and we have that each student is assigned to DEivi) (pn),

Finally, the aggregate demand cannot exceed g; by construction of p”.

Boston Mechanism:

We show that the Boston Mechanism is report-specific priority + cutoff mechanisms for

uj—#{k:kRij}+J—1

fj(Ray): 7 7

by constructing market cutoffs p™ for each profile ((Ry,11),...,(Ry,vy)) such that (i) the
assignment of each agent is given by D) (p™) and (i) p” clears the market for the economy
((R1,v1), ..., (Rn,VN))-

Note that if a school rejects a student in round k, then it rejects students in all further
rounds since it is full at the end of that round. Let k; denote that round for school j, and

let v; be supremum of the random priorities of the rejected students in round £;. We claim

that pi =1 — b~y are the cutoffs with the desired properties (if a school does not reject
any students, set k; = J and p; = 0).

We first show that the assignment of each student in the Boston mechanism is given by
D(R“”i)(p”). Assume that student i is assigned to school j' and consider any school j with

jR;j'. Since jR;j', it must be that the student was rejected at 7, and could not have applied



to j before round k;. If student applied to k; after round j, then v;; —#{k : kR;j} < v, —k;
since |vy; — v;| < 1. If #{k : kR;j} = kj, then v;; < ;. In either case, f;(R;,vi) < pj.
Therefore, the student is assigned to D) (pn).

Next, we show that p” clears the market for economy ((Ry,11),...,(Ry,vn)). As noted
earlier, each agent is assigned to D) (p™). By construction of p", the aggregate demand

must be less than g;, and p? = 0 if aggregate demand is strictly less than g;.

Serial Dictatorship:

The Serial Dictatorship Mechanism orders the students according to a single priority and
then assigns the top student to her top ranked choice. The k-th student is then assigned to
her top ranked choice that has remaining seats. It is straightforward to show that this mech-
anism is equivalent to a Deferred Acceptance mechanism in which all students have identical

tie-breakers at all schools. Hence, it is a report-specific priority + cutoff mechanism.

First Preferences First:

The First Preferences First mechanism assigns students to their top ranked choice if seats are
available, with tie-breaking according to priorities and a random number. Rejected students
are then processed for the remaining seats according to the Deferred Acceptance mechanism.
Arguments identical to the ones above show that the First Priority First mechanism is a

report-specific priority + cutoff mechanism for

vi+ iRy Vi #j}

fj(R7V): 9

Chinese Parallel (Chen and Kesten, 2013):

The chinese parallel mechanism operates in ¢ rounds, each with ¢.-subchoices. In each round,
rejected students applies to the next ¢. highest choices that have not yet rejected her. Within
each round, the algorithm implements a deferred acceptance procedure in which applications
are held tentatively until no new proposals are made. Assignments are finalized after all
t. choices have been considered. It is straightforward to show that the Chinese Parallel

mechanism is a report-specific priority + cutoff mechanism for

4k - kRij}J V_ 1J

t, t.
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fi(R,v) = - L
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Pan London Admissions (Pennell et al., 2006):
The Pan London Admissions system uses the Student Proposing Deferred Acceptance Mech-
anism, except that a subset of schools upgrade the priority of students that rank the school

highly. Suppose school j upgrades students that rank it first. For such schools, we set

vi+ iRy vj'#j}

fj(R7V): 9 s

and f;(R,v) = v otherwise. With this modification, the Pan London Admissions scheme is
a report-specific priority + cutoff mechanism.

We use e; = f;(R,v) = v; for schools that do not modify the priority and e; = f;(R,v) =
vi —#{k:kRj} J
2 +

—1
7 for the Boston Mechanism. This choice of f for Boston upgrades
the priority of the student at her first choice relative to all students that list that school

lower. L]

B.2 Consistency and Asymptotic Normality in RSP+C Mecha-

nisms

Our main results in this section derive the properties of our estimator L defined in equa-
tion (9) in the main text. To state these results, we need to introduce some notation and
definitions.

Although the text stated our result for the uniform distribution, in our main results, we

will assume that the mechanism uses non-degenerate tie-breakers.

Definition B.1 (Non-degenerate tie-breakers). There exists some k > 0, such that for each
p,p €017, 5e{1,...,J}, and (R,t) e R x T,

ﬁyy({y;pj /\p; S fj(R7t7V> Spj \/p;}) S H‘pj _p;|

Non-degenerate tie-breakers is a strengthening of strict preferences in Azevedo and Leshno
(2013). The assumption is straightforward to verify with knowledge of the mechanism. For
example, it is satisfied if a random number is used to break ties between multiple students
with the same priority type. It also allows for a situation in which a single tie-breaking
number that is used by all schools to break ties.

Given a sample (R;,t;,v;), for ¢ € {1,...,n}, we can obtain a counting measure n" =
> iy O(Ry tews)> Where O(p, 1, 1, is the Dirac-delta measure on (R;, t;,v;). Given i and a cutoff

vector p, we can define the fraction of students that would be assigned to each program j as



follows:

D;(pln™) =n" ({fj(RiytiaVi> > pj, JROY () (LR} U {fy(Risti, i) < pj’})) . (B.1)
i

As a proof device, we will use a continuum economy. Let 1 be a probability measure over
Borel sets in R x T'x [0, 1]”. If agents in the economy are using strategy o, then n = m° x,,
where m?((R,t)) = fr(t) [ or(v,t)dFy 7. Analogously, define the fraction of students that

would be assigned to each program j in the continuum economy:

D;(pln) =n ({fj(Ria tiy i) = pj, RO} () (R} U {fy (Ris tivi) < pﬁ)) . (B2)
i'#i

It is straightforward to see that D;(p|n) is a continuum analog of D;(p|n™) because if
(Ri,t;,v;) are drawn i.i.d. from 7, then E[D;(p|n")] = D;(p|n).

Market clearing cutoffs (Definition 2) embody two sets of constraints, one set for the
programs and another for schools. It will be useful to combine them in a single set. Define
a J x S matrix A with entries a;, = 1 if s; = s, i.e., if program j belongs to school s, and 0

otherwise. Let A = [I; A], where I; is the .J-dimensional identity matrix, and
D(pln) = A'D(Apln) € R7*?, (B.3)

where p € [0,1]77°. The function D stacks the program and school aggregates of the number
of students demanding assignment given the cutoffs p = Ap. In this notation, we have an

equivalent definition of market clearing cutoffs in terms of p and D:

Proposition B.2. The cutoffs p € [0,1]7 are market clearing cutoffs for D(p|n) € [0,1]7
and q € [0,1)7*5 if and only if for each k € {1,...,J + S},

[)k(]ﬂn) —qr <0, with equality if p,, > 0, (B.4)

where p = Ap and p = [py,ps| with Pss = min{p; : s; = s} for s € {1,...,S} and
p7=p— Aps.

Proof. Tt’s easy to verify that the inequalities Dy (p|n) — qx < 0 are equivalent to those in
the definition for market clearing cutoffs. Therefore, we only need to verify that the set
of restrictions satisfied with equality coincide. For every j € J, p; > 0 if and only if
p; > min{p; : j' # j,s; = s;}. Similarly, for every school s € S, pss > 0 if and only if
min{p; : s; = s} > 0. O



In what follows, we will therefore work with p instead of p. Finally, let p, be the sub-

vector of p with strictly positive elements and D, (p|n) be the corresponding subvector of

D(pln).
We are now ready to state the main results of this section.

Theorem B.1. Suppose that ®" is an RSP+ C mechanism that uses non-degenerate lotteries,
and for each k € {1,...,J+ S}, ¢} — qx = o(1/+/n). For strategy o, consider n =m? X ,.
Suppose that p* is the unique solution to equation (B.4), then for each each (R,t),

|Lre— Ly 5 0.
If, additionally, VﬁiEJr(ﬁ*\n) is invertible, then
Vi(Lee — Ly7) S TAVDA'Z
where Z ~ N(0,Q), T' =V, [ DE) (Ap*)dy,,

v - [ (Vs Dy (5"[m) ™" 0 ] |
0 0

=)

The first part of the result shows that if an RSP4+C mechanism uses non-degenerate

i oy o\ Ee [V (DGR
Q0= 1+E 1% DY (Ap*)dy, | + B

lotteries and the market-clearing cutoff is unique in the continuum economy, then Lisa
consistent estimator for L™?. Non-degeneracy of the lotteries is straightforward to verify
with knowledge of the mechanism. Appendix B.4 derives conditions on D(p) and ¢ under
which uniqueness is guaranteed, and weaker conditions under which uniqueness is generically
guaranteed using results from Azevedo and Leshno (2013) and Berry et al. (2013).

