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The appendix follows the organization of the paper. Appendix A describes the data

sources and the cleaning process, Appendix B presents results on the first step estimator,

the convergence of assignment probabilities to those for a limit game, details on RSP+C

mechanisms. Appendix C presents technical details relevant for Section 5, including proofs

and additional results on identification and testable restrictions of equilibrium behavior.

Appendix D proves consistency of our two-step approach and details the Gibbs’ sampler

used in Section 6.

A Data Appendix

The primary data for the study come from Cambridge Public Schools. Under a non-disclosure

agreement, we use data from student registration records, assignment files, and data on

student characteristics.

The student registration records contain the school/program the student is registered at,

student’s grade, language spoken at home, and the paid-lunch status at registration.

The assignment files include the rank-order list of the student, sibling or proximity pri-

ority at the ranked school, the randomly generated tie-breaker used in the assignment, and

the paid-lunch/free-lunch status of the student. Cambridge pre-assigns about 40% of the

students to public elementary schools via arrangements with pre-kindergarten schools. The

assignment files provide detail on whether the student is pre-assigned and if the student

participated in the school choice process (the Cambridge mechanism) studied in this paper.

We also obtained reports from the school district containing the overall capacity of each

school/program in each year and the numbers assigned through each process. We use these

reports as the primary source for computing the number of seats available at various schools
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and programs in the mechanism. In rare cases, the rank order lists, the random tie-breaker

and the priority codes indicated an inconsistency in the capacity data. We used the knowl-

edge of the mechanism to adjust these capacities and were able to compute the correct

assignment for almost all students with these modified capacities.

The student characteristics file duplicates several of the variables in the registration and

school choice ranking and assignment file. Importantly, it also includes the home address of

the student. The Network Analyst Toolbox in ArcGIS and information in ESRI’s Datamaps

10.1 on the US road network was used to compute the distance by road between the student’s

home and the school address based on brochures from the relevant years. This computation

ignores one-way restrictions because Cambridge uses walking distance to compute proximity

priority.

These files were merged using a unique student identifier.1 Schools and programs are also

uniquely identified in the dataset.

B Limits: Equilibrium, Mechanisms and Convergence

This section presents several definitions and results on mechanisms and their convergence.

Section B.1 presentes examples of RSP+C mechanisms. Section B.2 proves consistency

and asymptotic normality of our estimator. Section B.4 discusses existence and (generic)

uniqueness of market-clearing cutoffs. Section B.8 shows that equilibria of large-market

mechanisms converge to limit equilibria.

B.1 Report-Specific Priority and Cutoff Mechanisms

This section formally shows that several school choice mechanisms belong to the class of

Report-Specific Priorities + Cutoff (RSP+C) mechanisms. For simplicity, we assume that

each school has only one program, and that there are no priorities. These examples can be

easily modified to accomodate these details.

In the interest of completeness, we start by formally defining the two most commonly

used mechanisms, the Student Proposing Deferred Acceptance Mechanism, and the Boston

Mechanism (also known as the Immediate Acceptance Mechanism).

The Student Proposing Deferred Acceptance mechanism: For reports R1, . . . , RN

and priorities t1, . . . , tN ,

Step 1: Students apply to their first listed choice and their applications are tentatively held

in order of priority and a tie-breaker until the capacity has been reached. Schools reject

1We are grateful to Parag Pathak for sharing the dataset for this project.
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the remaining students.

Step k: Students that are rejected in the previous round apply to their highest choice that

has not rejected them. Schools pool new applications with those held from previous

steps, and tentatively hold applications in order of priority and a tie-breaker until ca-

pacity has been reached. The remaining students are rejected. The algorithm continues

if any rejected student has not been considered at all their listed schools. Otherwise,

each student is assigned to the school that currently holds her application.

This mechanism is strategy-proof for the students if the students can rank all J schools

(Dubins and Freedman, 1981; Roth, 1982), but provides strategic incentives for students if

students are constrained to list K < J schools (see Abdulkadiroglu et al., 2009; Haeringer

and Klijn, 2009, for details).

The Boston mechanism (or Immediate Acceptance mechanism): For reportsR1, . . . , RN

and priorities t1, . . . , tN , each school

Step 1: Assign students to their first choice in order of priority and a random tie-breaker

until the capacity has been reached. Reject the remaining students.

Step k: Assign students that are rejected in the previous round to their k-th choice in order

of priority and a random tie-breaker until the capacity has been reached. Schools reject

the remaining students. Continue if any rejected student has not been considered at

all their listed schools.

This mechanism is a canonical example for one that provides strategic incentives to students

(Abdulkadiroglu et al., 2006).

Our next result shows that all mechanisms in table 1 except the TTC is report-specific

priority + cutoffs mechanisms. As we discuss below, our convergence result will require an

additional assumption that the mechanism uses a random number to break ties.

A researcher with data from one of these mechanisms will need to verify that priorities

used by the mechanism satisfy our assumptions above before applying the methods that

follow. An important restriction is that the function f does not depend on the reports and

priorities of the other agents. This may rule out some mechanisms that use the reports of

other agents to determine eligibility in a program.

Proposition B.1. The Deferred Acceptance mechanism, the Boston mechanism, Serial Dic-

tatorship, First Preferences First, Chinese Parallel Mechanism and the Pan London Admis-

sions scheme with tie-breakers are RSP+C mechanisms.
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Proof. We assume that there are no priority types for simplicity, though the proof can

be easily rewritten to incorporate finitely many priority types as done for the Cambridge

Controlled Choice Plan.

Deferred Acceptance:

We show that Deferred Acceptance is equivalent to a report-specific priority + cutoff mech-

anisms with

fj(R, ν) = νj.

Let νj be supremum of the priority scores of the rejected students in school j. We claim that

pn = ν are the cutoffs with the desired properties (if a school does not reject any students,

set pj = 0).

Let νrj be the supremum the priority scores of students that were rejected in round r. Set

νrj = 0 if no students are rejected. Observe that for each school, νrj ≤ νr+1
j . If the algorithm

terminates in round k, then νkj = νj. The algorithm terminates in finitely many rounds for

every n.

Assume that student i is assigned to school j′ and consider any school j with jRjj
′. Let

r be round in which student i was rejected by j. By definition, it must be that νij < νrj .

Therefore, νij < νj and we have that each student is assigned to D(Ri,νi)(pn).

Finally, the aggregate demand cannot exceed qj by construction of pn.

Boston Mechanism:

We show that the Boston Mechanism is report-specific priority + cutoff mechanisms for

fj(R, ν) =
νj −#{k : kRij}

J
+
J − 1

J

by constructing market cutoffs pn for each profile ((R1, ν1), . . . , (RN , νN)) such that (i) the

assignment of each agent is given by D(Ri,νi)(pn) and (ii) pn clears the market for the economy

((R1, ν1), . . . , (RN , νN)).

Note that if a school rejects a student in round k, then it rejects students in all further

rounds since it is full at the end of that round. Let kj denote that round for school j, and

let νj be supremum of the random priorities of the rejected students in round kj. We claim

that pnj = 1−
kj − νj
J

are the cutoffs with the desired properties (if a school does not reject

any students, set kj = J and pj = 0).

We first show that the assignment of each student in the Boston mechanism is given by

D(Ri,νi)(pn). Assume that student i is assigned to school j′ and consider any school j with

jRij
′. Since jRij

′, it must be that the student was rejected at j, and could not have applied
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to j before round kj. If student applied to kj after round j, then νij−#{k : kRij} < νj−kj
since |νij − νj| ≤ 1. If #{k : kRij} = kj, then νij < νj. In either case, fj(Ri, νi) < pj.

Therefore, the student is assigned to D(Ri,νi)(pn).

Next, we show that pn clears the market for economy ((R1, ν1), . . . , (RN , νN)). As noted

earlier, each agent is assigned to D(Ri,νi)(pn). By construction of pn, the aggregate demand

must be less than qj, and pnj = 0 if aggregate demand is strictly less than qj.

Serial Dictatorship:

The Serial Dictatorship Mechanism orders the students according to a single priority and

then assigns the top student to her top ranked choice. The k-th student is then assigned to

her top ranked choice that has remaining seats. It is straightforward to show that this mech-

anism is equivalent to a Deferred Acceptance mechanism in which all students have identical

tie-breakers at all schools. Hence, it is a report-specific priority + cutoff mechanism.

First Preferences First:

The First Preferences First mechanism assigns students to their top ranked choice if seats are

available, with tie-breaking according to priorities and a random number. Rejected students

are then processed for the remaining seats according to the Deferred Acceptance mechanism.

Arguments identical to the ones above show that the First Priority First mechanism is a

report-specific priority + cutoff mechanism for

fj(R, ν) =
νj + 1{jRj′ ∀j′ 6= j}

2
.

Chinese Parallel (Chen and Kesten, 2013):

The chinese parallel mechanism operates in t rounds, each with tc-subchoices. In each round,

rejected students applies to the next tc highest choices that have not yet rejected her. Within

each round, the algorithm implements a deferred acceptance procedure in which applications

are held tentatively until no new proposals are made. Assignments are finalized after all

tc choices have been considered. It is straightforward to show that the Chinese Parallel

mechanism is a report-specific priority + cutoff mechanism for

fj(R, ν) =

νj −
⌊

#{k : kRij}
tc

⌋
⌊
J

tc

⌋ +

⌊
J − 1

tc

⌋
⌊
J

tc

⌋ .
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Pan London Admissions (Pennell et al., 2006):

The Pan London Admissions system uses the Student Proposing Deferred Acceptance Mech-

anism, except that a subset of schools upgrade the priority of students that rank the school

highly. Suppose school j upgrades students that rank it first. For such schools, we set

fj(R, ν) =
νj + 1{jRj′ ∀j′ 6= j}

2
,

and fj(R, ν) = ν otherwise. With this modification, the Pan London Admissions scheme is

a report-specific priority + cutoff mechanism.

We use ej = fj(R, ν) = νj for schools that do not modify the priority and ej = fj(R, ν) =
νj −#{k : kRj}

J
+
J − 1

J
for the Boston Mechanism. This choice of f for Boston upgrades

the priority of the student at her first choice relative to all students that list that school

lower.

B.2 Consistency and Asymptotic Normality in RSP+C Mecha-

nisms

Our main results in this section derive the properties of our estimator L̂ defined in equa-

tion (9) in the main text. To state these results, we need to introduce some notation and

definitions.

Although the text stated our result for the uniform distribution, in our main results, we

will assume that the mechanism uses non-degenerate tie-breakers.

Definition B.1 (Non-degenerate tie-breakers). There exists some κ > 0, such that for each

p, p′ ∈ [0, 1]J , j ∈ {1, . . . , J}, and (R, t) ∈ R× T ,

γν({ν : pj ∧ p′j ≤ fj(R, t, ν) ≤ pj ∨ p′j}) ≤ κ|pj − p′j|.

Non-degenerate tie-breakers is a strengthening of strict preferences in Azevedo and Leshno

(2013). The assumption is straightforward to verify with knowledge of the mechanism. For

example, it is satisfied if a random number is used to break ties between multiple students

with the same priority type. It also allows for a situation in which a single tie-breaking

number that is used by all schools to break ties.

