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B Data Appendix

This appendix provides further empirical evidence. Section B.1 describes evidence for the US
taken from scanner datasets. Section B.2 offers more detailed statistical information on the
French data, including a sectoral split and a robustness-to-trimming exercise. Section B.3
explores the extent to which the statistical protocols used to measure prices are responsible
for the small price changes, as suggested by Eichenbaum et al. (2014).

B.1 Evidence from US scanner datasets (weekly prices)

This appendix uses a large scanner data set, also used by Eichenbaum, Jaimovich, and
Rebelo (2011), to measure the kurtosis of price changes in a dataset that allows to control for
heterogeneity and measurement error in a more precise way than is doable with the typical
CPI data. The data contains information on weekly average prices and quantities for over
100 stores (index s), 13,000 goods (index u) over 100 weeks (index t). Price changes are
measured by the log changes, i.e. ∆pt,u,s = 100(log(pt,u,s)− log(pt−1,u,s)), i.e. the percentage
price change (in log points). Since measured prices are weekly averages (measured by total
revenues divided by quantity) a change from one week to the other may occur even in the
absence of a true price change, if the proportion of customers with discount coupons changes.
We think that this is the most prevalent type of measurement error in the scanner type data
(where there are no unrecorded product substitutions or transcription errors).

Figure 6: US: Eichenbaum et al (2011) scanner data
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All ∆pi Standardized & trimmed
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kurtosis = 4.9 ; 11 million obs. kurtosis = 3.0 ; 8.9 million obs.

Figure 6 presents the results for the ∆pi,u,s before any treatment is done to the data (left
panel) and after removing the price changes smaller than 1 cent (which for sure reflect a
composition effect in the weekly prices, e.g. averaging customers with discount coupons and
those without). When removing such price changes, kurtosis drops to 3.8. Standardizing
the price changes at the store-good level (and trimming price changes smaller than 1 cent)
further reduces kurtosis to around 2.8 (see Alvarez, Lippi, and Pozzi (2014) for a more detailed
analysis). These patterns are not very sensitive to the specific trimming that is chosen.
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We complement this evidence with a larger dataset covering more stores and more prod-
ucts, the Symphony IRI dataset described in Bronnenberg, Kruger, and Mela (2008). The
dataset contains weekly scanner price and quantity data covering a panel of stores in 50
metropolitan areas from January 2001 to December 2011, with multiple chains of retailers
for each market. The dataset includes grocery and drug chain data involving approximately
25%-30% of consumer packaged good sales in a grocery store and it contains around 2.4
billion transactions from over 170,000 products and around 3,000 stores. Each outlet has
a time invariant identifier and for each retail outlet, weekly data are available at the UPC
level. Goods are classified into 31 general product categories such as milk, coffee, beer, etc.
Brand information is included but all private-label UPCs have the same brand identification.
Detailed information about each good, such as volume and size, is also included. Each re-
tailer reports the total dollar value of weekly sales, inclusive of retail features, displays and
retailer coupons but not manufacturer coupons, for each UPC code as well as total units
sold. Therefore, the average retail price for each UPC during that week can be recovered.
Figure 7 compares the raw data on price changes (no trimming and no standardization) with
the data standardized at the store-good level and after discarding price changes outside the
interval 0.1% < |∆pi| < 100%.

Figure 7: US: Symphony-IRI scanner data

Size distribution of non-zero ∆pi (based on average weekly prices)
All ∆pi Standardized & trimmed
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kurtosis = 34.3 ; 820 million obs. kurtosis = 4.3 ; 610 million obs.