Under additional smoothness conditions, the result also provides a limit distribution for
our resampling estimator. The expression shows that the variance of the estimator depends
on the inherent sampling variation in the observed reports and priority types. In addition,
the estimator also has an additional independent source of variance due to resampling. This

variance decreases with the number of resamples B used to construct the estimator.

Proof. Index a draw in the b-th bootstrap sample from the empirical sample (Ry,t1), ..., (R,, t,)
1 _ :
with i, and denote the bootstrap empirical measure m; " = p— 22211 O(Ry, ti,)- Slnce

the distribution of v is known, we can draw v;, directly from -, for each 7. Let ng‘_l =



— zlb 1 O(R;, b, vs,) Where v, 1s a draw from 7,, independent of all other random vari-

ables Let
n—1 n—1

/.

n

1
n" = —0(rtw) +
n

and n"! = —Z" 1537“%) with (R;,t;,v;) drawn from 7. Let ﬁb‘_l be such that
Dy Bl — qf Wlth equality only if ﬁ;;l > 0, and likewise p} be such that Dy (pln™) — qy
with equality only if p; > 0. Note that such }52’_1 and p" exist by assumption since ®" is an
RSP+C mechanism.

For each (R, t), consider the difference L, — LS. Since " is and RSP+C mechanism,

this can be re-written as

Lp: — Ly, = 3 Z/D (Rt (pr=1ydry, — [/D(R’t’”)(p")d’y,,

R, t} . (B.5)

where p’,}’1 = flﬁg"l, and p" = Ap".

We will derive the limit properties of the difference in equation (B.5) using the limit
distributions of p;~* and p" and smoothness of the integals in the expressions.

By definition of D(p[n™), we have that sup, | D(p|n™) — D(p|n"~")|| = O(1/n). The defi-
nition of D(p|n) and Lemma B.1 implies that

(i) for each k € J U S, sup; ]Dk(ﬁln) — Dk(ﬁm”)] converges in probability to 0,

1 ~ -
(i) v/n (E Sy D(Ap* i) — D(Aﬁ*|77)) converges in distribution to Z, and therefore,

1 ) (5% | o — (% d 3
Vn (E Zb:D(po\m 1) —D(p W)) — A'Z,
(iii) For any p* and any sequence of §,, decreasing to 0,

sup  /nl[D(Bn") — D(Bln) + D(F*|n) — D(E* In™)|| = 0p(1),

lp—p*||<on

and likewise

sup v/l D(plny ") — D(Bln) + D(@*[n) — DE |y~ = 0,(1).

lp—p*||<on

Since E[p"] = E[p"|m?] by definition and E[D(p|n")] = D(p|n), Lemma B.2 applied to



D(p|n) and p* implies that

~N *

Z~n1

and
a4z ) soos

Pre-multiplying by A, we have that

1
B ZPZ_I

b

20

by the triangle inequality, and because p™ is bounded. Further, by Slutsky’s theorem,

1 n—1 n d TN A
Nz (E S~ Fly ]) 4 AVDA'Z,

-1

where p" and p; ! are respectively market clearing cutoffs for (D(p|n), ¢") and (D(p|n~'), ¢").

Since the tie-breaker v is non-degenerate, 7, admits a density. Therefore, [ DWEEY) (p)dry,

Ryt,v) (

is differentiable at every p since D! p) is an indicator for f(R,t,v) belonging to a hyper-

cube:

DY (p) = 1{f;(R,t,v) > p;, jRO} [ [ 1 £ (R, t,v) < pyr or j'Rj}.

Hence, L r.t is a differentiable function of — Zb py~'. Therefore, by the Continuous Mapping
Theorem,

sup |Lpy — L] 0.
Ryt

By the Delta Method
Jn (ﬁm - Lgf;> 4 TAVDA'Z.

B.3 Preliminaries for the proof of Theorem B.1

Lemma B.1. Suppose that the tie-breaker v is non-degenerate. Then, (i) for each j € J,
sup, |D;(p|n) — D;(p|n™)| and sup, | D;(pln) — D;(plny~")| converge in probability to 0.

10



(ii) for any p*, we have that
1 £l - " d
vn (EZD(Z) Iy ) — D(p |77)> — N(0,9)
b

where

O <1 N %) v (/ D(R,t,u)(p*>d,yy> LBV (D(R’t;)(p*)l R.1)]

(iii) For any p* and any sequence of 6, decreasing to 0,

sup  /nl|[D(pln™) — D(p|n) + D(p*|n) — D(p*|n")|| = o0,(1).

lp—p*[|<én

Likewise,

s ValD(plng ") = D(pln™) + D(p*|n") — D(p*|m )|l = 0p(1).

P—p*[|<0n

Proof. Part (i): Let v,; be the set of tuples of priority types, random tie-breakers and rank
order lists, (R;,t;,v;), that are assigned to programs j under cutoffs p. This set can be

written as:

/Upj = {(Rutuyz> : f]’(Ri,ti, Vij) Z pja ]Rl()} m ({(Rl,t“Vl) lej/} U {(Rl,t“VZ> : fj/(Rijti7 Vij’) < pj’}) .
J'#J

Let V = {v,; : p,j} be the class of sets v,; indexed by p and j.

Since f in increasing in the last argument, for each j, R;t;, the class of sets {{v; :
fi(Ri, ti,vi;) > p;} : p;} is VC. Hence, the class B = {{v; : fj(Ri, ti,vi;) > pj} : pj, J, R, t}
is a VC class because (j, R,t) belong to a finite set. Hence, V is a VC-class since it is a
subset of finite unions and intersections of sets in B and their complements. Therefore, V is

a uniform Glivenko-Cantelli class. Part (i) follows from the Glivenko-Cantelli Theorem.

11



Part (ii): We first re-write
1 *[n—1 *
52 DW' ") = D' ln)
b
1 o 1 (Riy otiy iy ) (g *
S e DI
_ an_lzDsztzbmb __Z/Dthz Yo,
+;Z/D(R“t“”)(p*)d% = D(p*[n).
i=1

We now derive the distribution of

1
Gy = Vn <n — ZD(R% ibig ”Zb S— Z/D (Risti,v) d’y,,) (B.6)

ip

conditional on the sample (Ry,t1),...,(Rn,t,), and fixed b. To do this, we adapt the proof
for the bootstrap distribution of the sample mean (Theorem 23.4, van der Vaart, 2000).
Note that

ip )

= —ZE D) ()| Ry, ]

:_Z/DRtu d7y

E [DI ) (p7)

(Rl,tl),...,(Rn,tn)} = F [E [D(Rib,tib,u)( *)

]| (R1,t1), .- (Rusty)]

By the law of total variance, the conditional variance of D tis) (p*) given (Ry,t1), ..., (Rn, t,)

18

B[V (Do) )

)| (Ri,th), o (Raty)]
+V [E (D(Rib,tlbﬂjlb (p*) . )‘ (Ri,t1), ..., (Rt >]

— —Zv (DFtv) () +V</DR”( ")

where V ([ DEtev) (p*)dry,, | (Ry, t1), ..., (Rn, t,)) is the sample variance of [ DFoli?) (p*)dy,.

Since D is uniformly bounded, the variance above is bounded. By the strong law of large

i)

i

79

(Ry. 1), <Rn,tn>) |

12



numbers, the conditional variance of D tii) (p*) converges to

Q:E[V(D(Rtu, (/DRtu) dfyy)

almost surely for sequences (Ry,t1), (Ra, t2), .. ..

Note that since DWitivi) is uniformly bounded, we have that for every e > 0,

B [[[ DRt 1 Do)

| > ev/n}] — 0.

Therefore, by the Lindeberg-Feller central limit theorem (Theorem 2.27, van der Vaart,
2000), conditionally on (Ry,t1),..., (Ra,t,), for almost every sequence (Ry,t1), (R, t2),- ..,

N 1 1 ~
Gnp Y (0,€2). An identical argument shows that B > G Y <O, EQ condition-

ally on (Ry,t1),..., (R, t,), for almost every sequence (Ry,t1), (Ra,t2),..., since 4, is in-
dependent of iy conditional on (Ry,t1),..., (Rn,t,) for all b # b'. Therefore, we have that
conditionally on (Ry,t1), ..., (Ra,t,), for almost every sequence (Ry,t1), (Ra,t2),. . .,

B
1 1 ~
Vi (E PRIl Z / DUt d%> 4N (0, EQ) .
b=1
Now consider the stacked random vector

1 B —1 1 n -t
— > Dty ™) — = >0 [ DFEt) (p7)dy,
\/ﬁ B bll b n 1 f ' (B?)

~ Yoy [ DU (pt)dny, — D(p*In)
Conditional on (Ry,t1),. .., (Ry,t,), the second element is deterministic and the first element

1 -
converges in distribution to Z; ~ N | 0, EQ for almost every sequence (Ry,t1), (Ra, t2), .. ..