Given a sample (Ri, ti, νi), for i ∈ {1, . . . , n}, we can obtain a counting measure ηn =∑n
i=1 δ(Ri,ti,νi), where δ(Ri,ti,νi) is the Dirac-delta measure on (Ri, ti, νi). Given ηn and a cutoff

vector p, we can define the fraction of students that would be assigned to each program j as
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follows:

Dj(p|ηn) = ηn

(
{fj(Ri, ti, νi) ≥ pj, jRi0}

⋂
j′ 6=j

({jRij
′} ∪ {fj′(Ri, ti, νi) < pj′})

)
. (B.1)

As a proof device, we will use a continuum economy. Let η be a probability measure over

Borel sets in R×T × [0, 1]J . If agents in the economy are using strategy σ, then η = mσ×γν ,
where mσ((R, t)) = fT (t)

∫
σR(v, t)dFV |T=t. Analogously, define the fraction of students that

would be assigned to each program j in the continuum economy:

Dj(p|η) = η

(
{fj(Ri, ti, νi) ≥ pj, jRi0}

⋂
j′ 6=j

({jRij
′} ∪ {fj′(Ri, ti, νi) < pj′})

)
. (B.2)

It is straightforward to see that Dj(p|η) is a continuum analog of Dj(p|ηn) because if

(Ri, ti, νi) are drawn i.i.d. from η, then E[Dj(p|ηn)] = Dj(p|η).

Market clearing cutoffs (Definition 2) embody two sets of constraints, one set for the

programs and another for schools. It will be useful to combine them in a single set. Define

a J × S matrix A with entries ajs = 1 if sj = s, i.e., if program j belongs to school s, and 0

otherwise. Let Ã = [IJ A], where IJ is the J-dimensional identity matrix, and

D̃(p̃|η) = Ã′D(Ãp̃|η) ∈ RJ+S, (B.3)

where p̃ ∈ [0, 1]J+S. The function D̃ stacks the program and school aggregates of the number

of students demanding assignment given the cutoffs p = Ãp̃. In this notation, we have an

equivalent definition of market clearing cutoffs in terms of p̃ and D̃:

Proposition B.2. The cutoffs p ∈ [0, 1]J are market clearing cutoffs for D(p|η) ∈ [0, 1]J

and q ∈ [0, 1]J+S if and only if for each k ∈ {1, . . . , J + S},

D̃k(p̃|η)− qk ≤ 0, with equality if p̃k > 0, (B.4)

where p = Ãp̃ and p̃ = [p̃J , p̃S ] with p̃S,s = min{pj : sj = s} for s ∈ {1, . . . , S} and

p̃J = p− Ap̃S .

Proof. It’s easy to verify that the inequalities D̃k(p̃|η) − qk ≤ 0 are equivalent to those in

the definition for market clearing cutoffs. Therefore, we only need to verify that the set

of restrictions satisfied with equality coincide. For every j ∈ J , p̃j > 0 if and only if

pj > min{pj′ : j′ 6= j, sj′ = sj}. Similarly, for every school s ∈ S, p̃S,s > 0 if and only if

min{pj : sj = s} > 0.
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In what follows, we will therefore work with p̃ instead of p. Finally, let p+ be the sub-

vector of p with strictly positive elements and D+(p|η) be the corresponding subvector of

D(p|η).

We are now ready to state the main results of this section.

Theorem B.1. Suppose that Φn is an RSP+C mechanism that uses non-degenerate lotteries,

and for each k ∈ {1, . . . , J + S}, qnk − qk = o(1/
√
n). For strategy σ, consider η = mσ × γν .

Suppose that p̃∗ is the unique solution to equation (B.4), then for each each (R, t),

|L̂R,t − Ln,σR,t |
p→ 0.

If, additionally, ∇p̃∗+
D̃+(p̃∗|η) is invertible, then

√
n(L̂R,t − Ln,σR,t)

d→ ΓÃ∇D̃Ã′Z

where Z ∼ N(0,Ω), Γ = ∇p

∫
D(R,t,ν)(Ãp̃∗)dγν,

∇D̃ =

[
(∇p̃∗+

D̃+(p̃∗|η))−1 0

0 0

]
,

Ω =

(
1 +

1

B

)
V

(∫
D(R,t,ν)(Ãp̃∗)dγν

)
+

Eσ
[
V
(
D(R,t,ν)(Ãp̃∗)

∣∣∣R, t)]
B

.

The first part of the result shows that if an RSP+C mechanism uses non-degenerate

lotteries and the market-clearing cutoff is unique in the continuum economy, then L̂ is a

consistent estimator for Ln,σ. Non-degeneracy of the lotteries is straightforward to verify

with knowledge of the mechanism. Appendix B.4 derives conditions on D(p) and q under

which uniqueness is guaranteed, and weaker conditions under which uniqueness is generically

guaranteed using results from Azevedo and Leshno (2013) and Berry et al. (2013).

Under additional smoothness conditions, the result also provides a limit distribution for

our resampling estimator. The expression shows that the variance of the estimator depends

on the inherent sampling variation in the observed reports and priority types. In addition,

the estimator also has an additional independent source of variance due to resampling. This

variance decreases with the number of resamples B used to construct the estimator.

Proof. Index a draw in the b-th bootstrap sample from the empirical sample (R1, t1), . . . , (Rn, tn)

with ib, and denote the bootstrap empirical measure mn−1
b =

1

n− 1

∑n−1
ib=1 δ(Rib

,tib ). Since

the distribution of ν is known, we can draw νib directly from γν for each ib. Let ηn−1
b =
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1

n− 1

∑n−1
ib=1 δ(Rib

,tib ,νib ) where νib is a draw from γν , independent of all other random vari-

ables. Let

ηn =
1

n
δ(R,t,ν) +

n− 1

n
ηn−1,

and ηn−1 =
1

n− 1

∑n−1
i=1 δ(Ri,ti,νi) with (Ri, ti, νi) drawn from η. Let p̃n−1

b be such that

D̃k(p̃|ηn−1
b ) − qnk with equality only if p̃n−1

b,k > 0, and likewise p̃nk be such that D̃k(p̃|ηn) − qnk
with equality only if p̃nk > 0. Note that such p̃n−1

b and p̃n exist by assumption since Φn is an

RSP+C mechanism.

For each (R, t), consider the difference L̂R,t − Ln,σR,t . Since Φn is and RSP+C mechanism,

this can be re-written as

L̂R,t − Ln,σR,t =
1

B

∑
b

∫
D(R,t,ν)(pn−1

b )dγν − E
[∫

D(R,t,ν)(pn)dγν

∣∣∣∣R, t] , (B.5)

where pn−1
b = Ãp̃n−1

b , and pn = Ãp̃n.

We will derive the limit properties of the difference in equation (B.5) using the limit

distributions of pn−1
b and pn and smoothness of the integals in the expressions.

By definition of D(p|ηn), we have that supp ‖D(p|ηn)−D(p|ηn−1)‖ = O(1/n). The defi-

nition of D̃(p̃|η) and Lemma B.1 implies that

(i) for each k ∈ J ∪ S, supp̃ |D̃k(p̃|η)− D̃k(p̃|ηn)| converges in probability to 0,

(ii)
√
n

(
1

B

∑
bD(Ãp̃∗|ηn−1

b )−D(Ãp̃∗|η)

)
converges in distribution to Z, and therefore,

√
n

(
1

B

∑
b

D̃(p̃∗0|ηn−1
b )− D̃(p̃∗|η)

)
d→ Ã′Z,

(iii) For any p̃∗ and any sequence of δn decreasing to 0,

sup
‖p̃−p̃∗‖≤δn

√
n‖D̃(p̃|ηn)− D̃(p̃|η) + D̃(p̃∗|η)− D̃(p̃∗|ηn)‖ = op(1),

and likewise

sup
‖p̃−p̃∗‖≤δn

√
n‖D̃(p̃|ηn−1

b )− D̃(p̃|η) + D̃(p̃∗|η)− D̃(p̃∗|ηn−1
b )‖ = op(1).

Since E[p̃n] = E[p̃n|mσ] by definition and E[D̃(p̃|ηn)] = D̃(p̃|η), Lemma B.2 applied to
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D̃(p̃|η) and p̃∗ implies that∥∥∥∥∥ 1

B

∑
b

p̃n−1
b − p∗

∥∥∥∥∥ p→ 0, ‖p̃n − p∗‖ p→ 0

and
√
n

(
1

B

∑
b

p̃n−1
b − E[p̃n]

)
d→ ∇D̃Ã′Z.

Pre-multiplying by Ã, we have that∥∥∥∥∥ 1

B

∑
b

pn−1
b − E[pn]

∥∥∥∥∥ p→ 0

by the triangle inequality, and because pn is bounded. Further, by Slutsky’s theorem,

√
n

(
1

B

∑
b

pn−1
b − E[pn]

)
d→ Ã∇D̃Ã′Z,

where pn and pn−1
b are respectively market clearing cutoffs for (D(p|η), qn) and (D(p|ηn−1

b ), qn).

Since the tie-breaker ν is non-degenerate, γν admits a density. Therefore,
∫
D(R,t,ν)(p)dγν

is differentiable at every p since D(R,t,ν)(p) is an indicator for f(R, t, ν) belonging to a hyper-

cube:

D
(R,t,ν)
j (p) = 1{fj(R, t, ν) > pj, jR0}

∏
1{fj′(R, t, ν) ≤ pj′ or j′Rj}.

Hence, L̂R,t is a differentiable function of
1

B

∑
b p

n−1
b . Therefore, by the Continuous Mapping

Theorem,

sup
R,t
|L̂R,t − Ln,σR,t |

p→ 0.

By the Delta Method
√
n
(
L̂R,t − Ln,σR,t

)
d→ ΓÃ∇D̃Ã′Z.

B.3 Preliminaries for the proof of Theorem B.1

Lemma B.1. Suppose that the tie-breaker ν is non-degenerate. Then, (i) for each j ∈ J ,

supp |Dj(p|η)−Dj(p|ηn)| and supp |Dj(p|η)−Dj(p|ηn−1
b )| converge in probability to 0.
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(ii) for any p∗, we have that

√
n

(
1

B

∑
b

D(p∗|ηn−1
b )−D(p∗|η)

)
d→ N(0,Ω)

where

Ω =

(
1 +

1

B

)
V

(∫
D(R,t,ν)(p∗)dγν

)
+
E
[
V
(
D(R,t,ν)(p∗)

∣∣R, t)]
B

.

(iii) For any p∗ and any sequence of δn decreasing to 0,

sup
‖p−p∗‖≤δn

√
n‖D(p|ηn)−D(p|η) +D(p∗|η)−D(p∗|ηn)‖ = op(1).

Likewise,

sup
‖p−p∗‖≤δn

√
n‖D(p|ηn−1

b )−D(p|ηn) +D(p∗|ηn)−D(p∗|ηn−1
b )‖ = op(1).

Proof. Part (i): Let vpj be the set of tuples of priority types, random tie-breakers and rank

order lists, (Ri, ti, νi), that are assigned to programs j under cutoffs p. This set can be

written as:

vpj = {(Ri, ti, νi) : fj(Ri, ti, νij) ≥ pj, jRi0}
⋂
j′ 6=j

({(Ri, ti, νi) : jRij
′} ∪ {(Ri, ti, νi) : fj′(Ri, ti, νij′) < pj′}) .

Let V = {vpj : p, j} be the class of sets vpj indexed by p and j.