B.2 Details on data and further sectoral statistics for France

Some additional features of our data treatment of French CPI price records are as follows.
Dealing with product replacement. The dataset contains flags for product replacement
as well as imputed prices which we use as follows to design our dataset. First, we discarded
observations with item substitution, as item substitution may result into spurious values for
price changes, if quality adjustment is not accounted for or imperfectly measured (Berardi,
Gautier, and Le Bihan (2013) investigate the inclusion of information on item substitutions).
Second, we replaced any “imputed price” in the dataset, by the previous price of the same
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item in the same outlet present in the data, i.e. a carry–forward procedure. In the source
dataset imputed prices are introduced by the INSEE when prices are missing.32 Imputed
prices are constructed either using the carry–forward procedure, or imputing the average
price change of similar goods observed in the close area. The latter procedure makes sense
from the aggregate CPI point of view but is obviously ill-suited for characterizing price change
at the individual level. We used the flag for imputed prices to locate and replace them by
carry-forward prices. This procedure amounts to discarding imputed prices when computing
the distribution of (non-zero) price changes.
Computing price changes and dealing with outliers. Price changes were computed as
100 times the log-difference in prices per unit. We compute a consistent price per unit by,
when relevant, dividing prices by the indicator of quantity sold (package size). We removed
outliers, which in our baseline analysis we define as price changes smaller in absolute value
than 0.1 percent, or larger in absolute value than 100 · log(10/3). These thresholds are set as
a first crude ways to deal with measurement errors. Some robustness checks are presented in
Table 6. The upper threshold for outliers is set with sales in mind, as we informally observe
that price rebates as large as 70% are sometime advertised in sales periods. Our threshold
allows for a price to decrease by up to 70% and subsequently return to its former level without
discarding the observation. Price changes larger than this threshold are discarded as being
outliers.33

Identifying sales. The flag for sale allows to identify sales. Two kinds of sales-promotion
discounts, that have a different status, exist in France: seasonal sales or temporary discounts.
Seasonal sales (‘soldes’) are subject to administrative restrictions: the time period (twice a
year) is decided by local authorities and price posting is subject to precise regulations. Tem-
porary discounts are not subject to such restrictions but sales below cost are prohibited by
commercial law. By contrast, selling below cost is allowed in the case of seasonal sales.
On the sample period, seasonal sales are observed only in some specific categories of goods
(mainly clothes). The proportion of price quotes that are flagged as seasonal sales is 0.76%
and the proportion of temporary discounts amounts to 1.92%.

Main facts at sectoral level. The different sectors in the CPI have very different
pricing patterns, as well documented in recent research. The purpose of this appendix section
is to illustrate that the peakedness of the price change distribution is a fact observed in all
sectors. Table 4 documents pricing patterns fact using a breakdown into six broad economic
sectors.34 As previous research, we observe many sectoral specificities: prices change less
often and rarely decrease in services; the size of price changes is smaller in services; energy
prices change frequently and by small amounts; reflecting sales, the variance of price change is
huge in clothes. However, noticeably a large kurtosis is observed in all sectors, one exception
being clothes for which kurtosis (2.2) is lower than that of the Gaussian distribution. The
fraction of small price changes, using one fourth of mean absolute price change as a threshold,
ranges between 8% and 27% for all categories other than energy. Using a sector and type

32Prices may be missing because of stock-outs, closed outlet due e.g. to holidays or seasonality in product
availability, for instance.

33An example of outlier is the fee for parking in the street, which is free in some cities in summer.
34The breakdown we use (into food; durable goods; clothing & textile; other manufactured goods ; energy;

services) is one we deem the most meaningful to capture price-setting idiosyncracies.
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Table 4: Results by type of goods

Good type Freq Avg |∆pi| Std (∆pi) Kur (∆p) Frac25
Food 19.4 9.2 8.7 10.8 29.3
Durable goods 15.2 14.7 11.5 6.0 18.1
Clothing 11.0 42.5 19.3 2.2 10.2
Other manufactured goods 11.4 10.3 11.7 9.4 34.0
Energy 77.0 3.8 6.5 6.9 12.1
Services 6.5 7.8 11.4 17.6 21.3

Source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. Coverage is aroud
65% of CPI weight since rents, and prices of fresh food and centrally collected items (e.g. electricity, train
and airplane tickets) are not included in the dataset. Freq. denotes monthly frequency of price change
in percent. Size of price change ∆p are the first-difference in the logarithm of price per unit, expressed
in percent. Avg is average, Std standard devation, Frac25 the share of absolute price change that are
inferior to 0.25 Avg[|∆pi|], Kur denotes kurtosis. Observations with imputed prices or quality change are
discarded. Moments are computed aggregating all prices changes using CPI weigths at the product level.

of good partition, Table 5further documents that this fact is consistently observed at higher
levels of disaggregation.