By the central limit theorem, the second element converges in distribution to

Zo~ N (o, 1% ( / D(Ri’t"’”)(p*)d%)> .

Since Z; is (almost surely) independent of (Ry,ty),...,(R,,t,), we have that the stacked
random vector in expression (B.7) converges in distribution to (Z;, Z;) where Z; and Z, are

independent. Hence,
B
. d
(EZ (p*|ny~") — D(p !n)) = N(0,9).
b=1

13



Part (iii): Note that

V| D(pln™) = D(pln) + D(p*[n) — D(p*[n")]|
< J|\/ﬁ (1" (Vpnp= pver) — N(Vpnp= pvp)) |

where v, ,; ={v :p < f(R,T,v) < p'}. We now bound the variance of the right-hand side.
For any p, p’ with p < p/,

V(" (py) = nvpy)) =V <% Z WS (R, Tiyvi) € vpy } — 77(%@’))

]

= ) (1= ().

Therefore, V (J|v/n (0™ (Vprp pvpr) — N1 (Vpap pvp=))) |) 1S at most Jn(vpsps pvpr). By Cheby-
chev’s inequality, for any € > 0,

n J 277(”10/\19* ,PVp* )?
P (J|\/ﬁ(77 (Up/\p*,p\/p*) - n(UPAP*mVP*)) | > 6) < £2 :

Since 1n(Vprp pyvp+) < K|[p Ap* — DV p*||eo, we therefore have that for any € > 0,

* x| N K25721J2
IP’( sup  /n||D(p|n"™) — D(p|n) + D(p*|n) — D(p*In"™)|| > 6) <

lp—p*[|<dn

Hence, for any sequence of 9,, decreasing to zero, we have that

sup  v/nl|D(pln™) — D(p|n) + D(p*|n) — D(p*[n)|| = o0,(1).

lp—p*||<dn

By a similar argument, we have that

J2V(771?71 (Vpp) = 0" (Vp)) .

P ( sup  /n||D(plny~") = D(p|n™) + D(p*|n") — D(p*|ny )| > 6) <

2
lp—p*l|<dn €

Since E[ny " (vp,0)|n"] = n™(vp), by the law of total variance,

V(nl?_l(vp,p’) - nn(vnp’)) = F [V(ng_l(vp,p’) - nn(vpvp’)mn)}
= EN"(vpp) (1 —n"(vpp))]
< EN"(vpp)] = n(vpp)-



Hence, we have that

n—1 n x|, N x| n—1 k2‘]25721
P\ sup VallD@pl™") = Dlpl") + Dp*") = D" |ng ™) > | < =5

[p—p*||<dn
[l

Lemma B.2. Suppose there is a unique p* such that for allk € {1,..., K}, Di(p*|n)—qx <0
with equality if p;, > 0. Also assume that there exists p™ such that Dy (p™|n"™) — qp < 0 with
equality if p > 0. and likewise assume that there exists p,~ U such that Dk(p”|'r],?’1) —q; <0
with equality zfp};kl > 0.

L If (i) | D(pliy =) = D(pln)| = 0 and |D(p|n™) = D(pn)| = 0 uniformly in p, (i) ¢* = q,
(i4i) D(pln) is continuous in p, then sup;c z |pzj_.1 — il 20 and sup,c 7 [pj — pjl 5 0.

2. Further, if the hypotheses of part 1. hold, (iv) E[D(p*|n"™)] = D(p*|n), (v) for any p*

1 - ‘ d
vn (EZD(p Iy ) — D(p |n)> - Z
b
(vi) For any p* and any sequence of 9, decreasing to 0,

sup  v/nl|D(plny ") = D(pln) + D(p*[n) — D(p*|ny )|l = 0,(1).

lp—p*||<dn

(vii) Vpr Dy (p*|n) exists and is invertible at p*, and (viit) ¢" — q = 0,(n~?), then
1 n—1 n d
ﬁ(EEb:pb — Elp ]) 5 VDZ

(V. Dy(p*n))~" 0
0 0

where VD =

Proof. Part 1: The result is similar in spirit to Azevedo and Leshno (2013), theorem 2,
though the techniques are different and generalized to mechanisms.

We only show the result for p™ since the argument for pf‘l is identical. Let

H[maX{Z (pn™,q" 0}]H

pxz(pln™, q"

where * represents the Hadamard product and z(p|n, ¢) = D(p|n, q) — q. Note that p™ solves

15



Q.(p) = 0. Let Qo be the limiting objective function,

H [ max {z(p[n, q), 0} ] H

p* 2(p|n, q)

By the continuous mapping theorem, sup,, |@,(p) — Qo(p)| 2 0. Also, Qo(p) is continuous
since D(p|n) is continuous. Further, Qy(p) is uniquely minimized at p*. For ¢ > 0, let . =
inf . |p—pe|>c @o(p). Since Qo is continuous, p is an element of a compact space and Qy(p) = 0
only at p*, 0. > 0. Pick N such that for all n > N, P(sup, |Qo(p) — Qn(p)| > 0.) < e. For
p", we have that @, (p") = 0. Note that

|Q0(pn) - Qo(p*)|
|Qo(p") — Qu(p™)] + |Qn(p") — Qo(p")|
< sup |Qo(p) — Qu(p)| + 0. (B.8)

IN

Hence, we have that for all n > N,

P (sup =] > ) < P(Qu(") — Qolp")] > 5.)

JjeJ
< P (swlQui) - Qulo] > 4. ) <=
p
where the first inequality follows from set inclusion, the second from equation (B.8), and the

third by our choice of V.

Part 2: We can re-write
1 n—1 n _ 1 n—1 * * n
ﬂ(EEb:pb — Elp ]) —ﬂ(gzb:pb —p>+\/ﬁ(p — Ep").

1
We first derive the limit distribution of v/n (E Do p{,‘_l — p*)

Let K° be the set of k such that p; = 0, i.e. Dy(p*|n) < ¢;, and let 6 = minjco0{q; —
Dy(p*|n)}. Since Dy (p|n) is continuous, there exists k > 0 such that for all ||p — p*|| < k and

)
all k € K° we have that Dy (p|n) — g, < —3 For any € > 0, pick NV such that for all n > N,

)
P(|lpy~" — p*|| < k) < € and g} — q;ll < 3 Such an N exists since pp~' % p* and a5 — qj-
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For all n > N, we have that

D g <Dl )
<D ™) — Dulw )| + Do) — 5+
< Dy )~ D]~ %
— (Dl - > ) <P (1008 - Dl > 5 )

<P(lpp " —pl>r) <e

where the second last inequality follows from set inclusion and the choice of k. Since p’,}_l =0
if Di(py~'[ny~") — ¢ < 0, we have that for all n > N, P(p;;" > 0) < e. Therefore,
Valpyt = pil 5 0 for all j € JO.

The limit distribution of \/ﬁ(pgl1 — p%) is a consequence of the Delta Method. For
simplicity of notation, we omit the subscript + and treat p; = 0if p; = 0 since p} = op(n_l/ 2).

Note that for all k& ¢ K°, we have that Dy(p*|n) — ¢x = 0. Let 6 = minggxo pj. Since
Ipp~t — p*|| & 0, we have that for any ¢ > 0, there exists N such that for all n > N,
P(p%l = 0 forany k ¢ K° < e. Since pggl > 0 implies that Dy(p} '|np~") — ¢ = 0,
for all n > N, pp~ ! solves 0 = Dy(p|ny ') — ¢ with probability at least 1 — e. Therefore,
Di(py M my ") — aff = 0p(n™'?) for all k ¢ K.

Since ||pp~ — p*|| 2 0, condition (v) implies that there exists a sequence of 6, decreasing

to 0, such that
D(py " my ™) = Doy~ ) + D(p*[m) = D(p* |y ™) = op(n %),
Together with D(py ' |ni~") — ¢" = 0,(n~1/2), condition (v) implies that
¢—q"+ Dl ™") — g+ D(pp~ ) — D(p"ln) = 0p(n~"7).
Since || — ¢"|| = 0,(n"Y/2), and D(p*|n) = q, we have that

D(p*|ny =) = D(p*n) + D(p}~"In) — D(p*[n) = o,(n'7?)
— VoD |y = Dp*n) + V- D(p*|n)v/n(py " —p*) + op(lloy " = p*l) = 0,(1),

where the implication results form the Delta Method. Since, o,(|[py ™" — p*||) = 0,(1), and
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V,«D(p*|n) is invertible, we have that

Va(py ™t = p") = V(Y D" n) (D" ny ) — D(p*[n)) + 0p(1).

