Measuring the Sensitivity of Parameter
Estimates to Estimation Moments

Isaiah Andrews Matthew Gentzkow Jesse M. Shapiro
MIT and NBER Stanford and NBER Brown and NBER

May 2017

Online Appendix

Contents

1 Sample Sensitivity
1.1 Sample Sensitivity with Perturbed Weight Matrix . . . . ... .. ... ... ...

2 Results Under Non-Vanishing Misspecification
2.1 Special Cases . . . . . . . ..
2.2 Estimation of Sensitivity Under Non-Vanishing Misspecification . . . . . . . . ..

3 Results for Non-Smooth Moments
3.1 Special Cases . . . . . . . . .. e

3.2 Estimation of Sensitivity with Non-Smooth Moments . . . . . . ... .. ... ..

List of Tables

1 Standard deviations of excluded instruments in BLP (1995) . . .. ... ... ..
2 Global sensitivity of average markup in BLP (1995) . . . . . . ... .. ... ...



List of Figures

1 Sensitivity of La Rabida social pressure cost in DellaVigna et al. (2012) to local
violations of identifying assumptions . . . . . . . . .. .. ..o L. 18]

2 Sensitivity of La Rabida social pressure cost in DellaVigna et al. (2012) to exoge-

nous giftlevels . . . . . . . . .. L 19
3 Global sensitivity of ECU social pressure cost in DellaVigna et al. (2012) . . . . . 20
Sample sensitivity of average markup in BLP (1995) . . . .. .. ... ... ... 211

1 Sample Sensitivity

Our analysis in the main text studies the sensitivity of the asymptotic behavior of an estimator to
changes in the data generating process. A distinct but related question is the finite-sample sensi-
tivity of our estimator @ to changes in the moments g (0) used in estimation. In this section, we
derive a sensitivity measure which answers this question and show that it coincides asymptotically
with A.

In particular, we consider a family of perturbed moments

§(0,u)=g(0)+un,

where 11 controls the magnitude of the perturbation while 17 controls the direction. Define 0 (1) to

solve
(OAl) ming (6,1)' Wg(6,u).
0cO

For this section, we assume that g (0) is twice continuously differentiable on ®.

Define the sample sensitivity of 6 to 4 (é) as

where
A . a A AN A A A a A AN/ NN A
A= (5568 )Wwe () .. (7%G(8))W2(d) |.
Sample sensitivity measures the derivative of 6 with respect to perturbations of the moments

without any assumptions on the data generating process. Specifically, if 0 is the unique solution to



(1) in the main text and lies in the interior of ®, then

d A N
OA2 —06(0)=A
(OA2) o (0) = Asnm,
whenever G (é)/Wé (6) +A is non-singular. (This is proved below as a consequence of a more

general result.) Thus, if we consider a first-order approximation we obtain

é(l)—é%[/\\sn,

which is analogous to proposition 1 in the main text, except that rather than approximating the
asymptotic bias of an estimator, we are now approximating the value of the estimator calculated
using perturbed moments.

As is intuitively reasonable, the sample sensitivity Ag relates closely to A introduced in the

main text. To formalize this relationship we make an additional technical assumption.

Online Appendix Assumption 1. For 1 < p < P and %y a ball around 6y, supg, 5, || a%pGA (6) ]|
is asymptotically bounded[]

I_A : )
, B—QPG(G) converges to a continuous function a_e,,G(e)

uniformly on %g. Online appendix assumption |1 is sufficient to ensure that A 0. Since the

This condition is satisfied if, for example

sample analogues of G and W converge to their population counterparts, Ag converges to A.

Online Appendix Proposition 1. Consider a local perturbation W, such that online appendix
assumption (1| holds under F, (it,). Ag 2> A under F, (11,) as n — oo,

Proof. Since 1, is a local perturbation, 6 2, @y under F, (W) . Thus, since we have assumed that
¢(0) and G () converge uniformly to limits g (0) and G (),

(8(6),6(6),W) L (g(60),G(60),W).

However, we have also assumed that supgc 5, | %G (0) || is asymptotically bounded for 1 < p <
P
A A~ a P
P, which, by the consistency of 6, implies that {%G (6) } | is asymptotically bounded as well.
P p=

Thus, since g(6y) = 0, we see that A 25 0. Finally, since we have assumed that G'WG has full

rank, the continuous mapping theorem implies that Ag 2y A. [

Online Appendix Remark 1. In contrast to proposition 1 in the main text, the statement in equa-

tion 1| does not rely on asymptotic approximations. Consequently, we can use Ag even in

'In  particular, for any & > 0, there exists a finite constant r(g) such that

limsup,HmPr{supeegge H%G(B) | > r(e)} <eE&.



settings where conventional asymptotic approximations are unreliable, such as models with weak
instruments or highly persistent data. In such cases, however, the connection between Ag and A

generally breaks down, and neither measure necessarily provides a reliable guide to bias. [

1.1 Sample Sensitivity with Perturbed Weight Matrix

Our discussion of sample sensitivity above assumes that the perturbation parameter u affects the
moments g (0, ) but not the weight matrix. This section provides a result for the more general
case where 1 also enters the weight matrix (for example through a first-stage estimator), which
nests the result stated in equation (OA2]).