Figure 8: Distribution of standardized Price Adjustments by group of goods
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Table 5: Statistics by type of goods and outlet category (un-standardized price changes)

Good type Outlet type Freq Avg |∆pi| Std (∆p) Kur (∆pi) Frac25
Food Hypermakets 27.56 8.89 8.68 10.25 30.79
Food Supermarkets 18.84 9.84 9.20 10.57 30.36
Food Traditional 7.52 7.84 6.66 11.68 15.63
Food Services 7.14 9.45 8.14 7.52 12.06
Durable goods Hypermakets 15.82 13.35 11.45 6.36 21.02
Durable goods Supermarkets 19.11 14.96 11.01 5.52 16.38
Durable goods Traditional 7.93 14.77 13.15 7.08 22.02
Durable goods Services 8.02 23.45 17.67 3.36 20.14
Clothing Hypermakets 8.09 45.13 22.21 1.89 17.41
Clothing Supermarkets 9.55 43.23 19.19 2.20 10.79
Clothing Traditional 12.68 41.85 18.77 2.24 7.31
Clothing Services 10.86 41.20 18.86 1.87 12.53
Other manufactured goods Hypermakets 15.69 9.40 8.97 11.25 32.71
Other manufactured goods Supermarkets 12.14 11.87 11.72 7.94 33.99
Other manufactured goods Traditional 8.22 11.51 15.50 8.16 34.59
Other manufactured goods Services 11.25 6.59 12.51 12.91 32.85
Energy Hypermakets 80.89 3.56 6.27 9.23 8.28
Energy Supermarkets 76.43 3.56 6.30 8.50 8.60
Energy Traditional 75.55 4.22 6.92 5.39 14.35
Energy Services 71.93 3.35 6.01 4.69 8.99
Services Hypermakets 5.13 13.84 15.14 7.71 22.64
Services Supermarkets 9.99 9.70 10.53 10.33 26.22
Services Traditional 6.34 7.74 9.04 19.97 19.54
Services Services 6.41 7.65 11.80 18.30 20.86
Source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. Coverage is around
65% of CPI weight since rents, and prices of fresh food and centrally collected items (e.g. electricity, train
and airplane tickets) are not included in the dataset. Freq. denotes monthly frequency of price change
in percent. Size of price change ∆p are the first-difference in the logarithm of price per unit, expressed
in percent. Avg is average, Std standard deviation, Frac25 the share of absolute price change that are
inferior to 0.25 Avg[|∆pi|], Kur denotes kurtosis. Observations with imputed prices or quality change are
discarded. Moments are computed aggregating all prices changes using CPI weights at the product level.

B.3 Small price changes and measurement error

This appendix examines to what extent the arguments of Eichenbaum et al. (2014) apply to
our data and investigates the robustness of our findings to various criteria for trimming the
data. Measurement errors may arise for several reasons. Eichenbaum, Jaimovich, and Rebelo
(2011) and Eichenbaum et al. (2014) articulate two concerns about the small price change.
First they notice that in scanner data studies the price level of an item is typically computed
as the ratio of recorded weekly revenues to quantity sold. To the extent that there are
temporary or individual specific discounts (say coupons), this will generate spurious small
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Table 6: Robustness to trimming
Type of trimming Flag Freq. Avg(|∆pi|) Std(∆p) Frac25 Kur[∆pi] Kur[z]
|∆pi| ≤ 100 · log(2) 1 17.1 8.5 14.7 28.9 10.2 7.3
Exc. flagged sales 2 14.8 5.0 7.7 18.8 13.6 8.6
|∆pi| ≤ 100 · log(10/3) 3 17.2 9.1 16.5 30.3 12.9 9.0
0.1 ≤ |∆pi| ≤ 100 · log(2) 4 16.9 8.6 14.8 28.5 10.1 7.2
0.5 ≤ |∆pi| ≤ 100 · log(2) 5 16.5 8.8 15.0 27.1 9.8 6.9
0.1 ≤ |∆pi| ≤ 100 · log(10/3) & ex.sales 6 14.7 5.1 8.0 18.2 20.9 10.4
0.1 ≤ |∆pi| ≤ 100 · log(10/3) 8 17.1 9.2 16.6 29.9 12.8 8.9
1 ≤ |∆pi| ≤ 100 · log(2) 11 15.3 9.7 15.7 22.5 8.9 6.3