Since E[D(p*|n™)] = D(p*|n), by a similar argument,

Va(Ep"] = p*) = V(Y- D(p"m) " (E[D(p"[n")] = D(p*[n)) + 0p(1) = 0,(1).

Vi (g - Ew)
= Vn (% > ot —p*> +0,(1)

— (V- D(ptn))” ( ZD (P~ D(p*|77)> +0p(1)

Therefore,

By condition (vi) and Slutsky’s theorem, we have that

1
Vi (5ot - B) 4oz

B.4 Existence and (Generic) Uniqueness of Cutoffs

This sections shows that the cutoffs for RSP+C Mechanisms have (generically) unique cut-

offs. To do so, we first need to introduce some notation and definitions.

B.5 Definitions

Definition B.2. The function D : [0,1]7 — [0,1]7 satisfies weak-substitutes if D;(p) is

non-increasing in p; and non-decreasing in p;, where p € [0,1]7.

The next definition is a stricter notion of substitutes in a neighborhood around a given
cutoff. This borrows from the notion of connected substitutes introduced in Berry et al.
(2013) and Berry and Haile (2010) to show conditions when demand is invertible.

Definition B.3. The function D : [0,1]7 — [0,1]/ satisfies local connected substitutes
at p* if there exists an € > 0, such that for all p € [0,1]7 with ||p — p*|| < &, we have that
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1. forallj € {0,1,....,J} and k ¢ {1,...,J}\{j}, D;(p) is nondecreasing in py,

2. for all non-empty subsets K C {1,...,J}, there exists k € K and | ¢ K such that

Dy(p) is strictly increasing in py

Local connected substitutes is implied by strict gross substitutes, and the condition that
D(p|n) as defined in equation (B.2) satisfies local connected substitutes for all p € [0,1] is
testable.

Definition B.4 (Azevedo and Leshno (2013)). The function D : [0,1]7 — [0,1]7 is regular

if the image D(P), where
P ={p€0,1]7: D(p) is not continuously differentiable at p}

has Lebesgue measure 0.

B.6 Main Results

For a fixed ¢ € [0,1]7, let p* € [0,1]” be a solution to the problem
D(p) —q < 0and px(D(p) —q) =0, (B.9)

where * is the Hadamard product. We now observe that (generically for ¢ € [0,1]”) there
exists a unique solution to equation (B.9) if D satisfies local connected substitutes at any

market clearing cutoff (is regular).

Proposition B.3. Let D(-|n) be defined as in equation (B.2). If D(-|n) satisfies weak sub-
stitutes, then there exists a solution to equation (B.9) for all q.
Further, for a fized D(-|n), let Q C [0,1])7 be the set of capacities, q, such that there are

multiple solutions to equation (B.9).
1. Qn{q: Z}]:1 q; < >_; D(0In)} has Lebesgue measure zero if D;(-[n) is regular

2. Q is empty if D(:|n) satisfies local connected substitutes at any solution p* to equation

(B.9). In particular, Q is empty if D(-|n) satisfies local connected substitutes at every
cutoff p.

Proof. Existence of cutoffs that solve equation (B.9) follows from corollary Al and lemma 1
of Azevedo and Leshno (2013). Statement 1 is a consequence of Azevedo and Leshno (2013),
theorem 1(2) and lemma 1. Statement 2 is a strengthening of Azevedo and Leshno (2013),
theorem 1(1). By the Lattice Theorem (Azevedo and Leshno, 2013), there exist minimum
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and maximum cutoffs p~ < p* that solve equation (B.9). By the Rural Hospitals Theorem
(Azevedo and Leshno, 2013), for all C' C §,

> Di(ptIn) =>_ Di(pIn). (B.10)

jec jec

Let p* be a solution to equation (B.9) such that D(-|n) satisfies local connected substitutes
at p*. Let O ={j e S:p; <p/}and C~ ={j € S:p; > p;}. We will show that C = ()
i.e. pt = p*. The proof to show that C~ = () is symmetric and together, these claims imply
that p* = p~ = p*.

Towards a contradiction, assume that C* # ). Since D(p|n) satisfies local connected
substitutes at p* (Definition B.3), there exist ¢ € (0,1), k € C*, and | ¢ C" such that

Di(p*In) < Dy(p®In),

where p;, = ep + (1 — €)p} and p; = pj; for j # k. Hence, we have that

. Dt < > Dilm) < > DiwtIn),
jeS\C+t jeS\Cc+ jES\CT
where the implication on the summation and the second inequality are implied by weak
substitutes, which follows from the definition of D(p|n). Since this inequality contradicts
equation (B.10), it must be that C™ = (). O

As shown in Proposition B.2, p* is a market clearing cutoff for D(p|n) and ¢ if and only
if p* solves equation (B.9), where p* = Ap*. Below, we state uniqueness of a market clearing

cutoff in terms of the uniqueness of p*.

Proposition B.4. Let D(ﬂn) be defined as in equation (B.3), and for each ps, define p’(ps)
such that D;(p%(ps) + Aps|n) — q; < 0 with equality if p% ;(ps) > 0.

If D(pln) is continuous in p and satisfies weak substitutes, then for each q € [0,1]7+9,
there exists a p that solves the problem in equation (B.9) for D(p|n) and q.

Further, if D*(ps|n) = A'D(p% (ps)+Aps|n) and D(p|n) satisfy local connected substitutes
at ps, = min{p; : s; = S} and p* respectively for some market clearing cutoff, then p* is

unique.

Proof. We first show existence. Since D(-|n) satisfies weak substitutes, for each ps, p%(ps)
exists. Lemma B.3 below shows that D*(ps|n) satisfies weak substitutes. Therefore, by
Proposition B.3, there exists pg such that D;(ps|n) — ¢, < 0 with strict equality if p5 , > 0.
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Hence, for p* = (5%, %) and ¢ € [0,1)7*5, and for all k € {1,...,J+ S}, Dp(p*|n) —qr <0
with strict equality if p; > 0.

To show uniqueness, note that D(py + Aps|n) satisfies local connected substitutes at
p’7. By Proposition B.3, we have that D(ps + Aps|n) admits a unique solution p%(ps) in
a neighborhood of p§. Further, since D*(ps|n) satisfies local connected substitutes at p%,

Proposition B.3 implies that p% is unique. O]
We now verify that if

tij -+ V;

3 — Ri(j
D (B.11)

fi(Ri ti,v) = 3

for v; € [0,1] as in the Cambridge Mechanism, then the market clearing cutoff p* is unique
if

Dj(p) = E | {f;(Ri, ti,vi) > pj, jR;0} H WjRij" or fi(Risti,vi) < pjr} (B.12)
J'#3

is strictly decreasing in p; in a neighborhood around any market-clearing cutoff p*.

Proposition B.5. Let f and D(p) be defined as in equations (B.11) and (B.12). If for
every program j € 1,....J, D;(p) is strictly decreasing in p; in a neighborhood of p*, then
the market clearing cutoff p* is unique. Moreover, if for every program j € 1,...,J, D; (p*)
is differentiable with respect to p, then V, Dy (p*) is nonsingular.

Proof. Fix any market clearing cutoff p*. For each j, let r} € {1,2, 3,4} be the pivotal rank
for program j, i.e. f;(R ti,vi) > p} if Ri(j) < 7} and f;(Ri ti,vi) < pj if Ri(j) > rj. We
use the convention that 7 = 4 if the program cutoff is 0, and r5 = 5 for the outside option.

For € > 0, define pj, = p; if k # j and p; = pj + . By the hypothesis of the theorem,
for 0 < ¢ < g1 € (0,1), Dj(p°) < D;(p*). The definitions of f and D imply that for
£ < ey €(0,1), Dp(p°) = Di(p*) if rj > rf. Since Z}]:o D;(p) is constant, it must be that
for e < min{ey, es}, we have that Dy (p®) > Dy (p*) for some k such that r; > r7.

For any non-empty subset K C {1,...,J}, let k = argmaxyecx 75, By the argument
above, there exists [ € {0, ..., J} such that r > r} such that D;(p) is strictly increasing in
pk at p*. Therefore, D(p) satisfies local-connected substitutes at p*.