Since f in increasing in the last argument, for each j, Ri, ti, the class of sets {{νi :

fj(Ri, ti, νij) ≥ pj} : pj} is VC. Hence, the class B = {{νi : fj(Ri, ti, νij) ≥ pj} : pj, j, R, t}
is a VC class because (j, R, t) belong to a finite set. Hence, V is a VC-class since it is a

subset of finite unions and intersections of sets in B and their complements. Therefore, V is

a uniform Glivenko-Cantelli class. Part (i) follows from the Glivenko-Cantelli Theorem.
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Part (ii): We first re-write

1

B

∑
b

D(p∗|ηn−1
b )−D(p∗|η)

=
1

B

B∑
b=1

1

n− 1

∑
ib

D(Rib
,tib ,νib )(p∗)−D(p∗|η)

=
1

B

B∑
b=1

1

n− 1

∑
ib

D(Rib
,tib ,νib )(p∗)− 1

n

n∑
i=1

∫
D(Ri,ti,ν)(p∗)dγν

+
1

n

n∑
i=1

∫
D(Ri,ti,ν)(p∗)dγν −D(p∗|η).

We now derive the distribution of

Gn,b =
√
n

(
1

n− 1

∑
ib

D(Rib
,tib ,νib )(p∗)− 1

n

n∑
i=1

∫
D(Ri,ti,ν)(p∗)dγν

)
(B.6)

conditional on the sample (R1, t1), . . . , (Rn, tn), and fixed b. To do this, we adapt the proof

for the bootstrap distribution of the sample mean (Theorem 23.4, van der Vaart, 2000).

Note that

E
[
D(Rib

,tib ,νib )(p∗)
∣∣ (R1, t1), . . . , (Rn, tn)

]
= E

[
E
[
D(Rib

,tib ,ν)(p∗)
∣∣Rib , tib

]∣∣ (R1, t1), . . . , (Rn, tn)
]

=
1

n

n∑
i=1

E[D(Ri,ti,ν)(p∗)|Ri, ti]

=
1

n

n∑
i=1

∫
D(Ri,ti,ν)(p∗)dγν .

By the law of total variance, the conditional variance ofD(Rib
,tib ,νib )(p∗) given (R1, t1), . . . , (Rn, tn)

is

E
[
V
(
D(Rib

,tib ,νib )(p∗)
∣∣Rib , tib

)∣∣ (R1, t1), . . . , (Rn, tn)
]

+V
[
E
(
D(Rib

,tib ,νib )(p∗)
∣∣Rib , tib

)∣∣ (R1, t1), . . . , (Rn, tn)
]

=
1

n

n∑
i=1

V
(
D(Ri,ti,νi)(p∗)

∣∣Ri, ti
)

+ V

(∫
D(Ri,ti,ν)(p∗)dγν

∣∣∣∣ (R1, t1), . . . , (Rn, tn)

)
,

where V
(∫

D(Ri,ti,ν)(p∗)dγν
∣∣ (R1, t1), . . . , (Rn, tn)

)
is the sample variance of

∫
D(Ri,ti,ν)(p∗)dγν .

Since D is uniformly bounded, the variance above is bounded. By the strong law of large

12



numbers, the conditional variance of D(Rib
,tib ,νib )(p∗) converges to

Ω̃ = E
[
V
(
D(Ri,ti,νi)(p∗)

)]
+ V

(∫
D(Ri,ti,ν)(p∗)dγν

)
almost surely for sequences (R1, t1), (R2, t2), . . ..

Note that since D(Rib
,tib ,νib ) is uniformly bounded, we have that for every ε > 0,

E
[
‖D(Rib

,tib ,νib )‖21{‖D(Rib
,tib ,νib )‖ > ε

√
n}
]
→ 0.

Therefore, by the Lindeberg-Feller central limit theorem (Theorem 2.27, van der Vaart,

2000), conditionally on (R1, t1), . . . , (Rn, tn), for almost every sequence (R1, t1), (R2, t2), . . . ,

Gn,b
d→ N(0, Ω̃). An identical argument shows that

1

B

∑
bGn,b

d→ N

(
0,

1

B
Ω̃

)
condition-

ally on (R1, t1), . . . , (Rn, tn), for almost every sequence (R1, t1), (R2, t2), . . . , since ib is in-

dependent of ib′ conditional on (R1, t1), . . . , (Rn, tn) for all b 6= b′. Therefore, we have that

conditionally on (R1, t1), . . . , (Rn, tn), for almost every sequence (R1, t1), (R2, t2), . . .,

√
n

(
1

B

B∑
b=1

D(p∗|ηn−1
b )− 1

n

n∑
i=1

∫
D(Ri,ti,ν)(p∗)dγν

)
d→ N

(
0,

1

B
Ω̃

)
.

Now consider the stacked random vector

√
n

 1

B

∑B
b=1D(p∗|ηn−1

b )− 1

n

∑n
i=1

∫
D(Ri,ti,ν)(p∗)dγν

1

n

∑n
i=1

∫
D(Ri,ti,ν)(p∗)dγν −D(p∗|η)

 . (B.7)

Conditional on (R1, t1), . . . , (Rn, tn), the second element is deterministic and the first element

converges in distribution to Z1 ∼ N

(
0,

1

B
Ω̃

)
for almost every sequence (R1, t1), (R2, t2), . . ..

By the central limit theorem, the second element converges in distribution to

Z2 ∼ N

(
0, V

(∫
D(Ri,ti,ν)(p∗)dγν

))
.

Since Z1 is (almost surely) independent of (R1, t1), . . . , (Rn, tn), we have that the stacked

random vector in expression (B.7) converges in distribution to (Z1, Z2) where Z1 and Z2 are

independent. Hence,

√
n

(
1

B

B∑
b=1

D(p∗|ηn−1
b )−D(p∗|η)

)
d→ N(0,Ω).

13



Part (iii): Note that

√
n‖D(p|ηn)−D(p|η) +D(p∗|η)−D(p∗|ηn)‖

≤ J |
√
n (ηn(vp∧p∗,p∨p∗)− η(vp∧p∗,p∨p∗)) |,

where vp,p′ = {ν : p ≤ f(R, T, ν) ≤ p′}. We now bound the variance of the right-hand side.

For any p, p′ with p ≤ p′,

V (ηn(vp,p′)− η(vp,p′)) = V

(
1

n

∑
i

1{f(Ri, Ti, νi) ∈ vp,p′} − η(vp,p′)

)
=

1

n
η(vp,p′)(1− η(vp,p′)).

Therefore, V (J |
√
n (ηn(vp∧p∗,p∨p∗)− η(vp∧p∗,p∨p∗))) |) is at most Jη(vp∧p∗,p∨p∗). By Cheby-

chev’s inequality, for any ε > 0,

P
(
J |
√
n (ηn(vp∧p∗,p∨p∗)− η(vp∧p∗,p∨p∗)) | > ε

)
≤ J2η(vp∧p∗,p∨p∗)

2

ε2
.

Since η(vp∧p∗,p∨p∗) ≤ κ‖p ∧ p∗ − p ∨ p∗‖∞, we therefore have that for any ε > 0,

P

(
sup

‖p−p∗‖≤δn

√
n‖D(p|ηn)−D(p|η) +D(p∗|η)−D(p∗|ηn)‖ > ε

)
≤ κ2δ2

nJ
2

ε2
.

Hence, for any sequence of δn decreasing to zero, we have that

sup
‖p−p∗‖≤δn

√
n‖D(p|ηn)−D(p|η) +D(p∗|η)−D(p∗|η)‖ = op(1).

By a similar argument, we have that

P

(
sup

‖p−p∗‖<δn

√
n‖D(p|ηn−1

b )−D(p|ηn) +D(p∗|ηn)−D(p∗|ηn−1
b )‖ > ε

)
<
J2V (ηn−1

b (vp,p′)− ηn(vp,p′))

ε2
.

Since E[ηn−1
b (vp,p′)|ηn] = ηn(vp,p′), by the law of total variance,

V (ηn−1
b (vp,p′)− ηn(vp,p′)) = E

[
V (ηn−1

b (vp,p′)− ηn(vp,p′)|ηn)
]

= E [ηn(vp,p′)(1− ηn(vp,p′))]

≤ E [ηn(vp,p′)] = η(vp,p′).
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Hence, we have that

P

(
sup

‖p−p∗‖<δn

√
n‖D(p|ηn−1

b )−D(p|ηn) +D(p∗|ηn)−D(p∗|ηn−1
b )‖ > ε

)
<
k2J2δ2

n

ε2
.

Lemma B.2. Suppose there is a unique p∗ such that for all k ∈ {1, . . . , K}, Dk(p
∗|η)−qk ≤ 0

with equality if p∗k > 0. Also assume that there exists pn such that Dk(p
n|ηn) − qnk ≤ 0 with

equality if pnk > 0. and likewise assume that there exists pn−1
b such that Dk(p

n|ηn−1
b )− qnk ≤ 0

with equality if pn−1
b,k > 0.

1. If (i) |D(p|ηn−1
b )−D(p|η)| p→ 0 and |D(p|ηn)−D(p|η)| p→ 0 uniformly in p, (ii) qn → q,

(iii) D(p|η) is continuous in p, then supj∈J |pn−1
b,j − p∗j |

p→ 0 and supj∈J |pnj − p∗j |
p→ 0.

2. Further, if the hypotheses of part 1. hold, (iv) E[D(p∗|ηn)] = D(p∗|η), (v) for any p∗

√
n

(
1

B

∑
b

D(p∗|ηn−1
b )−D(p∗|η)

)
d→ Z

(vi) For any p∗ and any sequence of δn decreasing to 0,

sup
‖p−p∗‖≤δn

√
n‖D(p|ηn−1

b )−D(p|η) +D(p∗|η)−D(p∗|ηn−1
b )‖ = op(1).

(vii) ∇p∗+
D+(p∗|η) exists and is invertible at p∗, and (viii) qn − q = op(n

−1/2), then

√
n

(
1

B

∑
b

pn−1
b − E[pn]

)
d→ ∇DZ

where ∇D =

[
(∇p∗+

D+(p∗|η))−1 0

0 0

]
.

Proof. Part 1: The result is similar in spirit to Azevedo and Leshno (2013), theorem 2,

though the techniques are different and generalized to mechanisms.

We only show the result for pn since the argument for pn−1
b is identical. Let

Qn(p) =

∥∥∥∥∥
[

max {z (p |ηn, qn ) , 0}
p ∗ z (p |ηn, qn )

]∥∥∥∥∥ ,
where ∗ represents the Hadamard product and z(p|η, q) = D(p|η, q)− q. Note that pn solves
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Qn(p) = 0. Let Q0 be the limiting objective function,

Q0(p) =

∥∥∥∥∥
[

max {z(p|η, q), 0}
p ∗ z(p|η, q)

]∥∥∥∥∥ .
By the continuous mapping theorem, supp |Qn(p) − Q0(p)| p→ 0. Also, Q0(p) is continuous

since D(p|η) is continuous. Further, Q0(p) is uniquely minimized at p∗. For ε > 0, let δε =

infp:‖p−p∗‖>εQ0(p). Since Q0 is continuous, p is an element of a compact space and Q0(p) = 0

only at p∗, δε > 0. Pick N such that for all n > N , P(supp |Q0(p) − Qn(p)| > δε) < ε. For

pn, we have that Qn(pn) = 0. Note that

|Q0(pn)−Q0(p∗)|

≤ |Q0(pn)−Qn(pn)|+ |Qn(pn)−Q0(p∗)|

≤ sup
p
|Q0(p)−Qn(p)|+ 0. (B.8)

Hence, we have that for all n > N ,

P
(

sup
j∈J
|pn − p∗| > ε

)
≤ P (|Q0(pn)−Q0(p∗)| > δε)

≤ P
(

sup
p
|Q0(p)−Qn(p)| > δε

)
< ε

where the first inequality follows from set inclusion, the second from equation (B.8), and the

third by our choice of N .