(Table, continued) Moments of standardized price change z (where m ≡ Avg(|z|))

Type of trimming Flag Frac(< 0.25m) Frac(< 0.5m) Frac(> 2m) Frac(> 4m)
|∆pi| ≤ 100 · log(2) 1 22.0 39.3 13.1 1.8
Exc. flagged sales 2 20.6 38.6 12.6 2.0
|∆pi| ≤ 100 · log(10/3) 3 22.3 39.6 12.9 1.8
0.1 ≤ |∆pi| ≤ 100 · log(2) 4 21.9 39.1 13.1 1.7
0.5 ≤ |∆pi| ≤ 100 · log(2) 5 20.9 38.4 12.8 1.6
0.1 ≤ |∆pi| ≤ 100 · log(10/3) & ex.sales 6 20.7 38.6 12.5 2.0
0.1 ≤ |∆pi| ≤ 100 · log(10/3) 8 22.2 39.3 12.9 1.8
1 ≤ |∆pi| ≤ 100 · log(2) 11 17.7 35.6 12.1 1.3

Source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. Coverage is aroud 65%
of CPI weight since rents, and prices of fresh food and centrally collected items (e.g. electricity, train and
airplane tickets) are not included in the dataset. Freq. denotes monthly frequency of price change in percent.
Size of price change ∆p are the first-difference in the logarithm of price per unit, expressed in percent. Avg is
average, Std standard devation, Frac25 the share of absolute price change that are inferior to 0.25 Avg[|∆pi|],
Kur denotes kurtosis. Kur[z] denotes kurtosis of the distribution of standardized price changes. Standardized
price changes are computed at the category of good * type of outlet level. Observations with imputed prices or
quality change are discarded. Moments are computed aggregating all prices changes using CPI weigths at the
product level. Each row describes a sub-sample constructed applying the filter described by the column “type
of trimming”. “Ex. sales” exclude observations flagged as sales by the INSEE data collectors. The subsample
with flag code 8 is taken as the baseline in the main text of the paper.

price changes.35 Moreover Eichenbaum et al. (2014) highlight a related problem for some
CPI items: they spot 27 items (named ELIS in the BLS terminology) that are problematic
because these prices are typically computed as a Unit Value Index (a ratio of expenditure
to quantity purchased), or they are not consistently recorded in the same outlet, or they
are the price of a bundle of goods (for instance the sum of airplane fare and airport tax).
We were able to match these items with their counterparts in our French dataset. Out of
the 27 problematic items 15 are not present in our data because in the French CPI those

35 Notice that in principle CPI data are immune from this type of measurement error, as these data are
direct transaction prices observed by a field agent. Indeed, in the instance of a temporary discount, the
CPI dataset will record either no price change, or the large price change of observed during the discount, if
the field agent happens to be collecting data during the temporary discount. Further, the protocol of data
collection requires that the field agent records the price faced by a regular customer, not benefiting from
individual-specific discounts.

6



items are not recorded by a field agent but are centrally collected (thus not made available
in the subset of CPI we have access to).36 Concerning the 12 remaining items virtually no
price record in the French CPI is computed as a Unit Value Index, which is hypothesized by
Eichenbaum et al. (2014) as a major source of small price changes. Inspecting the patterns
of price changes over these 12 potentially “problematic” items in our dataset shows that the
amount of small price changes is not significantly different from the one detected over the rest
of our sample. One exception is the price of “Residential water” where it can be suspected
that many small variations in local taxes occur.37

A second investigation on measurement error was developed by varying the upper and
lower thresholds of small and large price changes used to define outliers. Results are displayed
in Table 6. In each of the variants considered in Table 6, both kurtosis and the fraction of
small price changes remain large. The lowest level of kurtosis obtains when we use the most
stringent thresholds for outliers.