We now show that D*(ps) = A'D(p%(Ps) + Aps) satisfies local connected substitutes at
Ps, where ps, = min{p; : s; = s}, and p%(ps) such that D;(p%(ps) + Aps) — ¢; < 0 with
equality if p% ;(ps) > 0.
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Lemma B.3 implies that D*(ps) satisfies weak substitutes. For small enough € > 0, define
Doy = D5y for s’ # s, and pg , = ps, +¢. Observe that this implies that p% . (p5) + ps) >
P7;(Ds) + Ps) for some j with s; = s. Define r; = max{rj : s; = s}. For all programs
jwith 5 < vt Dy(p*) = D,(55(55) + AP). Therefore, iy ;(Bs) + Ps.s, = 7y, (75)f5., if
r7 < rj. Since the Zf:o D*(ps) is constant, an identical argument to the one above implies
that for some s’ such that r¥ > r¥ DI (pS) > D% (ps) for small enough € > 0. As above,
D*(ps) satisfies local connected substitutes at pg.

By Proposition B.4, the market clearing cutoff p* is unique. Further, part (i) of Theorem
2 in (Berry et al., 2013) ensures that V,, D, (p*) is nonsingular.

[

B.7 Preliminaries

Lemma B.3. If D(:|n) is continuous in its arquments and satisfies weak substitutes, then
D*(ps|n) = A'D(p%(ps) + Aps|n) satisfies weak substitutes.

Proof. Fix ps, by = p7(Ps) and s € S. Let J; be the set of programs in school s, J be
the set of programs in school s with p7; > 0 and J? be the set of programs in school s with
p7.; = 0. Consider ps such that pis . = ps s +¢ for ¢ > 0 such that ¢ < min{p;(ps) : j € J;},
and pis, = ps, if t € S\{s}.

There are two cases to consider:

Case 1 p ;(ps) > 0 for all j € J;: Consider p'; such that p'; ; = py; for j € Js and
P'7; = pgj — € By construction, p'; + Aps = ps + Aps. Hence, p'; = p%(ps).
Therefore, D*(ps|n) = D*(ps|n), satisfying Assumption B.2.

Case 2 p%; ;(ps) =0 for some j € J,: We will construct a convergent sequence of cutoffs
p%, such that limy .. p§ = pj(Ps), and show that D?(ps|n) is non-increasing in ps
and Dj(ps|n) is non-decreasing in ps s for k # s.

Set p% ; = pg; for j € J\JF and p% ; = p7,;—¢ otherwise. Note that for all j € J\JZ,

ﬁ? —1—1'9“1975], = Ppg,;+Ds,;s, and for j € J?, ﬁ? +Pss = Ps,s + €. Foreach j € J and k € N,

construct the sequence 15?773‘ such that Dj((ﬁ’}d, ﬁ’}‘i ;) + Apsln) — ¢; < 0 with equality

if ]5’373» > 0. Since Dj((ﬁ";,j,ﬁ]}jij) + Aps|n) satisfies weak substitutes, if ﬁ]},_j > ]5{“7_7;,
then ]5'}? > ﬁkj,j‘ Therefore, ]’5’} is a monotonically increasing sequence. Since 13’} is
bounded above, it must be that limy_, ]5"“7 = p% exists. Further, since D;(ps + Aps|n)
is continuous in p7, we have that D;(p% + Aps|n) < 0 with equality if p% ; > 0. Hence,

% = p(Ps) > p%, and we have that p% (ps) + Aps > p%(Ps) + Aps.
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We now show that D; (5(75) + A7sln) > Dy (5 (7s) + Afsln) j & Jo. Fix j € T\ 1t
pY,;(Ds) > 0, then it must be that D;(p7 (Ps) + Apsn) = ¢; = D; (07 (ps) + Aps|n). I
P77.;(Ps) = 0, then D;(p%(Ps) + Aps|n) > D;(p%(Ps) + Aps|n) from weak substitutes,
since pY ;(Ps) + Ps,s; = D7, (Ps) + Ps,, and p7 (Ps) + Ps,s, = P71, (Ps) + Ds,,, for all
k7.

Finally, we show that >, D;(P;(s) + Abs|n) < > jcs Di(077(Ps) + Aps|n). Note
that Do(p7(Ps) + APsIn) = Do(p7(Ps) + Abs|n) since p7(fs) + APs = pi7(Ps) + Abs.

The proof is complete by noting that . 7 1o, D;(0% (0s5)+APsn) = X5 7000y D (07 (Ps)+

Aps|n) must be constant since each student can be assigned to only one program and
Dj(p(Ps) + Absln) = Dj(p%(ps) + Apsln) for all j € {0} U (T\J,).

B.8 Convergence of Equilibrium Probabilities

In this section, we consider a sequence of n-player Bayesian games defined by a sequence
of RSP+C mechanisms ®". Let o(v,t) = (0r,(v,t),...,0r, (v,1)) be a (type-symmetric)
strategy for a player with utility vector v and priority type t. We allow o(v,t) to be a mixed
strategy profile, although players generically have a pure strategy best-reponse. For each n,

the assignment probabilities are given by

Ly, = E.[@"((Ri,t:),(Roi, Ti)|Ri, Ti)
= Z q)n((Ri’ti)7(R—iaT—i)HmU(Rk,tk)7

R_it_; ki

where m?" (R, ) = fr(ty) [ or, (vit)dFyy,. The strategy o*" a Bayesian Nash Equilib-
rium if for all R such that ¢3;" (v;t) > 0, we have that v - L% ," > v - L"]%’fgm for all R € R.

As in Azevedo and Budish (2013), define the Large-Market Limit Mechanism as
follows:

Lyg = lim Y @"((Rits), (R, o) [ [ m” (R 1), (B.13)
R_;t_; k#i

if it exists. Further, o* is a Limit Equilibrium if 0% (v,¢) > 0 implies that v- Ly} > v- L7
for all R € R.

We now show that Bayesian Nash Equilibria of the mechanism in a large economy ap-

proximate equilibria of the Large-Market Limit Mechanism.

Proposition B.6. Suppose ®" is an RSP+C mechanism. Fiz a strategy o* such that the

limit in equation (B.13) exists, the tie-breakers v are non-degenerate and D(p|n) and q admit
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a unique market clearing cutoff, where n = m? X v,.

1. If o™ is a sequence BNE such that ||c*" — o*||p — 0, then ||L%Utn — L;L.O(;H — 0,

where ||o*" — o*||p = supp [ |og" (v,t) — o (v, t)|dFyr.

2. If o™ is a sequence BNE such that |o*™ — o*||[p — 0, the strategy o* is a limit

equilibrium.

3. If o* is a limit equilibrium, then for each ¢ > 0, and large enough n, oj(v,t) > 0
implies that for all R' € R,

v LT > L — el

The result shows that a convergent sequence of Bayesian Nash Equilibria converge to
a limit equilibrium, and that all limit equilibria are approximate BNE for large enough n.
The result is similar in spirit to Kalai (2004), which shows that equilibria in limit games are

approximate BNE in large games.
Proof. Part 1: By the triangle inequality,

||L 00,0* n,o*
Rz,t isti

Rz,t oo Rl,tl ||

Rz,t

By the assumptions of the proposition, the second term converges to 0. Now consider the

first term:
Lo — L% = Egon [O"((Ri,ti), (Roiyt-3)) | R, ti] — Bow [07((Rists), (Roi t_))| Ri ti]

where E, denotes the expectation taken with respect to draws of (Ry,t;) taken from m?.

Since ®" is an RSP+C mechanism, we have that

Riati:| {/D (Bitirv) p")d,

Therefore, to complete the proof, we need to show that the right-hand side of this expression

n, 0_* n
LRZ7tl

~ Ly, = Egen { [ D,

Rit; } (B.14)

converges to zero.
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Let n*" = m®" x 7, and n* = m° X 7, and observe that
ID(pln™") = D(p|n")|l = sup|D;(pln™") — D;(pln*)|
J
= sup [n""(vp5) — 0" (vp5)]
J

= sup| Y (m7(Rt) = mT (Rt ({v: (R tv) € uyy})

7 (RH)ERXT

— | Y (/<a;"<v,t>—az<v,t>>dFv,T)%<{u:f(R,t,wevp,m

7 (RH)ERXT

< o =olesup| Y w{v: f(Rtv) €vpi})| <o —op
T l(RH)ERXT

The right-hand side converges to 0 by assumption. Therefore, we have that
*n * P
sup | D(pln™") = D(p|n*)|| = 0.
p
If n™ is a sequence of empirical measures constructed draws from n*", we have that

sup [ D(pln™) = D(pln")|l < sup [D(pln™) = D(pln™")I| + sup [ D(p|n™") = D(p|n)|
p p p

< sup J|n" (vp,) — 1" (vp )| +sup || D(p|y™") — D(pln*)|| = 0,
p,J p

since V = {v,; : p € [0,1]7,5 € J} is a uniform Glivenk-Cantelli class.