Again define a family of perturbed moments

£(0,u)=8(0)+un.

Correspondingly, define a perturbed weight matrix W (1) with W (0) = W. Define the resulting

estimator 6 (1) to solve

(OA3) ming (6, 1) W ()2 (0, ).
€0

We assume that ¢ (6) is twice continuously differentiable in 6, and that W (1) is differentiable on

a ball %’ﬂ around zero. If we define A as above and
B=G(6) S (0)2(6),
u
then we obtain the following result.

Online Appendix Proposition 2. Provided 0 lies in the interior of ® and is the unique solution to

(1) in the main text,

5200 == (6(0)W(0)+4) ' (6(0)W¢(0.0)+8).

whenever G (é)/WG (é) + A is non-singular.

Proof. We know that ¢(6,u) — ¢(6) uniformly in 6 as u — 0. Thus g(6,u) W (u)g(0,u)
converges uniformly to g (8) Wg(8) as u — 0. Since 0 is the unique solution to (1) in the main
text, this implies that, for any & > 0, there exists  (€) > 0 such that || 0(u)—6(0) || < & whenever
|| < w(€), where 8 (1) is the unique solution to (OA3).



For any i such that 6 (1) belongs to the interior of ©, @ (1) satisfies the first-order condition
(in 6)

The proposition limits attention to the case where

8 A A A AL A A A
5g/(0,0)=6 (0) WG (8) +A
is non-singular, where A = A (0). By the implicit function theorem, for i in an open neighborhood
of zero we can define a unique continuously differentiable function 8 (i) such that f (é (u) ,u) =
0. By the argument at the beginning of this proof, however, 8 (i) = 6 (i) for u sufficiently small.

Thus, again by the implicit function theorem,

A

%é(m ——(6(6) WG (0)+4) (

o
—~
D>
SN—
>
B
o>
—~
D>
S
SN—
+
o>
N——

which establishes the claim. O]

2 Results Under Non-Vanishing Misspecification

In section 3 of the main text, we showed that the sensitivity matrix A allows us to characterize
the first-order asymptotic bias of the estimator 8 under local perturbations to our data generating
process. In this section, we show that analogous results hold for the probability limit of  under
small, non-vanishing perturbations to the data generating process.
As in section 3 of the main text, we define a family of perturbed distributions F (-0, y, ),
where u controls the degree of perturbation and F (-|0,y,0) =F (-|0,y). Let F, (1) = { x,F (:|60, Yo, 1) } -
When 1 # 0, the model is misspecified in the sense that under F, (1), & (6) % 0. Online appendix



proposition [3| below shows that A relates changes in the population values of the moments to

changes in the probability limit of the estimator.

Online Appendix Assumption 2. For a ball %, around zero, we have that under F, (L) for
any L € By, (i) §(0) and G(8) converge uniformly in 0 to functions g(6,1) and G (0, 1) that
are continuously differentiable in (0, ) on © x By, and (ii) W Lw (1) for W (1) continuously
differentiable on %,,.

Online Appendix Proposition 3. Under online appendix assumption 2} there exists a ball %, C
Py around zero such that for any U € %), 6 converges in probability under F, (1) to a continu-
ously differentiable function 0 (1), and

%9 (0) = A%g(@o,O) :
Proof. By the differentiability of g (0, ) in i, we know that g (6,1) — g(0) pointwise in 0 as
u — 0. Moreover, since G (0, u) is continuous in (0,u) € © x %y, for '@?N C %y a closed ball
around zero we know that sup g ;) g 7, Amax (G(6,1) G(6,u)) is bounded, where Apax (A) de-
notes the maximal eigenvalue of a matrix A. This implies that g (6, ) is uniformly Lipschitz in 6
for L € %, and thus that g (6, 1) — g () uniformly in 6 as g — 0. Thus, g (8, 1) W (1) g (8, 1)
converges uniformly to g (8)' Wg (8) as p — 0. Since 6y is the unique solution to ming g (6)' Wg(6),
this implies that for any € > 0 there exists u (€) > 0 such that ||0 (1) — 6y|| < € whenever |u| <
L (€), where 6 (u) is the unique solution to

ming (6,11)'W (1)g (8, 1).