Part 2: We can re-write

√
n

(
1

B

∑
b

pn−1
b − E[pn]

)
=
√
n

(
1

B

∑
b

pn−1
b − p∗

)
+
√
n(p∗ − E[pn]).

We first derive the limit distribution of
√
n

(
1

B

∑
b p

n−1
b − p∗

)
.

Let K0 be the set of k such that p∗k = 0, i.e. Dk(p
∗|η) < qj, and let δ = minj∈J0{qj −

Dk(p
∗|η)}. Since Dk(p|η) is continuous, there exists κ > 0 such that for all ‖p− p∗‖ < κ and

all k ∈ K0, we have that Dk(p|η)− qk < −
δ

3
. For any ε > 0, pick N such that for all n > N ,

P(‖pn−1
b − p∗‖ < κ) < ε and ‖qnj − qj‖ <

δ

3
. Such an N exists since pn−1

b

p→ p∗ and qnj → qj.
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For all n > N , we have that

Dk(p
n−1
b |ηn−1

b )− qnj < Dk(p
n−1
b |ηn−1

b )− qj +
δ

3

< |Dk(p
n−1
b |ηn−1

b )−Dk(p
∗|η)|+Dk(p

∗|η)− qj +
δ

3

< |Dk(p
n−1
b |ηn−1

b )−Dk(p
∗|η)| − 2δ

3

=⇒ P
(
Dk(p

n−1
b |ηn−1

b )− qnj > −
δ

3

)
< P

(
|Dk(p

n−1
b |ηn−1

b )−Dk(p
∗|η)| > δ

3

)
< P

(
|pn−1
b − p∗‖ > κ

)
< ε

where the second last inequality follows from set inclusion and the choice of κ. Since pn−1
b = 0

if Dk(p
n−1
b |ηn−1

b ) − qnj < 0, we have that for all n > N , P(pn−1
b,j > 0) < ε. Therefore,

√
n|pn−1

b,j − p∗j |
p→ 0 for all j ∈ J0.

The limit distribution of
√
n(pn−1

b,+ − p∗+) is a consequence of the Delta Method. For

simplicity of notation, we omit the subscript + and treat pnk = 0 if p∗k = 0 since pnk = op(n
−1/2).

Note that for all k 6∈ K0, we have that Dk(p
∗|η) − qk = 0. Let δ = mink 6∈K0 p∗k. Since

‖pn−1
b − p∗‖ p→ 0, we have that for any ε > 0, there exists N such that for all n > N ,

P(pn−1
b,k = 0 for any k 6∈ K0) < ε. Since pn−1

b,k > 0 implies that Dk(p
n−1
b |ηn−1

b ) − qnk = 0,

for all n > N , pn−1
b solves 0 = Dk(p|ηn−1

b ) − qnk with probability at least 1 − ε. Therefore,

Dk(p
n−1
b |ηn−1

b )− qnk = op(n
−1/2) for all k 6∈ K0.

Since ‖pn−1
b −p∗‖ p→ 0, condition (v) implies that there exists a sequence of δn decreasing

to 0, such that

D(pn−1
b |ηn−1

b )−D(pn−1
b |η) +D(p∗|η)−D(p∗|ηn−1

b ) = op(n
−1/2).

Together with D(pn−1
b |ηn−1

b )− qn = op(n
−1/2), condition (v) implies that

q − qn +D(p∗|ηn−1
b )− q +D(pn−1

b |η)−D(p∗|η) = op(n
−1/2).

Since ‖q − qn‖ = op(n
−1/2), and D(p∗|η) = q, we have that

D(p∗|ηn−1
b )−D(p∗|η) +D(pn−1

b |η)−D(p∗|η) = op(n
−1/2)

=⇒
√
n(D(p∗|ηn−1

b )−D(p∗|η)) +∇p∗D(p∗|η)
√
n(pn−1

b − p∗) + op(‖pn−1
b − p∗‖) = op(1),

where the implication results form the Delta Method. Since, op(‖pn−1
b − p∗‖) = op(1), and
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∇p∗D(p∗|η) is invertible, we have that

√
n(pn−1

b − p∗) =
√
n(∇p∗D(p∗|η))−1(D(p∗|ηn−1

b )−D(p∗|η)) + op(1).

Since E[D(p∗|ηn)] = D(p∗|η), by a similar argument,

√
n(E[pn]− p∗) =

√
n(∇p∗D(p∗|η))−1(E[D(p∗|ηn)]−D(p∗|η)) + op(1) = op(1).

Therefore,

√
n

(
1

B

∑
b

pn−1
b − E[pn]

)

=
√
n

(
1

B

∑
b

pn−1
b − p∗

)
+ op(1)

=
√
n(∇p∗D(p∗|η))−1

(
1

B

∑
b

D(p∗|ηn−1
b )−D(p∗|η)

)
+ op(1)

By condition (vi) and Slutsky’s theorem, we have that

√
n

(
1

B

∑
b p

n−1
b − E[pn]

)
d→ ∇DZ.

B.4 Existence and (Generic) Uniqueness of Cutoffs

This sections shows that the cutoffs for RSP+C Mechanisms have (generically) unique cut-

offs. To do so, we first need to introduce some notation and definitions.

B.5 Definitions

Definition B.2. The function D : [0, 1]J → [0, 1]J satisfies weak-substitutes if Dj(p) is

non-increasing in pj and non-decreasing in pj′, where p ∈ [0, 1]J .

The next definition is a stricter notion of substitutes in a neighborhood around a given

cutoff. This borrows from the notion of connected substitutes introduced in Berry et al.

(2013) and Berry and Haile (2010) to show conditions when demand is invertible.

Definition B.3. The function D : [0, 1]J → [0, 1]J satisfies local connected substitutes

at p∗ if there exists an ε > 0, such that for all p ∈ [0, 1]J with ‖p− p∗‖ < ε, we have that
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1. for all j ∈ {0, 1, . . . , J} and k 6∈ {1, . . . , J}\{j}, Dj(p) is nondecreasing in pk

2. for all non-empty subsets K ⊂ {1, . . . , J}, there exists k ∈ K and l 6∈ K such that

Dl(p) is strictly increasing in pk

Local connected substitutes is implied by strict gross substitutes, and the condition that

D(p|η) as defined in equation (B.2) satisfies local connected substitutes for all p ∈ [0, 1] is

testable.

Definition B.4 (Azevedo and Leshno (2013)). The function D : [0, 1]J → [0, 1]J is regular

if the image D(P̄ ), where

P̄ = {p ∈ [0, 1]J : D(p) is not continuously differentiable at p}

has Lebesgue measure 0.

B.6 Main Results

For a fixed q ∈ [0, 1]J , let p∗ ∈ [0, 1]J be a solution to the problem

D(p)− q ≤ 0 and p ∗ (D(p)− q) = 0, (B.9)

where ∗ is the Hadamard product. We now observe that (generically for q ∈ [0, 1]J) there

exists a unique solution to equation (B.9) if D satisfies local connected substitutes at any

market clearing cutoff (is regular).

Proposition B.3. Let D(·|η) be defined as in equation (B.2). If D(·|η) satisfies weak sub-

stitutes, then there exists a solution to equation (B.9) for all q.

Further, for a fixed D(·|η), let Q ⊂ [0, 1]J be the set of capacities, q, such that there are

multiple solutions to equation (B.9).

1. Q ∩ {q :
∑J

j=1 qj <
∑

j D(0|η)} has Lebesgue measure zero if Dj(·|η) is regular

2. Q is empty if D(·|η) satisfies local connected substitutes at any solution p∗ to equation

(B.9). In particular, Q is empty if D(·|η) satisfies local connected substitutes at every

cutoff p.

Proof. Existence of cutoffs that solve equation (B.9) follows from corollary A1 and lemma 1

of Azevedo and Leshno (2013). Statement 1 is a consequence of Azevedo and Leshno (2013),

theorem 1(2) and lemma 1. Statement 2 is a strengthening of Azevedo and Leshno (2013),

theorem 1(1). By the Lattice Theorem (Azevedo and Leshno, 2013), there exist minimum
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and maximum cutoffs p− ≤ p+ that solve equation (B.9). By the Rural Hospitals Theorem

(Azevedo and Leshno, 2013), for all C ⊆ S,∑
j∈C

Dj(p
+|η) =

∑
j∈C

Dj(p
−|η). (B.10)

Let p∗ be a solution to equation (B.9) such that D(·|η) satisfies local connected substitutes

at p∗. Let C+ = {j ∈ S : p∗j < p+
j } and C− = {j ∈ S : p∗j > p−j }. We will show that C+ = ∅

i.e. p+ = p∗. The proof to show that C− = ∅ is symmetric and together, these claims imply

that p+ = p− = p∗.

Towards a contradiction, assume that C+ 6= ∅. Since D(p|η) satisfies local connected

substitutes at p∗ (Definition B.3), there exist ε ∈ (0, 1), k ∈ C+, and l 6∈ C+ such that

Dl(p
∗|η) < Dl(p

ε|η),

where pεk = εp+
k + (1− ε)p∗k and pεj = p∗j for j 6= k. Hence, we have that∑

j∈S\C+

Dj(p
∗|η) <

∑
j∈S\C+

Dj(p
ε|η) ≤

∑
j∈S\C+

Dj(p
+|η),

where the implication on the summation and the second inequality are implied by weak

substitutes, which follows from the definition of D(p|η). Since this inequality contradicts

equation (B.10), it must be that C+ = ∅.

As shown in Proposition B.2, p∗ is a market clearing cutoff for D(p|η) and q if and only

if p̃∗ solves equation (B.9), where p∗ = Ãp̃∗. Below, we state uniqueness of a market clearing

cutoff in terms of the uniqueness of p̃∗.

Proposition B.4. Let D̃(p̃|η) be defined as in equation (B.3), and for each p̃S , define p̃∗J (p̃S)

such that Dj(p̃
∗
J (p̃S) + Ap̃S |η)− qj ≤ 0 with equality if p̃∗J ,j(p̃S) > 0.

If D(p|η) is continuous in p and satisfies weak substitutes, then for each q ∈ [0, 1]J+S,

there exists a p̃ that solves the problem in equation (B.9) for D̃(p|η) and q.

Further, if D∗(p̃S |η) = A′D(p̃∗J (p̃S)+Ap̃S |η) and D(p|η) satisfy local connected substitutes

at p̃∗S,s = min{p∗j : sj = s} and p∗ respectively for some market clearing cutoff, then p∗ is

unique.

Proof. We first show existence. Since D(·|η) satisfies weak substitutes, for each p̃S , p̃∗J (p̃S)

exists. Lemma B.3 below shows that D∗(p̃S |η) satisfies weak substitutes. Therefore, by

Proposition B.3, there exists p̃∗S such that D∗s(p̃
∗
S |η)− qs ≤ 0 with strict equality if p̃∗S,s > 0.
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Hence, for p̃∗ = (p̃∗
′
J , p̃

∗′
S )′ and q ∈ [0, 1]J+S, and for all k ∈ {1, . . . , J + S}, D̃k(p̃

∗|η)− qk ≤ 0

with strict equality if p̃∗k > 0.

To show uniqueness, note that D(p̃J + Ap̃∗S |η) satisfies local connected substitutes at

p̃∗J . By Proposition B.3, we have that D(p̃J + Ap̃S |η) admits a unique solution p̃∗J (p̃S) in

a neighborhood of p̃∗S . Further, since D∗(p̃S |η) satisfies local connected substitutes at p̃∗S ,

Proposition B.3 implies that p̃∗S is unique.