By arguments identical to those made in Part 1 of Theorem B.1, if p™ is a market clearing
cutoff for D(p|n™) and ¢, then p* % p* where p* is the unique market clearing cutoff for
D(p|n*) and ¢. By the continuous mapping theorem, for each (R,t), we have that

/D(R,t,y)(pn)d%/A/D(R,t,u)(p*)d%j.

Since D) (pn) is bounded, we have that

E g [/D(R’t’”) (p™)d,

R, t} — / DB (p*)dy,. (B.15)
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By a similar argument, we have that

E,- {/D(R’t”’)(pn)d%

R, t} — / DEL) (p*)dy,. (B.16)

Equations (B.15) and (B.16) imply that the right hand side of equation (B.14) converges to
0.

Part 2: Consider a sequence of equilibrium strategies 0" such that ||o*" — o*||p — 0.
We will show that o},(v,t) > 0 for all (v,t) € int(suppFy7) only if v - (L;jf* — LCI}?‘;) >0
for all R € R.

Fix (v,t) € int(suppFyr). Towards a contradiction, suppose that oj(v;t) > 0, and
v - (L;Zf* — L%O,‘t’) < —2¢ for some R' € R and € > 0. Since (v,t) € int(suppFy.r), there
exists a d > 0, such that for all v with ||[v — /|| < J, we have v' € int(suppFy,r), and
v (LT - LyY) < —e.

By Part 1, |27} — L7
for allm > N and all R' € R,

|

Hence, for all v’ in the § neighborhood of v, we have that

— 0. Since L%’i*’n is bounded, there exists an IV, such that

£

L o< ——
w7 ool +9)

o - L)

IN

V(LR Lyl ) 2 ML~ Ly

< U (LY - LyT ) +e<0

Since o*™ is a Bayesian Nash Equilibrium strategy, it must be that for all n > N and v’ such
that |[v—v'|| <0, 05" (¢',t) = 0. Therefore, ||o*" —c*||r — 0 implies that o*(v', ) = 0 for all
v" in the § neighborhood of v. This conclusion contradicts the hypothesis that o},(v,t) > 0
for any R such that v - (L;’{if* - L}’;‘t’) < 0. Hence, ¢* is a limit equilibrium.

Part 3: Consider the constant sequence ¢*" = ¢*. By the assumptions of the proposi-
tion, for each (R, 1),

I — L5l = 0.

Moreover, this convergence is uniform in (R,t) since R x T is a finite set. Fix ¢ > 0 and

pick ng such that for all n > ny,

* * £
sup [ L7 — Ly || <5
R,t ) ) 2
Note that the choice of ng did not depend on v;.

26



Since o* is a limit equilibrium, o}, (v;, ;) > 0 implies that for all R,
00,0 00,0*
Ui - LRi,ti = Uit LR’. ti
72l
n,o* n,o* n,o* 00,0*
= v Ly, Zwvw-Lg, —2sup|v; - (Lg; — Lgy )l

)

for alln > ng. By the Cauchy-Schwarz inequality, supg, |vi~(L%’Z*—Lﬁf*) < ||vs|| sup g, HL%’;*—

L}’;f* ||. Therefore,

v L% > v Lg;{; — eljwg].

C Identification

C.1 Equilibrium Behavior and Testable Restrictions

Our empirical methods are based on the assumption that agent behavior is described by
equilibrium play. This section discusses whether this assumption is testable in principle and

types of mechanisms for which it may be rejected.

Assumption C.1. The map o;(v;, t;) — ARl that generates the data is a symmetric limit

Bayesian Nash Equilibrium.

This assumption implies that students have consistent beliefs of the probability that they
are assigned to each school in S as a function of their report R € R. Recall that the set of

students that choose lottery Lz have utilities that belong to the normal cone to £ at Lp:
CR: {UERJZVLR/ EE,’U'(LR—LR/) ZO}
This observation immediately yields the result that agents maximize their utility by picking

lotteries that are extremal in the set of lotteries.

Proposition C.1. Let the distribution of indirect utilities admit a density. If Lg is not an
extreme point of the convex hull of L, the set of utilities v such that v- Lr > v - Ly for all

Lr € L has measure zero.

Proof. 1t Ly is not an extreme point of the convex hull of £, then Cz has Lebesgue-measure
zero. Since v admits a density, [ 1{v € Cr}dFy = 0. ]

The result uses the fact that ties in expected utility for any two lotteries are non-generic,

agents whose behavior is consistent with equilibrium play (typically) pick extremal lotteries.
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Proposition C.1 also indicates that the fraction of students with behavior that is not consis-
tent with equilibrium play can be identified. This suggests that Assumption C.1 is testable.
However, we have not yet exploited the structure of assignment probabilities that result from
typical assignment mechanisms in discussing testability. We now present a general sufficient
condition under which observed behavior can be rationalized as equilibrium play.

Consider a mechanism in which reports correspond to rank-orders over the available
options. Therefore, a report is a function R : {1,..., K} — J such that (i) for all k, k" €
{1,...,K}, R(k) = R(K') #0 =k =k and (ii) R(k) =0 = R(K') =0if k' > k. Let
R be the space of such functions. As discussed earlier, the mechanism produces assignment
probabilities L7 for each report submitted by an agent with priority type t. Let LE7, be
the probability that a student with priority type t is assigned to program j when submitting
R. We drop the dependence on n, t and ¢ for notational simplicity since we will hold these

constant in what follows.

Definition C.1. The assigment probabilities L = {Lr € A’ : R € R} are rank-monotonic
for priority type t, if for all R, R' € R, R_; € R_; and k < K we have that (R(1),..., R(k—
1)) =(R(1),...,R(k—1)) implies

L ri) > Lr ri-

Further, L; is strictly rank-monotonic for priority-type t if the inequality above is
strict if R(k) # R'(k), and L gy > 0

Rank-monotonicity is a natural condition that should be satisfied by many single-unit
assignment mechanisms. Specifically, it requires that the assignment probability at the k-
th ranked school does not depend on schools ranked below it, and that ranking a school
higher weakly increases a student’s chances of getting assigned to it. Under strict rank-
monotonicity, ranking a school higher strictly increases the assignment probability unless
this probability is zero.

We now show that in all strictly rank-monotonic ranking mechanisms, all agents that
pick a report that gives them a positive probability of assignment at each of their options

are behaving in a manner consistent with equilibrium play.?

Theorem C.1. Assume that L is strictly rank-monotonic. The report R € R corresponds

to an extremal lottery Lr € L if Lr gy > 0 for all k such that ), _, Lrrey < 1.

2Strict-rank monotonicity does not rule out that two different reports result in the same lottery, e.g.,
if Ry = (A4,B,C) and Ry = (A, B, D) both result in assignment probabilities for A,B,C and D equal to
[¢A7 1- ¢Aa 070]
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Proof. Consider a report R € R such that for any £ = 1,2,.., K, >, Lrrey < 1 and
LR,R(k) > 0

Take any vector of coefficients A such that:

Ap > 0 for every Re R

g =1

> Mplp = Lg

ReR

We will show that A\g = 1. The proof follows by induction. Consider some report R
where R(1) # R(1). Strict rank-monotonicity and our assumption on R imply A5z = 0. We
have shown that for k = 1, R(k') # R(K') for any k' <k == M\ = 0. Suppose that this
statement is true for all I < k — 1 and that ) ,_, Lrrq) < 1. Take any report R where
R(l) # R(1) for some [ < k. If | < k, Ai = 0 by the inductive hypothesis. If [ = k, Strict
rank-monotonicity and our assumption on R imply A5z = 0. By induction, R(l) # R(l) and
2k Lrrpy <1 = Az =0.

Suppose that there is a j € S and R € R such that Lg; # Lz ;; we will show that
Ai = 0. Let k be the minimum k such that R(k) # R(k). Rank-monotonicity and the fact
that either Lg; > 0 or L, > 0 imply that

ZLR(Z),R = ZLR’RU) < 1.

I<k I<k

Thus, our previous results imply that Az = 0.
m

The result implies that every report with non-zero assignment probabilities is rational-
izable as an optimal report for a priority type if the mechanism is strictly rank-monotonic.
Intuitively, this is the case because upgrading any school in the reported rank-order list
strictly increases the probability of assignment and there exists a utility vector for which
such a report is optimal.

Although the model has testable predictions, we do not develop a statistical test for the
null hypothesis that play is consistent with optimal behavior. The technical challenge arises
from testing a parameter describing the fraction of agents with non-rationalizable reports on
the boundary. The statistical test would have to account for uncertainty in estimating the

lotteries. We leave this for future research.
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C.2 Characterization of Partially Identified Set

Counsider the collection of markets

T (& 2) = AT = (&, ziv, tin, Lo) = (&, 2in) = (€, 2) }.