Moreover, standard consistency arguments (e.g., theorem 2.1 in Newey and McFadden 1994) imply
that 6 2 6 () under Fp, ().
Next, note that for any u such that 6 (i) belongs to the interior of ®, 0 (1) satisfies the first-

order condition (in 6)

Note that
55/ (0 (1), 1) =G (6(1), 1) W (1) G (O (1), ) +A(u),
for
AW = | (#GOW.1) )W) ®w).n) . (7G600),n) )W e ®w),u) |



We have assumed that GWG = 88_0 f(60,0) is non-singular. By the implicit function theorem, for
W in an open neighborhood of zero we can define a unique continuously differentiable function
6 (1) such that f (6 (i), 1) = 0. By the argument at the beginning of this proof 6 (1) = 6 (u) for

u sufficiently small. Thus, again by the implicit function theorem, for u sufficiently small

2 (GO, W ()G (1)) +A (W)
_9(“) - / Pl ’
on < (GO () ) W (1) 58 (6 (1) 1) +B (1) +C (1)
for 5
B) =GO (). (5 (1)) (0 u) )

Cu) = (%G(G(u),u)'> W (1) g (6 (1).).

Since g (0 (0),0) = g(6y) =0, A(0), B(0), and C(0) are all equal to zero, from which the con-

clusion follows immediately for %, sufficiently small. U

If we define F (-|0, y, 1) such that

%8(9070) = g<a) _g(a()) )

for g (a) the probability limit of ¢ (6p) under assumptions a, then for 6 (a) the probability limit of

6 under assumption a, online appendix proposition [3|implies the first-order approximation

Q

6 (a) — 6o Alg(a)—g(ao)]

= Ag(a)

discussed in section 3 of the main text.

Sections 4 and 5 of the main text develop sufficient conditions to apply our results and estimate
sensitivity for the case of local perturbations. We next develop analogous results for models with
a fixed degree of misspecification as studied in online appendix proposition [3] We first revisit the

special cases considered in section 4 and then consider estimation of A.

2.1 Special Cases

We begin by developing the analogue of lemma 1 in the appendix to the main text.

Online Appendix Lemma 1. Suppose that under F, (1)



where the distribution of G (0) is the same under F, (0) and F, (i) for every n, @(0) converges to
a twice continuously differentiable function a(0), and b converges in probability to b (i), which
is continuously differentiable in y, and b (0) = 0. Suppose also that W either does not depend on
the data or is equal to w (éF S) for w(+) a continuously differentiable function and 07S a first-stage
estimator that solves (1) for a fixed positive definite weight matrix WX'S not dependent on the data.
Then online appendix assumption 2 holds.

Proof. By assumption, under F, we have that §(0) = @(6) and G(6) = j—ea(e) converge uni-

formly to g (6) and G (). Since b does not depend on 6, g (6) converges uniformly to g (6, ) =
g(6)+b(u) under Fy, (1), while G (8) converges uniformly to G(6,u) = G(8). As we have as-
sumed that b (i) is continuously differentiable, we see that g (0, 1) and G (6, i) are continuously
differentiable in (6, ), as we wanted to show. By applying online appendix proposition [3| with
W = WFS (which satisfies the remaining condition of online appendix assumption [2| by construc-
tion), we can establish that, under F, (11) , 75 £ 675 (1), which is continuously differentiable in
in a neighborhood of zero. Thus, W & W (1) = w (675 (u)), which is continuously differentiable
in u by the chain rule. O

Applying this result, we can extend proposition 2 of the main text to describe the behavior of

minimum distance estimators under a fixed level of misspecification.

Online Appendix Proposition 4. Suppose that 0 is a CMD estimator and, under F, (u), §=
§+ uf, where 1) converges in probability to a vector of constants 1 and the distribution of § does
not depend on 1. Suppose that W takes the form given in online appendix lemma|l| Then, for

0 (1) the probability limit of © under F, (1), we have that %9 (0) = An.

Proof. By online appendix lemma [ online appendix assumption 2] holds for CMD estimators.

The result then follows from online appendix proposition 0

Next, we turn to nonlinear IV models and develop the analogue of lemma 2 in the appendix

to the main text. For clarity, here we make explicit the dependence of & on the data D; and write
Gi(6) = ¢ (¥, X5:6).
Online Appendix Assumption 3. The observed data D; = [Y;,X;| consist of i.i.d. draws of endoge-
nous variables Y; and exogenous variables X;, where Y; = h(X;, (;;0) is a continuous one-to-one
transformation of the vector of structural errors {; given X; and 0, with inverse ¢ (Y, X;;0) = QA} (0).
There is also an unobserved (potentially omitted) variable V;. Under F,, for a ball %, around zero:
(i) E (Z:' (h(X;, &+ 1Vi; 60) ,Xi; 9)> and E <%ij (h(X;, &+ 1Vi; 60) ,Xi;9)> are continuously dif-
ferentiable in (0, 11) € ® x B,;; (ii) there exists a random variable d (D;) such that both

sup [z & (h (X, G+ Vi 00) X 0)|| < (D)