Finally, Table 7 compares the fraction of small price changes in US vs the French data.
The table uses the same thresholds of Eichenbaum et al. (2014) to measure the fraction
of small price changes. The presence of small price changes (in absolute value) is at first
sight a more prominent fact in France than in the US. One factor that may contribute to
explaining this pattern is the fact that sales are less prevalent in France. Measurement error,
as discussed above, may play a role. We nevertheless observe that, if we define small price
changes as relative to the mean average price change, rather than with an absolute threshold,
the fraction of small price change appears to be lower in France than in the US, as shown in
Table 7.

C Power series representation of density f (y)

From equation (6) we can write f as the product of a power of y and the sums of two modified
Bessel functions of the first and second kind, multiplied by appropriate constants.

Consider then n ≥ 3 and n odd, so that ν = n/2 − 1 is not an integer. When n is even
the expression for Kν requires to evaluate the limit, so it is more complicated. Thus, we can
write:
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36These items are Hospital room in-patient; Hospital in-patient services other than room ; Electricity;
Utility natural gas service; Telephone services, local charges ; Interstate telephone services ; Community
antenna or cable TV ; Cigarettes; Garbage and trash collection; Airline fares; New cars; New trucks; Ship
fares; Prescription drugs and medical supplies; Automobile insurance.

37Otherwise, on the bulk of consumption items, there are no local taxes in France, and the main, nation-
wide, rate of the Value Added Tax rate did not move over the sample period.
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Table 7: Fraction of small price changes: US and French CPI

Moments for the absolute value of price changes: |∆pi|
France US Normal Laplace

Average |∆pi| 9.2 14.0
Fraction of |∆pi| below 1% 11.8 12.5
Fraction of |∆pi| below 2.5% 32.5 24.0
Fraction of |∆pi| below 5% 57.1 40.6
Fraction of |∆pi| below (1/14) · E (|∆pi|) 2.4 12.5 4.5 6.9
Fraction of |∆pi| below (2.5/14) · E (|∆pi|) 13.5 24.0 11.3 16.4
Fraction of |∆pi| below (5/14) · E (|∆pi|) 28.7 40.6 22.4 30.0
Number of obs 1,542,586 1,047,547

Note: For France the source is INSEE monthly price records from the French CPI (2003:4 to 2011:4).
Coverage is around 65% of CPI weight since rents, and prices of fresh food and centrally collected items
(e.g. electricity, train and airplane tickets) are not included in the dataset. Frequency of price change
is monthly, in percent. Size of price change are the first-difference in the logarithm of price per unit,
expressed in percent. Data are trimmed as in the baseline of Table 1. Observations with imputed prices
or quality change are discarded. Moments are computed aggregating all prices changes using CPI weights
at the product level. The US data are taken from Eichenbaum et al. (2014) Table 1, and refer to “Posted
price changes” from 1998:1 to 2011:6. The mean absolute size of price changes is taken from Klenow and
Kryvtsov (2008) table III where data are from 1998:1 to 2005:1. Figures for the US are weighted and
cover around 70% of the CPI (US CPI includes owners equivalent rents, while French CPI does not). In
the third panel we compute the threshold for defining small price changes as fraction of the mean so as
to match the US figures in column 2 of the second panel. The Normal and Laplace distributions used in
the last two columns have a zero mean and, without loss of generality, standard deviation equal to one.