The dependence of the set of assignment probabilities £ on the market index b indicates that
we allow variation in this dimension to be useful in the present exercise. We will consider
results that fix (£, z) and therefore drop this from the notation. As a reminder, conditioning
on z is without loss since it is observed, but this implies that the researcher assumes that
the variation considered holds school unobservables ¢ fixed.

The next result characterizes what can be learned about the distribution of utilities
from observing data from several markets in 7. Let Ny.(L) = {v € R/ : v (L - L) >
0 for all L’ € Lr} be the normal cone to L € Lr corresponding to the set Lr. (We switch
notation from using Cr for lottery Lg for clarity since this section uses different sets Lr,
which are not explicitly referred to in the relatively compact notation, C'r.) Further, let
N = {int(Ng. (L)) brer.Lecy be the collection of (the interiors of) normal cones to lotteries
faced by agents in the markets 7. For a collection of sets N, let D(N) be the smallest

collection of subsets of R’ such that
1. R” € DIN) and N’ C D(N)
2. For all N € D(N), N¢ € D(N)

3. For all countable sequences of sets Ny € D(N) such that Ny, "Ny, =0, J, Nk € D(N)
The collection D(N) is sometimes called the minimal Dynkin system containing N

Theorem C.2. Given P(L € Lr|I") for each T" € T and L € Lr, the quantity
hp = / 1{?] < D}dFv(U)

is identified for each D € D(N).

Proof. The identified set of conditional distributions Fy (v) is given by
Fr = {Fv e Z:VLeLrandT € T,P(L € Lr|T") = / {v e NﬁF(L)}dF\/(U)} :
Note that for any two distributions Fy and FV in .%, the collection of sets

L(Fy, Fy) = {A cF: /1{u € AYAF, (v) = /1{v e A}dFV(v)}
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is a Dynkin system for the Borel o-algebra F. Since D(N) is the minimal Dynkin system
where all elements of .Z; agree, D(N) C Z(Fy, Fy) for any two elements Fy, and Fy. Hence,
for all D € D(N), we have that

hp = / {v € D}dFy(v) = /1{v € D}dFy(v)

is therefore identified. O

The result follows from basic measure theory and characterizes the features of Fy (v) that
are identified under such variation in choice environments without any further restrictions. In
particular, with the free normalization ||v;|| = 1, the result implies that the mass accumulated
on the projection of the sets in D(A) on the J — 1 dimensional sphere, S”, is identified.
Typically, this implies only partial identification of Fy (v), but extensive variation in the

lotteries could result in point identification.?

C.3 Non-Simplicial Cones

In this section, we consider the case when the cone C’ is not spanned by linearly independent

vectors. We need that there exists a report for which the normal cone satisfies the following

property:
Definition C.2. A cone C is salient ifve C — —v & C for all v # 0.

Our results require that the tails of the distribution of utilities are light. Formally, assume

that for some ¢ > 0, the density of u belongs to the set
Ge = {g € L'(RY) : eMlg(u) € L'(R)},

where L! is the space of Lebesgue integrable functions.

Theorem C.3. Assume that g € G. and there is a lottery L such that Cr is a salient
convex cone with a non-empty interior. If ( = R’ then the distribution of utilities Fy (v|z!)
is identified from

hey (2') = P(Lg € L]2").

The key insight is that Fourier transform of an exponential density restricted to any
salient cone is non-zero on any open set. We first show a preliminary which specializes

results in De Carli (1992, 2012).

3Specifically, the m — X theorem implies that Fy (v) is identified if and only if the Dynkin-system D(N)
contains a m-system that generates the Borel o-algebra.
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Lemma C.1. Let f.r (z) = 1{z € T}e 272} for some polygonal, full-dimensional, salient,
convez cone T and ¢ € int(T), and let f.r (€) be its Fourier Transform. f-r is an entire

function. Further, there is no non-empty open subset of R” where fap 1S 2€ero.

Proof of Theorem C.3. Let {I'1,...,I'g} be a simplicial triangulation of I'. Let V, be a
matrix [vg1, Vg, .-, Ugn] With the linear independent vectors that span cone I'; arranged as
column vectors. x € I'; <= x = Vo for some 0 < o € R’ «— Vq’lx > 0. Normalize V
so that |det V| = 1. Let f.r (v) = 1{x € T'}e~2"& This is an integrable function (if ¢ is

in the dual of the cone I'). Consider its Fourier transform:
For© = [ exp(-2mi(¢~ic.a) da
r
= Z/ exp (—2mi (§ —ig, x)) dx
Q e
= Z/ Ha: Vq_lx > 0} exp (—2mi (§ —ie,x))dx
Q R
= Z/ exp (—2mi (§ —ig, Vya)) da
Q R
= Z/ exp (—2mi (V€ —iV]e,a)) da
J
= Z H / exp (—2mi ( (vg,€ — ivye) a) da

¢=1..Q j=1..J

— Z H/ exp (—a [2m (v);e) + 2mi (v,€)]) da
¢=1..Qj=1..J

- X N smama

where the last equality follows from the fact that —a2m(v;;e) < 0. Note that the closed-form
expression implies that f.r (€) is an entire function for every ¢ € I'/ {0}. Therefore, if it is
zero in an open subset of R” is zero everywhere.

We now show that fs,p (§) is non-zero on a non-empty open set. Let K be a full-
dimensional simplicial convex cone such that I' C K. K exists because I' is salient. Let

Vk be the corresponding matrix for K. k., = Vi'v, > 0 for all ¢ € {1,...,Q} and
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je{l,...,J}. Consider { = (Vgl)/a,
. N 1
For (Vi)' a) = (2—) I,
) + (vgye) é
11

- (2%) [K a) + (o))

Each term in the summation has a positive denominator and a numerator that is a

) — i (vje)]

J

Z
LQj=1,..

>

¢=1,...,Q j=1,..

polynomial function of a with positive coefficients. It follows that it is not zero everywhere,

and therefore there is no open subset of R’ where f;}l“ is zero. O
We are now ready to prove the main result.

Proof. For a fixed lottery Lg such that Cg is salient, define the linear operator A:

Ag(z) = /c g (v+z)dv.

We need to show that if A(¢’ — ¢”) = 0 a.e. Then, g = (¢’ — ¢”) = 0 a.e. The proof is by
contradiction.

Since the cone Cp is salient, its dual T has a nonempty interior. Let € € int(Tg), with
|e| sufficiently small so that g.(u) = g(u)e?™ & € L', Note that 1{u € Crle 2" ¢ L! for
every € € int(Tg) because (g, u) > 0.

Towards a contradiction, suppose that A(¢' — ¢”) = 0 a.e. but |¢' — ¢”|; > 0. Since
¢ = R’, we have that for almost all z € R,

Ag(z) = e 2mes /1 {v € Cr} e 2EN2TEVH2) g4y 4 2)dv = 0.

Since e~ 272 > 0, Ag = 0 for almost all z <= fE,CR(ﬁ) - §.(€) = 0, where fapR is the
Fourier Transform of f. ¢, (z) = 1{z € Cr}e 2™ and §. is the conjugate of the Fourier
Transform of g. (z), both continuous functions in L!. Since §. is continuous, the set where
§. # 0 is open. Further, since |g|; > 0, the support of . is non-empty. It follows that there
is an open Z, where g, is different from zero, and therefore, f&CR(f ) =0 for all £ € Z,.. This
contradicts the fact that f. o, is an entire function, as shown in Lemma C.1.

1

Finally, since g(u) is known for almost all u, we have that Fy(v]z') = [7 7 g(u)du is

identified. O
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D Estimation Appendix

D.1 Gibbs’ Sampler: Implementation Details

Let Z; be a J x (K x J) block-diagonal matrix that is constructed placing the K-row vector
covariates z;; = [zijk}szl in each of the J blocks; f = vec ({B;x}), a K J-column vector; and
D; a J x J diagonal matrix with d;; in the j-th position. The system in equation (1) can be

compactly written as:

Ui:ZZ’B—Di—i‘gi

The unobserved utilities v; are treated as unknown parameters along with § and 3. We

specify independent prior distributions for g and >:

p(3,%) = pB)p(X),
5 ~ N(BaA_l)a
S o~ IW (v, Vo),

where IW is the inverse Wishart distribution.

The Gibbs sampler proceeds as follows:

0. Start with initial values 30 and v° = {02}~ | so that o0 € Cg, for all i = 1...N where

R; is the report of student .