(6,u)cOx Ay,



and

sup
(9,,u)e®><<93p

aié( h(X;, G+ uV;; 6o) 7Xi;9)H <d(D;)

with probability one, and E (d (D;)) is finite; and (iii) W either does not depend on the data or
is equal to W (éFS) where, under F, (1), W (8) converges uniformly in 0 to W (6,) which is
continuously differentiable in (0,1), and 07 is a first-stage estimator that solves (1) for WS
which depends on the data only through X; and satisfies WS Ly wFs for a positive-definite limit
wEs.,

Online Appendix Lemma 2. Suppose that online appendix assumption |3| holds and that, under
Fo(u) with p € %y, we have &(90) = &+ uV;, where the distribution of (fi,X,-,Vi) does not
depend on u. Then online appendix assumption 2| holds.

Proof. By assumption, the distribution of (¥;,X;) under F, (1) is the same as the distribution of
(h (X, &+ pVi; 60),X;) under Fy, (0). Thus, by the uniform law of large numbers (see lemma 2.4
of Newey and McFadden 1994), part (ii) of online appendix assumption [3| implies that, under
Fo(1),8(0) % g(6,1) and G(0) & G(0,u), both uniformly in ©. Part (i) of online appendix
assumption Ithen implies that both of these limits are continuously differentiable in (6, ). Since
WS does not depend on u, we see that W $ 2y WFS under F, (1) . Thus, for this weight matrix, we
have verified all the conditions of online appendix assumption 2] so online appendix proposition
implies that 675 L, gFs (1), which is continuously differentiable in pt on some neighborhood of

zero. Thus, we see that
W= (675 (1)) 5w (0 (w).p).

where the limit is continuously differentiable in u. Thus, we have verified the conditions of online

appendix assumption [2|in a neighborhood of zero. 0
Using this result, we can now develop the analogue of proposition 3 in the main text.

Online Appendix Proposition 5. Suppose that 0 is an 1V estimator satisfying online appendix
assumption |3 and that, under F, (1), we have ¢ (60) = &+ 1V;, where V; is an omitted variable
with %ZZi Vi L Qzy = 0 and the distribution of fi does not depend on 1. Then, for 6 (1) the
probability limit of @ under F, (1), we have %9 (0) = AQgzy.

Proof. By online appendix lemma[2] online appendix assumption[2Jholds. Online appendix propo-

sition [3| thus implies that

94 (0) = Al E (Zi ® & (h(Xi, G+ 1Vis60) . X 9)) )

ou ou u=0"



However, online appendix assumption [3| part (i) implies that Z; ® ¢ (h (X;, & + Vi: 60) ,Xi; 0) is
uniformly integrable for t in a neighborhood of zero. Thus, we can exchange integration and

differentiation to obtain that
9 E (Zi® C(h(Xi, i+ 1Vi; 00), Xi: 9)> ) =E|Z® ié (h(X;, i3 60),Xi50)V;
8# ’ ’ u=0 8(;, ’ ’

=E(Z®V)=Qzy,

since ¥; = h(X;, §;; 0) is a one-to-one function with inverse é (Y;,X;;0). O

2.2 Estimation of Sensitivity Under Non-Vanishing Misspecification

This section considers estimation of sensitivity and develops a result analogous to proposition 4 in

the main text.

Online Appendix Lemma 3. Under online appendix assumption 2| A £ A () under F, (W) for
We By C By, where A () is continuous and A (0) = A.

Proof. We have assumed that g(0) 2 ¢(6,u) and G(6) 2 G(6,1), both uniformly in 6. By
online appendix proposition we know that § 2 6 (u) for u € #;, where 0 (1) is continuous in
(. We have assumed, moreover, that g (6, ), G(6,u), and W (i) are continuous in (6, ), so

G(6(u),n)W(u)G(6(u),u)

is continuous in u as well. For ,@7# C %ﬂ a ball of sufficiently small radius, note that since GWG

has full rank, if we define

A(u) =~ (G(0,1) W (1)G(6,1)) ' G (8, W (n),

then A (1) is continuous on %, A(0) = A, and by the continuous mapping theorem A 2 A(u)
under F, (1) and u € By,. O

Analogous to proposition 4 of the main text, we thus see that plug-in sensitivity is consistent
under the assumptions of online appendix proposition

3 Results for Non-Smooth Moments

As noted in section 3 of the main text, many of our results on sensitivity extend to models where

£(0) is not differentiable in 6, allowing us to accommodate a range of additional estimators in-