We now verify that if

fj(Ri, ti, νi) =
3−Ri(j) +

tij + νi
4

3
(B.11)

for νi ∈ [0, 1] as in the Cambridge Mechanism, then the market clearing cutoff p∗ is unique

if

Dj(p) = E

[
1{fj(Ri, ti, νi) > pj, jRi0}

∏
j′ 6=j

1{jRij
′ or fj′(Ri, ti, νi) ≤ pj′}

]
(B.12)

is strictly decreasing in pj in a neighborhood around any market-clearing cutoff p∗.

Proposition B.5. Let f and D(p) be defined as in equations (B.11) and (B.12). If for

every program j ∈ 1, ..., J , Dj (p) is strictly decreasing in pj in a neighborhood of p∗, then

the market clearing cutoff p∗ is unique. Moreover, if for every program j ∈ 1, ..., J , Dj (p∗)

is differentiable with respect to p, then ∇p+D+ (p∗) is nonsingular.

Proof. Fix any market clearing cutoff p∗. For each j, let r∗j ∈ {1, 2, 3, 4} be the pivotal rank

for program j, i.e. fj(Ri, ti, νi) > p∗j if Ri(j) < r∗j and fj(Ri, ti, νi) < p∗j if Ri(j) > r∗j . We

use the convention that r∗j = 4 if the program cutoff is 0, and r∗0 = 5 for the outside option.

For ε > 0, define pεk = p∗k if k 6= j and pεj = p∗j + ε. By the hypothesis of the theorem,

for 0 < ε < ε1 ∈ (0, 1), Dj(p
ε) < Dj(p

∗). The definitions of f and D imply that for

ε < ε2 ∈ (0, 1), Dk(p
ε) = Dk(p

∗) if r∗j ≥ r∗k. Since
∑J

j=0Dj(p) is constant, it must be that

for ε < min{ε1, ε2}, we have that Dk(p
ε) > Dk(p

∗) for some k such that r∗k > r∗j .

For any non-empty subset K ⊂ {1, . . . , J}, let k = arg maxk′∈K r
∗
k′ . By the argument

above, there exists l ∈ {0, . . . , J} such that r∗l > r∗k such that Dl(p) is strictly increasing in

pk at p∗. Therefore, D(p) satisfies local-connected substitutes at p∗.

We now show that D∗(p̃S) = A′D(p̃∗J (p̃S) + Ap̃S) satisfies local connected substitutes at

p̃S , where p̃S,s = min{pj : sj = s}, and p̃∗J (p̃S) such that Dj(p̃
∗
J (p̃S) + Ap̃S) − qj ≤ 0 with

equality if p̃∗J ,j(p̃S) > 0.
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Lemma B.3 implies that D∗(p̃S) satisfies weak substitutes. For small enough ε > 0, define

p̃εS,s′ = p̃∗S,s′ for s′ 6= s, and p̃εS,s = p̃∗S,s + ε. Observe that this implies that p̃∗J ,j(p̃
ε
S) + p̃εS,s) >

p̃∗J ,j(p̃
∗
S) + p̃∗S,s) for some j with sj = s. Define r∗s = max{r∗j : sj = s}. For all programs

j with r∗j ≤ r∗s , Dj(p
∗) = Dj(p̃

∗
J (p̃εS) + Ap̃εS). Therefore, p̃∗J ,j(p̃S) + p̃S,sj = p̃∗J ,j(p̃

ε
S)p̃εS,sj if

r∗j ≤ r∗s . Since the
∑S

s=0 D
∗(p̃S) is constant, an identical argument to the one above implies

that for some s′ such that r∗s′ > r∗s , D
∗
s′(p̃

ε
S) > D∗s′(p̃

∗
S) for small enough ε > 0. As above,

D∗(p̃S) satisfies local connected substitutes at p̃∗S .

By Proposition B.4, the market clearing cutoff p∗ is unique. Further, part (i) of Theorem

2 in (Berry et al., 2013) ensures that ∇p+D+ (p∗) is nonsingular.

B.7 Preliminaries

Lemma B.3. If D(·|η) is continuous in its arguments and satisfies weak substitutes, then

D∗(p̃S |η) = A′D(p̃∗J (p̃S) + Ap̃S |η) satisfies weak substitutes.

Proof. Fix p̃S , p̃J = p̃∗J (p̃S) and s ∈ S. Let Js be the set of programs in school s, J+
s be

the set of programs in school s with p̃J ,j > 0 and J0
s be the set of programs in school s with

p̃J ,j = 0. Consider p̃′S such that p̃′S,s = p̃S,s+ε for ε > 0 such that ε < min{p̃∗j(p̃S) : j ∈ J+
s },

and p̃′S,t = p̃S,t if t ∈ S\{s}.
There are two cases to consider:

Case 1 p̃∗J ,j(p̃S) > 0 for all j ∈ Js: Consider p̃′J such that p̃′J ,j = p̃J ,j for j 6∈ Js and

p̃′J ,j = pJ ,j − ε. By construction, p̃′J + Ap̃′S = p̃J + Ap̃S . Hence, p̃′J = p̃∗J (p̃′S).

Therefore, D∗(p̃S |η) = D∗(p̃′S |η), satisfying Assumption B.2.

Case 2 p̃∗J ,j(p̃S) = 0 for some j ∈ Js: We will construct a convergent sequence of cutoffs

p̃kJ , such that limk→∞ p̃
k
0 = p∗0(p̃′S), and show that D∗s(p̃S |η) is non-increasing in p̃S,s

and D∗k(p̃S |η) is non-decreasing in p̃S,s for k 6= s.

Set p̃0
J ,j = p̃J ,j for j ∈ J \J+

s and p̃0
J ,j = p̃J ,j−ε otherwise. Note that for all j ∈ J \J0

s ,

p̃0
j + p̃′S,sj = p̃J ,j + p̃S,sj and for j ∈ J0

s , p̃0
j + p̃′S,s = p̃S,s + ε. For each j ∈ J and k ∈ N,

construct the sequence p̃kJ ,j such that Dj((p̃
k
J ,j, p̃

k−1
J ,−j) +Ap̃′S |η)− qj ≤ 0 with equality

if p̃kJ ,j > 0. Since Dj((p̃
k
J ,j, p̃

k−1
J ,−j) +Ap̃′S |η) satisfies weak substitutes, if p̃kJ ,−j ≥ p̃k−1

J ,−j,

then p̃k+1
J ,j ≥ p̃kJ ,j. Therefore, p̃kJ is a monotonically increasing sequence. Since p̃kJ is

bounded above, it must be that limk→∞ p̃
k
J = p̃∞J exists. Further, since Dj(p̃J +Ap̃′S |η)

is continuous in p̃J , we have that Dj(p̃
∞
J +Ap̃′S |η) ≤ 0 with equality if p̃∞J ,j > 0. Hence,

p̃∞J = p∗J (p̃′S) ≥ p̃0
J , and we have that p̃∗J (p̃′S) + Ap̃′S ≥ p∗J (p̃S) + Ap̃S .
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We now show that Dj(p̃
∗
0(p̃′S) +Ap̃′S |η) ≥ Dj(p̃

∗
J (p̃S) +Ap̃S |η) j 6∈ Js. Fix j ∈ J \Js. If

p̃∗J ,j(p̃
′
S) > 0, then it must be that Dj(p̃

∗
J (p̃′S) +Ap̃′S |η) = qj ≥ Dj(p̃

∗
J (p̃S) +Ap̃S |η). If

p̃∗J ,j(p̃
′
S) = 0, then Dj(p̃

∗
J (p̃′S) + Ap̃′S |η) ≥ Dj(p̃

∗
J (p̃S) + Ap̃S |η) from weak substitutes,

since p̃∗J ,j(p̃S) + p̃S,sj = p̃∗J ,j(p̃S) + p̃′S,sj and p̃∗J ,k(p̃S) + p̃S,sk ≥ p̃∗J ,k(p̃S) + p̃′S,sk for all

k 6= j.

Finally, we show that
∑

j∈Js Dj(p̃
∗
0(p̃′S) + Ap̃′S |η) ≤

∑
j∈Js Dj(p̃

∗
J (p̃S) + Ap̃S |η). Note

that D0(p̃∗J (p̃′S) +Ap̃′S |η) ≥ D0(p̃∗J (p̃S) +Ap̃S |η) since p̃∗J (p̃′S) +Ap̃′S ≥ p̃∗J (p̃S) +Ap̃S .

The proof is complete by noting that
∑

j∈J∪{0}Dj(p̃
∗
J (p̃′S)+Ap̃′S |η) =

∑
j∈J∪{0}Dj(p̃

∗
J (p̃S)+

Ap̃S |η) must be constant since each student can be assigned to only one program and

Dj(p̃
∗
J (p̃′S) + Ap̃′S |η) ≥ Dj(p̃

∗
J (p̃S) + Ap̃S |η) for all j ∈ {0} ∪ (J \Js).

B.8 Convergence of Equilibrium Probabilities

In this section, we consider a sequence of n-player Bayesian games defined by a sequence

of RSP+C mechanisms Φn. Let σ(v, t) = (σR1(v, t), . . . , σR|R|(v, t)) be a (type-symmetric)

strategy for a player with utility vector v and priority type t. We allow σ(v, t) to be a mixed

strategy profile, although players generically have a pure strategy best-reponse. For each n,

the assignment probabilities are given by

Ln,σRi,ti
= Eσ [Φn((Ri, ti), (R−i, T−i)|Ri, Ti]

=
∑

R−i,t−i

Φn((Ri, ti), (R−i, T−i)
∏
k 6=i

mσ(Rk, tk),

where mσ∗,n(Rk, tk) = fT (tk)
∫
σRk

(v; t)dFV |tk . The strategy σ∗,n a Bayesian Nash Equilib-

rium if for all R such that σ∗,nR (v; t) > 0, we have that v · Lσ∗,nR,t ≥ v · Ln,σ
∗,n

R′,t for all R′ ∈ R.

As in Azevedo and Budish (2013), define the Large-Market Limit Mechanism as

follows:

L∞,σRi,ti
= lim

n→∞

∑
R−i,t−i

Φn((Ri, ti), (R−i, T−i)
∏
k 6=i

mσ(Rk, tk), (B.13)

if it exists. Further, σ∗ is a Limit Equilibrium if σ∗R(v, t) > 0 implies that v ·L∞,σR,t ≥ v ·L∞,σR′,t

for all R′ ∈ R.

We now show that Bayesian Nash Equilibria of the mechanism in a large economy ap-

proximate equilibria of the Large-Market Limit Mechanism.

Proposition B.6. Suppose Φn is an RSP+C mechanism. Fix a strategy σ∗ such that the

limit in equation (B.13) exists, the tie-breakers ν are non-degenerate and D(p|η) and q admit
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a unique market clearing cutoff, where η = mσ∗ × γν.

1. If σ∗,n is a sequence BNE such that ‖σ∗,n − σ∗‖F → 0, then ‖Ln,σ
∗,n

Ri,ti
− L∞,σ

∗

Ri,ti
‖ → 0,

where ‖σ∗,n − σ∗‖F = supR
∫
|σ∗,nR (v, t)− σ∗R(v, t)|dFV,T .

2. If σ∗,n is a sequence BNE such that ‖σ∗,n − σ∗‖F → 0, the strategy σ∗ is a limit

equilibrium.

3. If σ∗ is a limit equilibrium, then for each ε > 0, and large enough n, σ∗R(v, t) > 0

implies that for all R′ ∈ R,

v · Ln,σ
∗

R,t ≥ v · Ln,σ
∗

R′,t − ε‖v‖.