and for ν not an integer
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Since f(0) > 0 and

f(0) = CK
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then CK > 0. Then to set f(ȳ) = 0 we obtain:
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Using the expressions for f(0) and f(ȳ) = 0 we can then rewrite f as:

f(y) = −f(0) Γ
�
2− n

2

� � ∞�

i=0

βi,1−n
2

�
λȳ

2σ2

�i
�
×




�

λy
2σ2

�(n
2−1) �∞

i=0 βi, n
2−1

�
λy
2σ2

�i

�
λȳ
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Using that 1 =
� ȳ

0 f(y)dy we obtain an expression for f(0) and replacing in the previous
formula we obtain:
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Remark. While this expression was obtained for n ≥ 2 and n odd, it does work for any
real huber n ≥ 2 different from an even natural. Since it is continuous on n, the expression
equation (32) can be used to obtain the values of f in the case of n is even by taking the
limit as n approaches any even natural, or by evaluating at a real number very close to the
desired even natural number.

D Power series representation of Kurtosis

Given (λ, σ2, ȳ) the kurtosis of the steady state price distribution can be written as:

Kur (∆pi) =
Q(0)

σ4

N(∆pi)
2

=
(λ/σ2)2 Q(0)

(L(φ, n))2
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where Q(y) is the expected fourth moment at the time of adjustment τ conditional on having
today a squared price gap y, i.e.
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where y(τ) is the value of the squared price gap at the stopping time and where, using
results from Alvarez and Lippi (2014), we have that Kur(∆pi|y) = 3n

(n+2) and the variance is

V ar (∆pi | ||p||2 = y) = y/n. Notice that for y ∈ [0, ȳ] the function Q(y) obeys the o.d.e.:
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�∞

i=0 ai(a0) ȳi = 3 ȳ2

(n+2)n . After tedious but
simple algebra this gives:

Q(0) = a0 =
3n

(n + 2)

�
σ2

λ

�2



φ2 +

�∞
i=3

��i
j=3

n
j[ n+2(j−1) ]

�
φi

1 +
�∞

i=1

��i
j=1

n
j[ n+2(j−1) ]

�
φi





where φ ≡ λȳ
nσ2 .

Replacing Q(0) into Kur (∆pi) =
(λ/σ2)

2
Q(0)

L2 and using equation (5) for L(φ, n) we get

Kur (∆pi) =
3n

(n + 2)




φ2 +

�∞
i=3

��i
j=3

n
j[ n+2(j−1) ]

�
φi

1 +
�∞

i=1

��i
j=1

n
j[ n+2(j−1) ]

�
φi








1 +

�∞
i=1

��i
j=1

n
j[ n+2(j−1) ]

�
φi

�∞
i=1

��i
j=1

n
j[ n+2(j−1) ]

�
φi





2

Thus

Kur (∆pi) =
3n

(n + 2)

�
φ2 +

�∞
i=3

��i
j=3

n
j[ n+2(j−1) ]

�
φi

� �
1 +

�∞
i=1

��i
j=1

n
j[ n+2(j−1) ]

�
φi

�

��∞
i=1

��i
j=1

n
j[ n+2(j−1) ]

�
φi

�2

(33)
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For future reference note that Kur (∆pi) /N (∆pi) =(1/λ)L(φ, n) Kur (∆pi) so

Kur (∆pi)

N (∆pi)
=

1

λ

3n

(n + 2)

�
φ2 +

�∞
i=3

��i
j=3

n
j[ n+2(j−1) ]

�
φi

�

�∞
i=1

��i
j=1

n
j[ n+2(j−1) ]

�
φi

Using that

i�

j=1

n

j [ n + 2 (j − 1) ]
=

(n/2)i

i!

i�

j=1

1�
n
2 + (j − 1)

� =
(n/2)i

i!