Since C, = {v € R/ : ;v > 0} where I'; = (L, — Ly,,..., Ly — LRle)’,4 v? can be

found by finding a solution to the inequalities
Ligv; 2 €,

for each row k of I';, and a small positive number €. We implement this step using

Gurobi solver.

4For the specification that assumes truthful reporting, I';, is a matrix that encodes the inequalities implied
by the rank order list R; = (R;(1),..., R;(K)). Hence, I';u; > 0 if and only if v;g, (1) > vir,2) > -+ >
ViR, (K)> Vio < Vig, (k) and v < vip(x) if j € R;.
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1. Draw 80?20 from a N <ﬁ~, V),

V o= (272" + A7 3=V (27" + AP)

Zi
Z" =

Zs
7y = C'Z,vi =C"h
¥ = C'C

2. Draw X![0° B from a IW (v + N, Vo + S)

n

/

S = g €5y
=1

g = vy —Zif'

3. Draw v!|B, 3! R iterating over students and schools.

For each school j = 1...J, draw
1 1171 0/ 1 1
Uij| {Uik k=1" {vik}k:j+1 7ﬁ 72
from a truncated normal T'N (,uij, aizj, aij, bij), where
K
Hij = Z 6}kzz’jk — dj;
k=1
2 oyl 1 1 11
o5 = T =Sy Eiaea] Sy

and the truncation points a;; and b;; guarantee the draw vilj is such that

1\-1 1 0/ '
v = [{Ulk k=1 Yij> {Uik}k:j#l}

lies in the interior of C'z,. To calculate these truncation points, define Agk be the k-th
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. . /
row of T; with its j-th column removed and let v/ = |{v},}/_}, {09 }1_ il

JoaJ

_ — A
a;; = max  —=*t
ke{kTir;>0} Lij

AT 4

_ . Ao

bij = min —

ke{kTir;<0} Lij
where I';y,; is the (k, j)-th element of I';.

4. Set X% = ¥ and v° = v!, store, and repeat the steps 1-3 to obtain (B’“7 Ek,v"f) given
(BF1, 2R v*~1) and the priors.

D.2 Gibbs’ Sampler for the Naive-Sophisticate Mixture Model

We extend the Gibbs’ sampler described earlier to allow for two types of agents. The model
assumes that naive agents report truthfully while sophisticates pick the report that maxi-
mizes their expected utility. For a rank-order list R = (R(1), R(2), ..., R(K)) of length K, let
C'R be the region in utility space such that v; € C’R = Uir(1) > ViR(2) > - > ViR(K) > Vij
for all j ¢ R;, and vir(x) > vio. Note that Cr is a convex cone in R”. Let 7; be an indicator
for whether a student is naive. Therefore, the model specifies the observed report of the

agent given v; and ; as follows:

Ri:R,ﬂ'i:O — UZ'GCR

Ri:R,mzl — UiECYR.

Our Gibb’s sampler uses data augmentation on 7; in addition to v;. Let 7 be the fraction
of nave agents in the economy. We let 7 be a vector to allow for free-lunch and paid-

lunch students to have differing proportions of naive and sophisticated agents. We specify

®We pre-process the matrix I'; using Gurobi to eliminate redundant linear constraints to speed up this
step. The k-th row is a redundant constraint if the solution to the problem

min I';pv subject to T'ju > 0
v

is strictly positive.
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independent prior distributions for £, 7 and X:

p(B,X) = p(B)p(m)p(X),
~ N(8.E7Y),

T ~ Beta(ag,by)

~ IW (v, Vo),

where IW is the inverse Wishart distribution and | € {Paid Lunch, Free Lunch}. The Gibbs’

sampler proceeds as follows:

0.

1-2.

Start with initial values X0, 70 = {z%}  and v = {¢0};', so that v0 € Cg, for all

1=1...N.
Update (%, 5) according to steps 1-2 in Appendix D.1.
Update 7!|7%. For [ € {Paid Lunch, Free Lunch}, draw 7; from
Beta (ao + M| — ng,bg + Zﬂ'?) ,
ieN; ieN]
where N is the set of students in paid/free-lunch group I.

Draw v!|g, B! 7!,y iterating over students and schools. For the observed report R;

for student i, consider the cones

CYRZ. = {v eR’: UR;(1) = UR;(2) = - - > URy(K) > Vij for all j € {0,...,J}\Ri}
Cr = {UER‘]:DUZO},

1

where I'; = (L, — Ly, ..., L, — Lg, ). Let 7} = @}, for [ equal to the paid lunch

status of 7. For each school j = 1...J, draw
1 1J-1 017 1yl =1
Ul]‘ {Uik k=1" {vik‘}k:j+1 76 ) b)) y T

from a mixture of two truncated normals TN </Lij, 0%, i, lN)U> and T'N (pij, 07, aij, bij)
with weights 7} and (1 — 7}). i, 07, a;; and by; are defined as in step 3 in Appendix
D.1. The truncation points <dij, B”> guarantee that draws from T'N (uij, afj, Qjj, Bw)

lay in the interior of C,.
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5. Update w!|v!, #1. For each student i, draw 7} from a binomial distribution with pa-
rameter 71} if v} € Cr, N Cr,. If v} € Cr\Cr,, set 7} = 0. If v} € Cp \Chg,, set

1_
m; = 1.

6. Repeat steps 1-5 to obtain (%, XF of 7k 7F) given (pF1 $h=1 o=t ph=t zh=1),

(2

We parametrize v; as in Appendix D.1 and assume identical distributions for naives are

sophisticates.

D.3 Priors

We use very diffuse priors to minimize their influence on our estimates and as a reflection

of our prior uncertainty about the values of the parameters of the model. We set the prior

distribution of f ~ N(5,%71)

iy
Il
o

vl = 100x I
and the prior of ¥ ~ IW (g, Vp)

v = 100
Vv, = I

We experimented with more diffuse priors (2*1 =200 x I,vy = 50) without noticeable changes
in our main results.

For the mixture model, we set the prior of 7, = Beta (ag,by), with ag = by = 1 for | €
{Paid Lunch, Free Lunch}.

D.4 Convergence Diagnostics

The Gibbs’ sampler produces a markov chain with the posterior distribution of the param-
eters as its invariant distribution. Since the chain is ergodic, it ultimately converges to this
distribution irrespective of the starting point. However, it is essential to burn-in a large set
of initial draws since they are influenced by the starting point, and to check that the chains
have converged. To ensure mixing, we simulate three chains of length 400,000, burn-in the
first half. We monitor convergence by examining the trace plots of the various co-efficients
and use Geweke’s means test across and within the chains to ensure mixing. Finally, we use

the Raftery-Lewis Diagnosis Test to check that the chain has been simulated for long enough
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to ensure that the 2.5th percentile of the vast majority of parameters are estimated within
a tolerance of 0.005 with 95% probability.

D.5 Bootstrap

Unless otherwise noted, the standard errors for IA/, é, and counterfactuals were estimated
by a bootstrap. To construct each of the S bootstrap samples we sampled n students with
replacement from each year of our sample, where n is the number of students in that year.

For each bootstrap sample s € {1,...,5}, we computed:

o Lottery estimate L*: For each of the five years in the data, we computed L using
the bootstrap sample s using the same procedure used to obtain L. ie. we resampled
n — 1 individuals and generated n — 1 lottery draws B = 1,000 times. For each
simulated sample b, we computed the market clearing cutoff p}};l, and for each (R, t)
calculated the vector of assignment probabilities averaging across the B simulated
samples following equation 9. The standard errors for the lotteries presented in table
D.1 in the Appendix are the standard deviation of the L* across S = 1,000 bootstrap

samples.

e Parameter estimates BS, 3%: We ran a Monte Carlo Markov Chain on the bootstrap
sample s using the same procedure described in the paper using the bootstrap samples
and in Appendix D. We ran one chain of 100, 000 draws and burned-in the first 50, 000.
The last 50,000 draws were used to compute the mean of each parameter which we
denote 3, 3. The standard errors in tables 7 and D.3 were estimated by the standard

deviation of the mean utilities and BS across the S = 250 bootstrap samples.

e Counterfactual: We simulated the deferred acceptance counterfactual assuming param-
eters BS, 3¢ and computed the difference in utility for each individual in the bootstrap
sample s. For the Cambridge mechanism, we used L*. The standard errors reported in
table 10 were estimated by the standard deviation of the difference in utilities across

the S = 250 boostrap samples.

The same boostrap procedure was used to compute standard errors for the coarse beliefs,
adaptative expectations and mixture specifications. However, the standard errors for the
truthful specification were not obtained by bootstrap. They were estimated directly from
the original MCMC chains.
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