The result shows that a convergent sequence of Bayesian Nash Equilibria converge to

a limit equilibrium, and that all limit equilibria are approximate BNE for large enough n.

The result is similar in spirit to Kalai (2004), which shows that equilibria in limit games are

approximate BNE in large games.

Proof. Part 1: By the triangle inequality,

‖Ln,σ
∗,n

Ri,ti
− L∞,σ

∗

Ri,ti
‖ ≤ ‖Ln,σ

∗,n

Ri,ti
− Ln,σ

∗

Ri,ti
‖+ ‖Ln,σ

∗

Ri,ti
− Lσ∗∞,Ri,ti

‖.

By the assumptions of the proposition, the second term converges to 0. Now consider the

first term:

Ln,σ
∗,n

Ri,ti
− Ln,σ

∗

Ri,ti
= Eσ∗,n [Φn((Ri, ti), (R−i, t−i))|Ri, ti]− Eσ∗ [Φn((Ri, ti), (R−i, t−i))|Ri, ti] ,

where Eσ denotes the expectation taken with respect to draws of (Rk, tk) taken from mσ.

Since Φn is an RSP+C mechanism, we have that

Ln,σ
∗,n

Ri,ti
− Ln,σ

∗

Ri,ti
= Eσ∗,n

[∫
D(Ri,ti,ν)(pn)dγν

∣∣∣∣Ri, ti

]
− Eσ∗

[∫
D(Ri,ti,ν)(pn)dγν

∣∣∣∣Ri, ti

]
.(B.14)

Therefore, to complete the proof, we need to show that the right-hand side of this expression

converges to zero.
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Let η∗,n = mσ∗,n × γν and η∗ = mσ∗ × γν , and observe that

‖D(p|η∗,n)−D(p|η∗)‖ = sup
j
|Dj(p|η∗,n)−Dj(p|η∗)|

= sup
j
|η∗,n(vp,j)− η∗(vp,j)|

= sup
j

∣∣∣∣∣∣
∑

(R,t)∈R×T

(mσ∗,n(R, t)−mσ∗(R, t))γν({ν : f(R, t, ν) ∈ vp,j})

∣∣∣∣∣∣
= sup

j

∣∣∣∣∣∣
∑

(R,t)∈R×T

(∫
(σ∗,nR (v, t)− σ∗R(v, t))dFV,T

)
γν({ν : f(R, t, ν) ∈ vp,j})

∣∣∣∣∣∣
≤ ‖σ∗,n − σ∗‖F sup

j

∣∣∣∣∣∣
∑

(R,t)∈R×T

γν({ν : f(R, t, ν) ∈ vp,j})

∣∣∣∣∣∣ ≤ ‖σ∗,n − σ∗‖F
The right-hand side converges to 0 by assumption. Therefore, we have that

sup
p
‖D(p|η∗,n)−D(p|η∗)‖ p→ 0.

If ηn is a sequence of empirical measures constructed draws from η∗,n, we have that

sup
p
‖D(p|ηn)−D(p|η∗)‖ ≤ sup

p
‖D(p|ηn)−D(p|η∗,n)‖+ sup

p
‖D(p|η∗,n)−D(p|η∗)‖

≤ sup
p,j

J |ηn(vp,j)− η∗,n(vp,j)|+ sup
p
‖D(p|η∗,n)−D(p|η∗)‖ p→ 0,

since V = {vp,j : p ∈ [0, 1]J , j ∈ J} is a uniform Glivenk-Cantelli class.

By arguments identical to those made in Part 1 of Theorem B.1, if pn is a market clearing

cutoff for D(p|ηn) and qn, then pn
p→ p∗ where p∗ is the unique market clearing cutoff for

D(p|η∗) and q. By the continuous mapping theorem, for each (R, t), we have that∫
D(R,t,ν)(pn)dγν

p→
∫
D(R,t,ν)(p∗)dγν .

Since D(R,t,ν)(pn) is bounded, we have that

Eσ∗,n
[∫

D(R,t,ν)(pn)dγν

∣∣∣∣R, t]→ ∫
D(R,t,ν)(p∗)dγν . (B.15)

25



By a similar argument, we have that

Eσ∗
[∫

D(R,t,ν)(pn)dγν

∣∣∣∣R, t]→ ∫
D(R,t,ν)(p∗)dγν . (B.16)

Equations (B.15) and (B.16) imply that the right hand side of equation (B.14) converges to

0.

Part 2: Consider a sequence of equilibrium strategies σ∗,n such that ‖σ∗,n − σ∗‖F → 0.

We will show that σ∗R(v, t) > 0 for all (v, t) ∈ int(suppFV,T ) only if v · (L∞,σ
∗

R,t − L
∞,σ∗
R′,t ) ≥ 0

for all R′ ∈ R.

Fix (v, t) ∈ int(suppFV,T ). Towards a contradiction, suppose that σ∗R(v; t) > 0, and

v · (L∞,σ
∗

R,t − L
∞,σ∗
R′,t ) < −2ε for some R′ ∈ R and ε > 0. Since (v, t) ∈ int(suppFV,T ), there

exists a δ > 0, such that for all v′ with ‖v − v′‖ < δ, we have v′ ∈ int(suppFV,T ), and

v′ · (L∞,σ
∗

R,t − L
∞,σ∗
R′,t ) < −ε.

By Part 1,
∥∥∥Ln,σ∗,nR′,t − L

∞,σ∗
R′,t

∥∥∥→ 0. Since Ln,σ
∗,n

R,t is bounded, there exists an N , such that

for all n > N and all R′ ∈ R, ∥∥∥Ln,σ∗,nR′,t − L
∞,σ∗
R′,t

∥∥∥ ≤ ε

2(‖v‖+ δ)
.

Hence, for all v′ in the δ neighborhood of v, we have that

v′ · (Ln,σ
∗,n

R,t − Ln,σ
∗,n

R′,t ) ≤ v′ · (L∞,σ
∗,n

R,t − L∞,σ
∗,n

R′,t ) + 2‖v′‖‖Ln,σ
∗,n

R′,t − L
∞,σ∗
R′,t ‖

≤ v′ · (L∞,σ
∗,n

R,t − L∞,σ
∗,n

R′,t ) + ε < 0

Since σ∗,n is a Bayesian Nash Equilibrium strategy, it must be that for all n > N and v′ such

that ‖v−v′‖ < δ, σ∗,nR (v′, t) = 0. Therefore, ‖σ∗,n−σ∗‖F → 0 implies that σ∗(v′, t) = 0 for all

v′ in the δ neighborhood of v. This conclusion contradicts the hypothesis that σ∗R(v, t) > 0

for any R such that v · (L∞,σ
∗

R,t − L
∞,σ∗
R′,t ) < 0. Hence, σ∗ is a limit equilibrium.

Part 3: Consider the constant sequence σ∗,n = σ∗. By the assumptions of the proposi-

tion, for each (R, t),

‖Ln,σ
∗

R,t − L
∞,σ∗
R,t ‖ → 0.

Moreover, this convergence is uniform in (R, t) since R × T is a finite set. Fix ε > 0 and

pick n0 such that for all n > n0,

sup
R,t
‖Ln,σ

∗

R,t − L
∞,σ∗
R,t ‖ <

ε

2
.

Note that the choice of n0 did not depend on vi.
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Since σ∗ is a limit equilibrium, σ∗Ri
(vi, ti) > 0 implies that for all R′i,

vi · L∞,σ
∗

Ri,ti
≥ vi · L∞,σ

∗

R′i,ti

⇒ vi · Ln,σ
∗

Ri,ti
≥ vi · Ln,σ

∗

R′i,ti
− 2 sup

R,t
|vi · (Ln,σ

∗

R,t − L
∞,σ∗
R,t )|

for all n > n0. By the Cauchy-Schwarz inequality, supR,t |vi·(L
n,σ∗

R,t −L
∞,σ∗
R,t )| ≤ ‖vi‖ supR,t ‖L

n,σ∗

R,t −
L∞,σ

∗

R,t ‖. Therefore,

vi · Ln,σ
∗

Ri,ti
≥ vi · Ln,σ

∗

R′i,ti
− ε‖vi‖.

C Identification

C.1 Equilibrium Behavior and Testable Restrictions

Our empirical methods are based on the assumption that agent behavior is described by

equilibrium play. This section discusses whether this assumption is testable in principle and

types of mechanisms for which it may be rejected.

Assumption C.1. The map σi(vi, ti)→ ∆|Ri| that generates the data is a symmetric limit

Bayesian Nash Equilibrium.

This assumption implies that students have consistent beliefs of the probability that they

are assigned to each school in S as a function of their report R ∈ R. Recall that the set of

students that choose lottery LR have utilities that belong to the normal cone to L at LR:

CR =
{
v ∈ RJ : ∀LR′ ∈ L, v · (LR − LR′) ≥ 0

}
.

This observation immediately yields the result that agents maximize their utility by picking

lotteries that are extremal in the set of lotteries.

Proposition C.1. Let the distribution of indirect utilities admit a density. If LR′ is not an

extreme point of the convex hull of L, the set of utilities v such that v · LR ≥ v · LR′ for all

LR′ ∈ L has measure zero.

Proof. If LR is not an extreme point of the convex hull of L, then CR has Lebesgue-measure

zero. Since v admits a density,
∫

1{v ∈ CR}dFV = 0.

The result uses the fact that ties in expected utility for any two lotteries are non-generic,

agents whose behavior is consistent with equilibrium play (typically) pick extremal lotteries.
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Proposition C.1 also indicates that the fraction of students with behavior that is not consis-

tent with equilibrium play can be identified. This suggests that Assumption C.1 is testable.

However, we have not yet exploited the structure of assignment probabilities that result from

typical assignment mechanisms in discussing testability. We now present a general sufficient

condition under which observed behavior can be rationalized as equilibrium play.

Consider a mechanism in which reports correspond to rank-orders over the available

options. Therefore, a report is a function R : {1, . . . , K} → J such that (i) for all k, k′ ∈
{1, . . . , K}, R(k) = R(k′) 6= 0 ⇒ k = k′ and (ii) R(k) = 0 =⇒ R(k′) = 0 if k′ > k. Let

R be the space of such functions. As discussed earlier, the mechanism produces assignment

probabilities Ln,σR,t for each report submitted by an agent with priority type t. Let Ln,σR,t,j be

the probability that a student with priority type t is assigned to program j when submitting

R. We drop the dependence on n, t and σ for notational simplicity since we will hold these

constant in what follows.

Definition C.1. The assigment probabilities L = {LR ∈ ∆J : R ∈ R} are rank-monotonic

for priority type t, if for all R,R′ ∈ R, R−i ∈ R−i and k ≤ K we have that (R(1), . . . , R(k−
1)) = (R′(1), . . . , R′(k − 1)) implies

LR,R(k) ≥ LR′,R(k).

Further, Lt is strictly rank-monotonic for priority-type t if the inequality above is

strict if R(k) 6= R′(k), and LR,R(k) > 0

Rank-monotonicity is a natural condition that should be satisfied by many single-unit

assignment mechanisms. Specifically, it requires that the assignment probability at the k-

th ranked school does not depend on schools ranked below it, and that ranking a school

higher weakly increases a student’s chances of getting assigned to it. Under strict rank-

monotonicity, ranking a school higher strictly increases the assignment probability unless

this probability is zero.