10



cluding quantile regression and many simulation-based approaches. To formalize this, following

section 7.1 of Newey and McFadden (1994) we assume that the estimator 0 satisfies

D>

N SN . ~ I'\&7 A 1

2(0) W (6) < jnt 8(0)Wa(®)-+o, ().
Thus, 6 need not exactly minimize the objective function (which may be impossible in some
models with non-smooth moments), but should come close. We further assume that under F,(0),
(i) v/ng (6p) 4N (0,Q); (ii) W converges in probability to a positive semi-definite matrix W (iii)
there is a continuously differentiable function g (0) with derivative G (6) such that g (6) = 0 only
at 0 = 6y and g (0) converges to g (0) uniformly in 6; (iv) G'WG is nonsingular with G = G (6));

and (v) for any sequence k;, — 0,

5(0)—g(6y) —g(0O
sup Vnl§(6) —&(60) —2 ()l »,
16—l <K, 1+/n||6 — 6o

See section 7 of Newey and McFadden (1994) for a discussion of sufficient conditions for (v).

Under these assumptions, theorems 2.1 and 7.2 of Newey and McFadden (1994) imply that
6 is consistent and asymptotically normal with variance £ = (GWG) ' GWQWG (GWG) .
Since the moments are non-smooth the results on sensitivity derived in the main text no longer
directly apply, but it is still interesting to relate perturbations of the moments to perturbations of
the parameter estimates.

The approach based on sample sensitivity is no longer feasible for non-smooth moments, since
the estimates will not in general change smoothly with the moments when the moments are non-
smooth. Our results under non-vanishing misspecification, on the other hand, go through nearly

unchanged in this case.

Online Appendix Assumption 4. For a ball %, around zero, we have that under F, (lL) for any
U € By, §(0) converges uniformly in 0 to a function g (0, 1) with a%g(@,,u) =G (0,u) such that
both g(0,u) and G (0, 1) are continuously differentiable in (8,11) on ® x By and W L am
for W () continuously differentiable on %,.

Online Appendix Proposition 6. Under online appendix assumption 4, there exists a ball %, C
Py around zero such that for any i € By;, 0 converges in probability under F, (1) to a continu-
ously differentiable function 0 (1), and

d d
—0(0) =A=—g(6p,0).
Proof. The proof is exactly the same as that of online appendix proposition 3] 0

11



Thus, even when the moments are non-smooth, sensitivity characterizes the derivative of the
probability limit of 8 with respect to perturbations of the moments. The results in online appendix
section [2.2] can likewise be extended to the case with non-smooth moments, but we instead follow
the main text and focus on results under local perturbations.

In particular, for models with non-smooth moments we say that a sequence {l, }, _, is a local
perturbation if under F, (it,): () 6 2 6y; (i) /g (6y) converges in distribution to a random
variable g; (iii) ¢ (0) converges uniformly in probability to g(8); (iv) W 2y W and (v) for any

sequence K, — 0,
3(0)—2(6y) —g(0
sup Vnl|g(6) —£(6) —g(O)] »,
1060 <, 14/n||6 — 6o

As before, any sequence of alternatives y, such that F;, (i, ) is contiguous to F, (0) and under which

Vv/ng (6p) has a well-defined limiting distribution will be a local perturbation. As in proposition 1

of the main text, we can derive the asymptotic distribution of 6 under local perturbations.

Online Appendix Proposition 7. For any local perturbation {u,},_, v/n (é — 90) converges in

distribution under F, (U,) to a random variable 8 with

0=AZ
almost surely. This implies in particular that the first-order asymptotic bias E (é) is equal to
AE (g).

Proof. By the same argument as in the proofs of theorems 7.1 and 7.2 of Newey and McFadden
(1994) applied under F, (1),

v (é — 60+ (GWG) ™ G’Wg(eo)) LN

and thus
Vn (6 —60) = Av/ng (60) +0,(1).
Consequently, by the continuous mapping theorem,

A

Vi (6—60) % 6= Ag,

which proves the claim. [

As in the case with smooth moments, we next give sufficient conditions for a sequence of data

generating processes to be a local perturbation.

12



3.1 Special Cases

We first consider additive perturbations of the moments as in lemma 1 in the appendix to the main
text. The statement of the resulting lemma is the same as that of lemma 1 in the appendix to the

main text, but the proof differs slightly so we re-state the result for completeness.

Online Appendix Lemma 4. Consider a sequence {li,},_,. Suppose that under F, (1)

where the distribution of () is the same under F, (0) and F, () for every n and v/nb converges
in probability. Also, W 2> W under F, (1t,). Then { i, Yoy s a local perturbation.