Γ
�

n
2

�

Γ
�

n
2 + i

�

we can write:

Kur (∆pi)

N (∆pi)
=

1

λ

3n

(n + 2)

�
φ2 + 2 Γ

�
n
2 + 2

� �
2
n

�2 �∞
i=3

1
i! Γ(n

2 +i)
(φn/2)i

�

Γ
�

n
2

� �∞
i=1

1
i! Γ(n

2 +i)
(φn/2)i

=
1

λ

3n

(n + 2)

2 Γ
�

n
2 + 2

� �
2
n

�2

Γ
�

n
2

�

�
(1/2)

�
1/Γ

�
n
2 + 2

�� �
n
2

�2
φ2 +

�∞
i=3

1
i! Γ(n

2 +i)
(φn/2)i

�

�∞
i=1

1
i! Γ(n

2 +i)
(φn/2)i

=
1

λ

12n

(n + 2)

2 (n/2 + 1) (n/2)

n2

�
1

2Γ(n
2 +2)

(φn/2)2 +
�∞

i=3
1

i! Γ(n
2 +i)

(φn/2)i

�

�∞
i=1

1
i! Γ(n

2 +i)
(φn/2)i

=
6

λ

�∞
i=2

1
i! Γ(n

2 +i)
(φn/2)i

�∞
i=1

1
i! Γ(n

2 +i)
(φn/2)i

So that

Kur (∆pi)

6 N (∆pi)
=

1

λ

�∞
i=2

1
i! Γ(n

2 +i)

�
λȳ
2σ2

�i

�∞
i=1

1
i! Γ(n

2 +i)

�
λȳ
2σ2

�i (34)

From there it is immediate that for a fixed n, this ratio is increasing in λȳ/σ2 and that
for a fixed λȳ/σ2, this ratio is increasing in n.

E Proof that limȳ→∞ ξ(σ2, r + λ, n, ȳ) = 0

Note that, by examining the definition of κi and the sums in the expression for ξ we have
that:

lim
ȳ→∞

ξ(σ2, r + λ, n, ȳ) = lim
ȳ→∞

ξ

�
1, 1, n,

(r + λ) ȳ

σ2

�

11



so this limit cannot depend on r + λ or σ2. Thus we denote it as:

ξ̄(n) ≡ lim
ȳ→∞

ξ(1, 1, n, ȳ)

So we have:

ȳ ≈ ψ

B
(r + λ)

�
1− ξ̄(n)

�
for large ψ .

Now we show that ξ̄(n) = 0. First we notice that the power series:

g(x) =
∞�

i=1

i�

s=1

1

(s + 2)(n + 2s + 2)
xi

converges for all values of x since its coefficients satisfy the Cauchy-Hadamard inequality.
Then we can write:

ξ(1, 1, n, ȳ) ≡
2(n+2)

ȳ
1

g(ȳ) + 1
g(ȳ) + 1

ȳ2

2(n+2)
ȳ

1
g(ȳ) + 2 1

g(ȳ) +
�∞

i=1 ω(i, ȳ) (2 + i)

where the weights ω(i, ȳ) are given by:

ω(i, x) =

xi
Qi

s=1(s+2)(n+2s+2)�∞
j=1

�j
s=1

1
(s+2)(n+2s+2) xj

Note that for higher x the weights of smaller i decrease relative to the ones for higher i. Now
since g(ȳ) →∞ as ȳ →∞, then:

ξ̄(n) =
1

limȳ→∞
�∞

i=1 ω(i, ȳ) (2 + i)

To show that ξ̄(n) = 0, suppose, by contradiction that is finite. Say, without loss of generality
that equals j + 2 for some integer j. Note that, by the form of the ω�s and because g(ȳ)
diverges as ȳ gets large enough, then by any j and � > 0 there exist a y∗ large enough so
that

�j
i=1 ω(i, ȳ) < � for any ȳ > y∗. Thus, the expected value must be larger than 2 + j.

Finally, we consider the case of n → ∞. In this case we have that, the value function
divided by n gives:

v = min
T

B

� T

0

σ2 t e−(λ+r) dt + e−(r+λ)T (Ψ + v)

where Ψ = limn→∞ ψ/n. The first order condition for T gives, for a finite T :

0 =
�
B σ2 T − (r + λ)Ψ

�
− (r + λ)e−(r+λ)T v (35)

Now consider the case where Ψ →∞. Note that v is finite since T = ∞, a feasible strategy
as a finite value. Also let Ȳ = σ2T = limn→∞

ȳ(n)
n . Note that as Ψ → ∞ then Ȳ must also

12



diverge towards ∞. Dividing the previous expression by Ψ:

Ȳ

Ψ
=

(r + λ)

B
+ (r + λ)e−(r+λ)T v

Ψ

and taking the limits:

lim
Ψ→∞

Ȳ

Ψ
=

r + λ

B
. �

F Note on Solutions of value function v(y), expected
time to adjust T (y) and invariant density of the squared
price gap f (y).