We now show that in all strictly rank-monotonic ranking mechanisms, all agents that

pick a report that gives them a positive probability of assignment at each of their options

are behaving in a manner consistent with equilibrium play.2

Theorem C.1. Assume that L is strictly rank-monotonic. The report R ∈ R corresponds

to an extremal lottery LR ∈ L if LR,R(k) > 0 for all k such that
∑

k′<k LR,R(k′) < 1.

2Strict-rank monotonicity does not rule out that two different reports result in the same lottery, e.g.,
if R1 = (A,B,C) and R2 = (A,B,D) both result in assignment probabilities for A,B,C and D equal to
[φA, 1− φA, 0, 0].
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Proof. Consider a report R ∈ R such that for any k = 1, 2, .., K,
∑

k′<k LR,R(k′) < 1 and

LR,R(k) > 0.

Take any vector of coefficients λ such that:

λR̃ ≥ 0 for every R̃ ∈ R∑
R̃∈R

λR̃ = 1

∑
R̃∈R

λR̃LR̃ = LR

We will show that λR = 1. The proof follows by induction. Consider some report R̃

where R(1) 6= R̃(1). Strict rank-monotonicity and our assumption on R imply λR̃ = 0. We

have shown that for k = 1, R(k′) 6= R̃(k′) for any k′ ≤ k =⇒ λR̃ = 0. Suppose that this

statement is true for all l ≤ k − 1 and that
∑

l<k LR,R(l) < 1. Take any report R̃ where

R(l) 6= R̃(l) for some l ≤ k. If l < k, λR̃ = 0 by the inductive hypothesis. If l = k, Strict

rank-monotonicity and our assumption on R imply λR̃ = 0. By induction, R(l) 6= R̃(l) and∑
l<k LR,R(l) < 1 =⇒ λR̃ = 0.

Suppose that there is a j ∈ S and R̃ ∈ R such that LR,j 6= LR̃,j; we will show that

λR̃ = 0. Let k̃ be the minimum k such that R(k) 6= R̃(k). Rank-monotonicity and the fact

that either LR,j > 0 or LR̃,j > 0 imply that∑
l<k̃

LR(l),R̃ =
∑
l<k̃

LR,R(l) < 1.

Thus, our previous results imply that λR̃ = 0.

The result implies that every report with non-zero assignment probabilities is rational-

izable as an optimal report for a priority type if the mechanism is strictly rank-monotonic.

Intuitively, this is the case because upgrading any school in the reported rank-order list

strictly increases the probability of assignment and there exists a utility vector for which

such a report is optimal.

Although the model has testable predictions, we do not develop a statistical test for the

null hypothesis that play is consistent with optimal behavior. The technical challenge arises

from testing a parameter describing the fraction of agents with non-rationalizable reports on

the boundary. The statistical test would have to account for uncertainty in estimating the

lotteries. We leave this for future research.
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C.2 Characterization of Partially Identified Set

Consider the collection of markets

T (ξ, z) = {Γib = (ξb, zib, tib,Lb) : (ξb, zib) = (ξ, z)}.

The dependence of the set of assignment probabilities L on the market index b indicates that

we allow variation in this dimension to be useful in the present exercise. We will consider

results that fix (ξ, z) and therefore drop this from the notation. As a reminder, conditioning

on z is without loss since it is observed, but this implies that the researcher assumes that

the variation considered holds school unobservables ξ fixed.

The next result characterizes what can be learned about the distribution of utilities

from observing data from several markets in T . Let NLΓ
(L) = {v ∈ RJ : v · (L − L′) ≥

0 for all L′ ∈ LΓ} be the normal cone to L ∈ LΓ corresponding to the set LΓ. (We switch

notation from using CR for lottery LR for clarity since this section uses different sets LΓ,

which are not explicitly referred to in the relatively compact notation, CR.) Further, let

N = {int(NLΓ
(L))}Γ∈T ,L∈LΓ

be the collection of (the interiors of) normal cones to lotteries

faced by agents in the markets T . For a collection of sets N , let D(N ) be the smallest

collection of subsets of RJ such that

1. RJ ∈ D(N ) and N ⊂ D(N )

2. For all N ∈ D(N ), N c ∈ D(N )

3. For all countable sequences of sets Nk ∈ D(N ) such that Nk1∩Nk2 = ∅,
⋃
kNk ∈ D(N )

The collection D(N ) is sometimes called the minimal Dynkin system containing N .

Theorem C.2. Given P (L ∈ LΓ|Γ) for each Γ ∈ T and L ∈ LΓ, the quantity

hD =

∫
1{v ∈ D}dFV (v)

is identified for each D ∈ D(N ).

Proof. The identified set of conditional distributions FV (v) is given by

FI =

{
FV ∈ F : ∀L ∈ LΓ and Γ ∈ T , P (L ∈ LΓ|Γ) =

∫
1{v ∈ NLΓ

(L)}dFV (v)

}
.

Note that for any two distributions FV and F̃V in F , the collection of sets

L (FV , F̃V ) =

{
A ∈ F :

∫
1{v ∈ A}dFV (v) =

∫
1{v ∈ A}dF̃V (v)

}
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is a Dynkin system for the Borel σ-algebra F . Since D(N ) is the minimal Dynkin system

where all elements of FI agree, D(N ) ⊆ L (FV , F̃V ) for any two elements FV and F̃V . Hence,

for all D ∈ D(N ), we have that

hD =

∫
1{v ∈ D}dFV (v) =

∫
1{v ∈ D}dF̃V (v)

is therefore identified.

The result follows from basic measure theory and characterizes the features of FV (v) that

are identified under such variation in choice environments without any further restrictions. In

particular, with the free normalization ‖vi‖ = 1, the result implies that the mass accumulated

on the projection of the sets in D(N ) on the J − 1 dimensional sphere, SJ , is identified.

Typically, this implies only partial identification of FV (v), but extensive variation in the

lotteries could result in point identification.3

C.3 Non-Simplicial Cones

In this section, we consider the case when the cone CR is not spanned by linearly independent

vectors. We need that there exists a report for which the normal cone satisfies the following

property:

Definition C.2. A cone C is salient if v ∈ C =⇒ −v 6∈ C for all v 6= 0.

Our results require that the tails of the distribution of utilities are light. Formally, assume

that for some c > 0, the density of u belongs to the set

Gc ≡ {g ∈ L1(RJ) : ec|u|g(u) ∈ L1(RJ)},

where L1 is the space of Lebesgue integrable functions.

Theorem C.3. Assume that g ∈ Gc and there is a lottery LR such that CR is a salient

convex cone with a non-empty interior. If ζ = RJ , then the distribution of utilities FV (v|z1)

is identified from

hCR

(
z1
)

= P (LR ∈ L|z1).

The key insight is that Fourier transform of an exponential density restricted to any

salient cone is non-zero on any open set. We first show a preliminary which specializes

results in De Carli (1992, 2012).

3Specifically, the π − λ theorem implies that FV (v) is identified if and only if the Dynkin-system D(N )
contains a π-system that generates the Borel σ-algebra.
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Lemma C.1. Let fε,Γ (x) = 1{x ∈ Γ}e−2π〈ε,x〉 for some polygonal, full-dimensional, salient,

convex cone Γ and ε ∈ int(Γ), and let f̂ε,Γ (ξ) be its Fourier Transform. f̂ε,Γ is an entire

function. Further, there is no non-empty open subset of RJ where f̂ε,Γ is zero.

Proof of Theorem C.3. Let {Γ1, . . . ,ΓQ} be a simplicial triangulation of Γ. Let Vq be a

matrix [vq1, vq2 , ..., vqn] with the linear independent vectors that span cone Γq arranged as

column vectors. x ∈ Γq ⇐⇒ x = Vqα for some 0 ≤ α ∈ RJ ⇐⇒ V −1
q x ≥ 0. Normalize Vq

so that |detVq| = 1. Let fε,Γ (x) = 1{x ∈ Γ}e−2π〈ε,x〉. This is an integrable function (if ε is

in the dual of the cone Γ). Consider its Fourier transform:

f̂ε,Γ (ξ) =

∫
Γ

exp (−2πi 〈ξ − iε, x〉) dx

=
∑
Q

∫
Γq

exp (−2πi 〈ξ − iε, x〉) dx

=
∑
Q

∫
RJ

1{x : V −1
q x ≥ 0} exp (−2πi 〈ξ − iε, x〉) dx

=
∑
Q

∫
RJ

+

exp (−2πi 〈ξ − iε, Vqa〉) da

=
∑
Q

∫
RJ

+

exp
(
−2πi

〈
V ′q ξ − iV ′qε, a

〉)
da

=
∑
q=1..Q

∏
j=1..J

∫
R+

exp
(
−2πi

(
v′qjξ − iv′qjε

)
a
)
da

=
∑
q=1..Q

∏
j=1..J

∫
R+

exp
(
−a
[
2π
(
v′qjε

)
+ 2πi

(
v′qjξ

)])
da

=
∑
q=1..Q

∏
j=1..J

1

2π

1[(
v′qjε

)
+ i
(
v′qjξ

)] ,
where the last equality follows from the fact that −a2π(v′qjε) < 0. Note that the closed-form

expression implies that f̂ε,Γ (ξ) is an entire function for every ε ∈ Γ/ {0}. Therefore, if it is

zero in an open subset of RJ is zero everywhere.

We now show that f̂ε,Γ (ξ) is non-zero on a non-empty open set. Let K be a full-

dimensional simplicial convex cone such that Γ ⊂ K. K exists because Γ is salient. Let

VK be the corresponding matrix for K. κqj = V −1
K vqj > 0 for all q ∈ {1, . . . , Q} and
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j ∈ {1, . . . , J}. Consider ξ =
(
V −1
K

)′
α,

f̂ε,Γ

((
V −1
K

)′
α
)

=

(
1

2πi

)J ∑
q=1,...,Q

∏
j=1,...,J

1[(
κ′qjα

)
− i
(
v′qjε

)]
=

(
1

2πi

)J ∑
q=1,...,Q

∏
j=1,...,J

(
κ′qjα

)
+
(
v′qjε

)
i[(

κ′qjα
)2

+
(
v′qjε

)2
]

Each term in the summation has a positive denominator and a numerator that is a

polynomial function of α with positive coefficients. It follows that it is not zero everywhere,

and therefore there is no open subset of RJ where f̂ε,Γ is zero.

We are now ready to prove the main result.

Proof. For a fixed lottery LR such that CR is salient, define the linear operator A:

Ag(z) =

∫
CR

g (v + z) dv.

We need to show that if A(g′ − g′′) = 0 a.e. Then, g = (g′ − g′′) = 0 a.e. The proof is by

contradiction.

Since the cone CR is salient, its dual TR has a nonempty interior. Let ε ∈ int(TR), with

|ε| sufficiently small so that gε(u) = g(u)e2π〈ε,u〉 ∈ L1. Note that 1{u ∈ CR}e−2π〈ε,u〉 ∈ L1 for

every ε ∈ int(TR) because 〈ε, u〉 > 0.

Towards a contradiction, suppose that A(g′ − g′′) = 0 a.e. but |g′ − g′′|1 > 0. Since

ζ = RJ , we have that for almost all z ∈ RJ ,

Ag(z) = e−2π〈ε,z〉
∫

1 {v ∈ CR} e−2π〈ε,v〉e2π〈ε,v+z〉g(v + z)dv = 0.