Proof. Uniform convergence of g (0) follows from uniform convergence of @ (0) and the fact that
b %5 0. Convergence in distribution of /ng (8y) follows from the fact that \/nd (6y) converges in
distribution and /nb converges in probability. That 6 2, @y then follows from the observation that
&(0)'Wg (0) converges uniformly to g (6)' Wg(8). Finally, that

sup vn[8(6) —2(6) —g(0)] »,
10—60] <K 14/n||6 — 6o

follows from the fact that b differences out of this expression, and we have assumed that this holds
under F;, (0). H

Applying online appendix lemma 4] and online appendix proposition [7] again yields a sim-
ple characterization of the first-order asymptotic bias of misspecified CMD estimators with non-
smooth moments, which is again the same as the corresponding result for the case with differen-

tiable moments (proposition 2 in the main text).

Online Appendix Proposition 8. Suppose that 0 is a CMD estimator and, under F, (1), § =
§4 uf, where 1] converges in probability to a vector of constants 1 and the distribution of § does

not depend on . Take [, = \/Lﬁ, and suppose that W Ly W under F, (Wy). Then E (é) = An.

Proof. That {u,},”, is a local perturbation follows from online appendix lemma 4 with @ (0) =
§—s(0) and b = p,f. The expression for E (8) then follows by online appendix proposition
O

To extend the results of lemma 2 in the appendix to the main text to the case with non-smooth
moments, we need to incorporate the definition of local perturbations for the non-smooth case, but

we don’t need to modify assumption 1 in the main text at all.

13



Online Appendix Lemma 5. Consider a sequence {U,}, _, with W, = % for a constant u*.

Suppose that assumption 1 in the main text holds and that, under F, (L), we have ¢, (60) = &+ uV;,
where the distribution of (fi,Xi,Vi) does not depend on |. Then {l,},_, is a local perturbation.

Proof. By the proof of lemma 2 in the appendix to the main text, the sequence of data generating

processes F, (W) is contiguous to F;, (0), and
A d -
\/ﬁg(e()) _>N(u :‘79)

under F,, (1) . Here, as in the proof of lemma 2 in the appendix to the main text, £*E is the asymp-
totic covariance between the moments ¢(6p) and the log-likelihood ratio log ‘iﬁ"n—((“o")). By contiguity,
convergence in probability under F, (0) implies convergence in probability to the same limit under

Fy, (1p) , which suffices to verify the other conditions for {1, }, _; to be a local perturbation. ~ [J

Analogous to proposition 3 in the main text, applying online appendix lemma [5) and online
appendix proposition [/| allows us to characterize the effects of misspecification in the class of

nonlinear IV estimators where (6) may be non-smooth in 6.

Online Appendix Proposition 9. Suppose that 0 is an IV estimator satisfying assumption 1 in the
main text and that, under F, (1), we have {,A} (6p) = Z_,:i + 1V;, where V; is an omitted variable with
%Zi Z:aVi L Quy = 0 and the distribution of 5,- does not depend on . Then taking W, = \/Lﬁ, we
have E (é) = AQyy.

Proof. That {u,}, _, is alocal perturbation follows from online appendix lemma The expression

for E (é) then follows from online appendix proposition 0

Thus, we see that the sufficient conditions for local perturbations developed in section 4 of
the main text extend to non-smooth models. We next show that our results on the estimation of

sensitivity can likewise be extended.

3.2 Estimation of Sensitivity with Non-Smooth Moments

To estimate sensitivity, we require an estimator of G = G (6p). Unlike in the case with smooth
moments, we cannot simply differentiate g (é) Instead, we follow section 7.3 of Newey and
McFadden (1994) and consider an estimator based on numerical derivatives. In particular, consider

the matrix G (8) of numerical derivatives with j column

(8(0+ejen) —8(0—¢ej&n)) /(2€n),

14



where ¢ is the j' standard basis vector and &, is a nonzero scalar. As in the smooth case, we can

use this to define plug-in sensitivity.

Definition. Define plug-in sensitivity as

Online Appendix Lemma 6. If €, — 0 and €,\/n — o as n — oo, then A 2> A under F,(u,) for
any local perturbation {U,}, .

Proof. The proof of theorem 7.4 of Newey and McFadden (1994) implies that G (é) 2, G. Since
G'WG has full rank by assumption the result follows by the continuous mapping theorem. 0

While this result is obtained for a particular numerical derivative estimator G (6), analogous
results can be established for alternative estimators (and a derivative estimator is usually required

to compute standard errors in models with non-smooth moments).
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Online Appendix Table 1: Standard deviations of excluded instruments in BLP (1995)

Standard
deviation
Demand-side instruments
Other cars by same firm:
Number of cars 11.9210
Sum of horsepower/weight 4.7548
Number of cars with AC standard  4.4708
Sum of miles/dollar 27.0197
Other cars by rival firms:
Number of cars 23.5870
Sum of horsepower/weight 11.7205
Number of cars with AC standard 21.3580
Sum of miles/dollar 90.8318