Since e−2π〈ε,z〉 > 0, Ag = 0 for almost all z ⇐⇒ f̂ε,CR
(ξ) · ĝε(ξ) = 0, where f̂ε,CR

is the

Fourier Transform of fε,CR
(x) = 1{x ∈ CR}e−2π〈ε,x〉 and ĝε is the conjugate of the Fourier

Transform of gε (x), both continuous functions in L1. Since ĝε is continuous, the set where

ĝε 6= 0 is open. Further, since |g|1 > 0, the support of ĝε is non-empty. It follows that there

is an open Zε where ĝε is different from zero, and therefore, f̂ε,CR
(ξ) = 0 for all ξ ∈ Zε. This

contradicts the fact that f̂ε,CR
is an entire function, as shown in Lemma C.1.

Finally, since g(u) is known for almost all u, we have that FV (v|z1) =
∫ v−z1

−∞ g(u)du is

identified.
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D Estimation Appendix

D.1 Gibbs’ Sampler: Implementation Details

Let Zi be a J × (K × J) block-diagonal matrix that is constructed placing the K-row vector

covariates zij = [zijk]
K
k=1 in each of the J blocks; β = vec ({βjk}), a KJ-column vector; and

Di a J × J diagonal matrix with dij in the j-th position. The system in equation (1) can be

compactly written as:

vi = Ziβ −Di + εi

The unobserved utilities vi are treated as unknown parameters along with β and Σ. We

specify independent prior distributions for β and Σ:

p(β,Σ) = p(β)p(Σ),

β ∼ N(β,A−1),

Σ ∼ IW (ν0, V0),

where IW is the inverse Wishart distribution.

The Gibbs sampler proceeds as follows:

0. Start with initial values Σ0 and v0 = {v0
i }

N
i=1 so that v0

i ∈ CRi
for all i = 1...N where

Ri is the report of student i.

Since CRi
=
{
v ∈ RJ : Γiv ≥ 0

}
where Γi = (L′Ri

− L′R1
, . . . , L′Ri

− LR′|R|)
′,4 v0

i can be

found by finding a solution to the inequalities

Γikvi ≥ ε,

for each row k of Γi, and a small positive number ε. We implement this step using

Gurobi solver.

4For the specification that assumes truthful reporting, Γi, is a matrix that encodes the inequalities implied
by the rank order list Ri = (Ri(1), . . . , Ri(K)). Hence, Γivi > 0 if and only if viRi(1) > viRi(2) > . . . >
viRi(K), vi0 < viRi(K) and vij < viR(K) if j 6∈ Ri.
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1. Draw β1|v0,Σ0 from a N
(
β̃, V

)
,

V = (Z∗′Z∗ + A)
−1
, β̃ = V

(
Z∗′v∗ + Aβ

)
Z∗ =

 Z∗1

...

Z∗S


Z∗′i = C ′Zi, v

∗
i = C ′v0

i

Σ0 = C ′C

2. Draw Σ1|v0, β1 from a IW (ν0 +N, V0 + S)

S =
n∑
i=1

εiε
′
i,

εi = v0
i − Ziβ1

3. Draw v1|β1,Σ1, R iterating over students and schools.

For each school j = 1...J , draw

v1
ij|
{
v1
ik

}j−1

k=1
,
{
v0
ik

}J
k=j+1

, β1,Σ1

from a truncated normal TN
(
µij, σ

2
ij, aij, bij

)
, where

µij =
K∑
k=1

β1
jkzijk − dij

σ2
ij = Σ1

jj − Σ1
j(−j)

[
Σ1

(−j)(−j)
]−1

Σ1
(−j)j

and the truncation points aij and bij guarantee the draw v1
ij is such that

v =
[{
v1
ik

}j−1

k=1
, v1
ij,
{
v0
ik

}J
k=j+1

]′
lies in the interior of CRi

. To calculate these truncation points, define Ajik be the k-th
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row of Γi with its j-th column removed and let vji =
[
{v1

ik}
j−1
k=1 , {v0

ik}
J
k=j+1

]′
.5

aij = max
k∈{k:Γikj>0}

−Ajikv
j
i

Γikj

bij = min
k∈{k:Γikj<0}

−Ajikvj

Γikj

where Γikj is the (k, j)-th element of Γi.

4. Set Σ0 = Σ1 and v0 = v1, store, and repeat the steps 1-3 to obtain (βk,Σk, vk) given

(βk−1,Σk−1, vk−1) and the priors.

D.2 Gibbs’ Sampler for the Näıve-Sophisticate Mixture Model

We extend the Gibbs’ sampler described earlier to allow for two types of agents. The model

assumes that näıve agents report truthfully while sophisticates pick the report that maxi-

mizes their expected utility. For a rank-order list R = (R(1), R(2), . . . , R(K)) of lengthK, let

C̃R be the region in utility space such that vi ∈ C̃R =⇒ viR(1) > viR(2) > . . . > viR(K) > vij

for all j 6∈ Ri, and viR(K) > vi0. Note that C̃R is a convex cone in RJ . Let πi be an indicator

for whether a student is näıve. Therefore, the model specifies the observed report of the

agent given vi and πi as follows:

Ri = R, πi = 0 =⇒ vi ∈ CR
Ri = R, πi = 1 =⇒ vi ∈ C̃R.

Our Gibb’s sampler uses data augmentation on πi in addition to vi. Let π̄ be the fraction

of nav̈e agents in the economy. We let π̄ be a vector to allow for free-lunch and paid-

lunch students to have differing proportions of näıve and sophisticated agents. We specify

5We pre-process the matrix Γi using Gurobi to eliminate redundant linear constraints to speed up this
step. The k-th row is a redundant constraint if the solution to the problem

min
v

Γikv subject to Γiv ≥ 0

is strictly positive.
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independent prior distributions for β, π̄ and Σ:

p(β,Σ) = p(β)p(π̄)p(Σ),

β ∼ N(β, Σ̄−1),

π̄l ∼ Beta (a0, b0)

Σ ∼ IW (ν0, V0),

where IW is the inverse Wishart distribution and l ∈ {Paid Lunch, Free Lunch}. The Gibbs’

sampler proceeds as follows:

0. Start with initial values Σ0, π0 = {π0
i }

N
i=1, and v0 = {v0

i }
N
i=1 so that v0

i ∈ C̃Ri
for all

i = 1...N .

1-2. Update (Σ, β) according to steps 1-2 in Appendix D.1.

3. Update π̄1|π0. For l ∈ {Paid Lunch, Free Lunch}, draw π̄l from

Beta

(
a0 + |Nl| −

∑
i∈Nl

π0
i , b0 +

∑
i∈Nl

π0
i

)
,

where Nl is the set of students in paid/free-lunch group l.

4. Draw v1|β1,Σ1, π̄1, y iterating over students and schools. For the observed report Ri

for student i, consider the cones

C̃Ri
=

{
v ∈ RJ : vRi(1) > vRi(2) > . . . > vRi(K) > vij for all j ∈ {0, . . . , J}\Ri

}
CRi

=
{
v ∈ RJ : Γiv ≥ 0

}
,

where Γi = (L′Ri
− L′R1

, . . . , L′Ri
− LR′|R|)

′. Let π̄1
i = π̄1

l , for l equal to the paid lunch

status of i. For each school j = 1...J , draw

v1
ij|
{
v1
ik

}j−1

k=1
,
{
v0
ik

}J
k=j+1

, β1,Σ1, π̄1
i

from a mixture of two truncated normals TN
(
µij, σ

2
ij, ãij, b̃ij

)
and TN

(
µij, σ

2
ij, aij, bij

)
with weights π̄1

i and (1− π̄1
i ). µij, σ

2
ij, aij and bij are defined as in step 3 in Appendix

D.1. The truncation points
(
ãij, b̃ij

)
guarantee that draws from TN

(
µij, σ

2
ij, ãij, b̃ij

)
lay in the interior of C̃Ri

.
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5. Update π1|v1, π̄1. For each student i, draw π1
i from a binomial distribution with pa-

rameter π̄1
i if v1

i ∈ CRi
∩ C̃Ri

. If v1
i ∈ CRi

\C̃Ri
, set π1

i = 0. If v1
i ∈ C̃Ri

\CRi
, set

π1
i = 1.

6. Repeat steps 1-5 to obtain (βk,Σk, vki , π
k
i , π̄

k) given (βk−1,Σk−1, vk−1
i , πk−1

i , π̄k−1).

We parametrize vi as in Appendix D.1 and assume identical distributions for näıves are

sophisticates.

D.3 Priors

We use very diffuse priors to minimize their influence on our estimates and as a reflection

of our prior uncertainty about the values of the parameters of the model. We set the prior

distribution of β ∼ N(β, Σ̄−1)

β = 0

Σ̄−1 = 100× I

and the prior of Σ ∼ IW (ν0, V0)

ν0 = 100

V0 = I.

We experimented with more diffuse priors
(
Σ̄−1 = 200× I, ν0 = 50

)
without noticeable changes

in our main results.

For the mixture model, we set the prior of π̄l = Beta (a0, b0) , with a0 = b0 = 1 for l ∈
{Paid Lunch, Free Lunch}.

D.4 Convergence Diagnostics

The Gibbs’ sampler produces a markov chain with the posterior distribution of the param-

eters as its invariant distribution. Since the chain is ergodic, it ultimately converges to this

distribution irrespective of the starting point. However, it is essential to burn-in a large set

of initial draws since they are influenced by the starting point, and to check that the chains

have converged. To ensure mixing, we simulate three chains of length 400,000, burn-in the

first half. We monitor convergence by examining the trace plots of the various co-efficients

and use Geweke’s means test across and within the chains to ensure mixing. Finally, we use

the Raftery-Lewis Diagnosis Test to check that the chain has been simulated for long enough
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to ensure that the 2.5th percentile of the vast majority of parameters are estimated within

a tolerance of 0.005 with 95% probability.

D.5 Bootstrap

Unless otherwise noted, the standard errors for L̂, θ̂, and counterfactuals were estimated

by a bootstrap. To construct each of the S bootstrap samples we sampled n students with

replacement from each year of our sample, where n is the number of students in that year.

For each bootstrap sample s ∈ {1, . . . , S}, we computed:

• Lottery estimate L̂s: For each of the five years in the data, we computed L̂s using

the bootstrap sample s using the same procedure used to obtain L̂. i.e. we resampled

n − 1 individuals and generated n − 1 lottery draws B = 1, 000 times. For each

simulated sample b, we computed the market clearing cutoff pn−1
b,s , and for each (R, t)

calculated the vector of assignment probabilities averaging across the B simulated

samples following equation 9. The standard errors for the lotteries presented in table

D.1 in the Appendix are the standard deviation of the L̂s across S = 1, 000 bootstrap

samples.

• Parameter estimates β̂s, Σ̂s: We ran a Monte Carlo Markov Chain on the bootstrap

sample s using the same procedure described in the paper using the bootstrap samples

and in Appendix D. We ran one chain of 100, 000 draws and burned-in the first 50, 000.

The last 50, 000 draws were used to compute the mean of each parameter which we

denote β̂s, Σ̂s. The standard errors in tables 7 and D.3 were estimated by the standard

deviation of the mean utilities and β̂s across the S = 250 bootstrap samples.

• Counterfactual: We simulated the deferred acceptance counterfactual assuming param-

eters β̂s, Σ̂s and computed the difference in utility for each individual in the bootstrap

sample s. For the Cambridge mechanism, we used L̂s. The standard errors reported in

table 10 were estimated by the standard deviation of the difference in utilities across

the S = 250 boostrap samples.

The same boostrap procedure was used to compute standard errors for the coarse beliefs,

adaptative expectations and mixture specifications. However, the standard errors for the

truthful specification were not obtained by bootstrap. They were estimated directly from

the original MCMC chains.
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