Supply-side instruments

Other cars by same firm:
Number of cars 11.9210
Sum of log horsepower/weight 11.6288
Number of cars with AC standard  4.4708

Sum of log miles/gallon 8.4861

Sum of log size 4.1672

Sum of time trend 181.5812
Other cars by rival firms:

Number of cars 23.5870

Sum of log horsepower/weight 19.5929
Number of cars with AC standard 21.3580

Sum of log miles/gallon 24.9750

Sum of log size 4.6629
This car:

Miles/dollar 0.6981

Note: Table shows the standard deviation, across the entire sample, of the excluded instruments Zg, Z;.
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Online Appendix Figure 1: Sensitivity of La Rabida social pressure cost in DellaVigna et al. (2012)
to local violations of identifying assumptions
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Notes: The plot shows one-hundredth of the absolute value of plug-in sensitivity of the social pressure cost
of soliciting a donation for the La Rabida Children’s Hospital (La Rabida) with respect to the vector of
estimation moments, with the sign of sensitivity in parentheses. Each moment is the observed probability
of a response for the given treatment group. The magnitude of the plotted values can be interpreted as
the sensitivity of the estimated social pressure cost to beliefs about the amount of misspecification of each
moment, expressed in percentage points. While sensitivity is computed with respect to the complete set of
estimation moments, the plot only shows those corresponding to the La Rabida treatment. The leftmost axis
labels in larger font describe the response; the axis labels in smaller font describe the treatment group. Filled
circles correspond to moments that DellaVigna et al. (2012) highlight as important for the parameter.

18



"SIXB X 9U) UO UMOYS dIB P JO SAN[BA "SIUSWAIOUI IS} Udam)aq pajejodioyul pue (g¢ 01 0§ WOIJ SUWAIdUT )Z°($ Ul p JO sanfea Joj payndwod st seiq

= - L7
100
v aIeys B YoIyM Jopun suoneqinirad 1opIsuod apy AIANISUSS Jo Jojewnsa ur-3ngd oy) asn

onojdwAse 19pI0-18IL] “SUIAIZ UO [BUONIPUOD p JUNOWE UL JAIS sAem[e Inq sediaqunod Jurkaqo-[opoul J1ay) st sanijiqeqotd awes ay) Yim 2AI3

LA
100

suone[moed IO '1x9) urew oy ur ¢ uonisodoid Aq pardwir se ‘uoneoyroadssIw JO S[9AI] snOLIeA Japun [e3dSOl s, uaIp[iy)) epiqey] e 9y} 03 SuIAld
Jou JO 3509 [e100s Je[jop-1ad 9y} Jo 9yewnsa paysiqnd (z107) S. T8 12 ru3iAe[[e Ul selq o1nojduAse 10pIo-1siy pajewnsa oyl smoys jo[d 9y, :S9oN

a1eys ® pue [opow s 1oded ay) mo[[oJ spoyesnoy jo A

SI0]B|0IA [9pOLW JO BZIS WD
(014 ST ot S 0

T T
0 S00°- 10—

alnssaid [e1o0s pajewnsa ul seig

T
S00°

S[QAQ[ YIS SNOUAZ0X? 0} (ZT(7) ‘T8 12 BUSIAR[[Q( UI 3509 dInssaid [e100s epiqey e Jo ANANISUdg :z 2In3i xipuaddy auruQ

19



"SIXB X 9] UO UMOYS dIe p Jo sanfeA {G1°G'Z1 ‘01 ‘S'L S} D p 10J Ayanisuas
[2qO[S InduwIod 9p\ “[OPOUI QANBUIAI[E AT IPUN ALWNS Y} PUE ALWmMsd paysiqnd o) U9MIAQ U A} SE PAIR[NO[ED ST AITADISUIS [EGO[D)
-aunnoi uonezrundo ay) Jo anjea Suniels 9y se @ ewnsa paysiqnd ay) asn 9py uonezrwndo ur anjea aaneSoU € 10 019Z Jo SO[ 9y} Junye) proAe
0} ;0T Uey} I9Jea13 9q 0} UONOUN WSII)[e oﬁwo QINJBAIND AY) UIRNSUOD OS[e am (Z107) ‘T8 19 BUSIAR[[Q Ul pauonuaw Apordxe jou ysnoyg,
"21-0T — [ UBY) SSI[ 1€ SaNLILYD Y30q 10§ s1ojowered 3500 21nssaid [eroos Je[[op-1od 9y) 1ey) S)Urensuod [BUONIPPE 3Y) PUe (9¢ ‘TT0T) '[8 12 BUSIAB[[RQ
UI PAUIPNO ‘| O] UIYIM ‘SJUTRNSUOD SY) YIIM dUNNOI yoUvasiLia)nd S qe[JEJA st oM “(T) A[0S O, ‘sioyine ay) £q sn 03 papraoxd xmew JySrom )
pue @imv §—§ sjuawow YIIM (]) 9AJOS 9AN [OPOW QATJBUISIE 9} JOPUN § UI dNSHE]S YoBa JO anfea pajdrpaid ay) jouap @ﬁmv § 197 ‘Sutaid uo
[BUONIPUOD p JunowWe ue JAI3 sAem[e Jnqg sediaunod Surkaqo-[apow Iay) se sanijiqeqold awes ay) s dAIS [()'() 2Ieys & pue [opowt s Joded ayy
MO[[OJ SPIOYASNOY JO 66°() 2ILYS B YOIYM Iopun suoneqiniad IOpISuod oAy “UONEOYIAdSSIUI JO S[OAS] SNOLIEA Iopun (1)) JIUS)) PIRZEH] BUI[OIE,) ISEF
oy 031 SurAlS J0U Jo 1509 Teroos Iefjop-Iad oy Jo rewnsa paysiqnd (Z107) S.Te 19 BUSIA B[O JO ANMAIISUSS [eQO[S ParewinIsa oyl smoys 10[d ay [, :S9I0N

SIOJe|OIA [9POW JO BZIS 11D

qT 0T q
1 1 1
. ...................................... . ................................................................................ . ....................................... .IO
®
- O
-%q
S
wn
@D
>
28
=4
<.
o<
S
wn
(@]
Q.
L
©
o ®
-m$
o=
c
D
) o
- O
oo

(Z102) 'Te 12 BUSIAR[[R( Ul 1500 aInssaid [e100s NDH JO ANADISUSS [eqo[D) :¢ 2InJL] xipuaddy auruQ

20



*(Apoaxip suonenba 1509 [eurdrew Jo AJI[NN Ay UL 10U Op By} 9S0Y}) SIUSWNISUI papn[oxa Yy} 03 Surpuodsariod asoy) smoys A[uo jord
9 ‘SIUSUIOW UOTIRWINSI JO 13s 919[dwod ay3 03 10adsar yyim panduwios st Ayanisuas spdwes o[iyap Joded urewr ay) ur A 9181 ur pasn asoy) e y
XLIJRW JO SJUSW[A [euo3eIp oy [, "sosaypuared ur umoys st YZZgySy) Jo ugIs oy J, "y pue ‘ZZgy <) Jo sajewinsa ur-gnfd asn app "sjueisuod JulzZijeuLiou

(“z57) 0

0 (7' z)a
[opowr 03 30adsar M dndprewr oFeIoAe oY) JO JUAIPEIS dY) ST ) ARYM ‘YZZg5SY) JO JeWNSd 9y} JO onfeA ANnosqe Yl smoys 1o[d Y[, :SAON

Jo xuyew [euoSerp e SI y pue = Q) ‘SjUGWIOU UOTJBWINS? 0} sajewinsd Jajowered Jo Ayanisuas oidures s1 Sy ‘siojowrered

Aunnisuss Aunyisuss
900 o0’ 200 0 900° vo0’ 200 0
> (-) azis 6o Jo wing
[) (+) Tejlop/sajiw Jo wnNS
¢ (=) uojebysajiw Boj jo wns
() prepuels oy /m st # \mAEE [BAL ) () prepuels v /m sied #
q sied S [eAll
'3 (+) wbiamyamodasioy Boj jo wng \E w.‘_mU :
o (+) wbiamyiamodasioy jo wns
L 2 (=) sreo #
o (+) sreo #
< (+) puan awi Jo wns
(+) azis Bo| Jo wng
< (+) uojebyss|iw Boj Jo wns Wiy swes \3
* (+) prepuels Qv /m sred # sled Jsylo o () sejiop/sajw o wing

-) wbram/iamodassioy Boj jo wn:

* (=) Wbt 4 oy jo wins o (=) prepuels Qv /m sieD #

* (+)sreo# w1y swes Aq

sJed 1ayl0
o (=) ybram/samodasioy jo wing
o (=) sreo #
@ (+) rejop/sajin Jed syl

sjuawnusul apis-Alddns

SjuswNJIsSul apis—puewad

(S661) 4719 ur dnyrew a3e1oae Jo A)1Anisuds o[dweg :4 231 xipuaddy auruQ

21



	Sample Sensitivity
	Sample Sensitivity with Perturbed Weight Matrix

	Results Under Non-Vanishing Misspecification 
	Special Cases
	Estimation of Sensitivity Under Non-Vanishing Misspecification

	Results for Non-Smooth Moments
	Special Cases
	Estimation of Sensitivity with Non-Smooth Moments