First we state a proposition which gives an explicit closed form solution to the value func-
tion v(y) in the inaction region, i.e. for y ∈ (0, ȳ) subject to v(0) < ∞. The solution is
parameterized by β0 = v(0).

Proposition 10 Let σ > 0. The ODE in equation (4) is solved by the analytical function:
v(y) =

�∞
i=0 βi yi , for y ∈ [0, ȳ] where, for any β0, the coefficients {βi} solve: β0 = nσ2

r β1,

β2 = (r+λ)β1−B
2σ2(n+2) , βi+1 = r+λ

(i+1)σ2 (n+2i) βi for i ≥ 2 .

The function described in this proposition allows to fully characterize the solution of the
firm’s problem. One can use it to evaluate the two boundary conditions described above,
value matching and smooth pasting, and define a system of two equations in two unknowns,
namely β0 and ȳ.

The alert reader may have noticed that to solve for the invariant density f we have
followed a standard procedure, i.e. set a 2nd order ordinary linear difference equation (the
Kolmogorov forward equation) and find its solutions in terms of two constant, and using two
boundary conditions to find the value of the constants. Instead to solve for v and T we have
followed a different approach, we guess an infinite expansion around y = 0 and compute
its coefficients. Additionally, it may have looked that we did not provide enough boundary
conditions to be able to solve for T and v. For instance, for T we gave only one equation
as boundary conditions, namely T (ȳ) = 0. Here we explain that we could have followed the
more standard route, which required an analysis of the behavior close to the y = 0 boundary,
to set one constant to zero and also would have produced a less informative result, i.e. one
in terms of modified Bessel functions. Nevertheless we include it here for completeness.

Note that v(y), T (y) and f(y) are solutions to a linear ODE on y whose homogeneous
component, say q(·), solves :

y q��(y) + a q�(y) + b q(y) = 0 (36)

for y ∈ [0, ȳ], for (different) constants a and b, with different particular solution, and different
boundary conditions. The general solution of the homogeneous equation (36) is given by:

q(y) = |b y|(1−a)/2
�
C1Iν

�
2
�
|b y|

�
+ C2Kν

�
2
�
|b y|

��
(37)
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provided that b y < 0, i..e. that b < 0, where C1 and C2 are arbitrary constants, ν = |1−a| and
where Iν and Kv are the modified Bessel functions of the first and second kind respectively.
The values of b = −λ/(2σ2) in the three cases. The value of a = n/2 for T and for v,
which are the same Kolmogorov backward equation, and a = −(n/2− 2) for f , which is the
Kolmogorov forward equation.

It is important to notice the behavior of Iν(z) and Kν(z) for values of 0 < z but very
close to zero. We have:

Iν � 1

Γ(ν + 1)

�z

2

�ν
(38)

and

Kν �
�

Γ(ν+1)
2

�
2
z

�ν
if ν > 0

− log(z/2)− γ if ν = 0
(39)

We thus have that each of the solution will behave as:

I|1−a|
�
y1/2

�
y(1−a)/2 � 1

Γ(|1− a|+ 1)

�
y1/2

2

�|1−a|

y(1−a)/2

=
1

Γ(|1− a|+ 1)

�
1

2

�|1−a|

y(1−a)/2+|1−a|/2

So if 1− a = −|1− a|, i.e. if 1− a ≤ 0, the value of this product is finite at y ↓ 0. Otherwise
it diverges to ∞. Likewise for ν = |1− a| > 0:

K|1−a|
�
y1/2

�
y(1−a)/2 � Γ(|1− a|+ 1)

2

�
2

y1/2

�|1−a|

y(1−a)/2

=
Γ(|1− a|+ 1)

2

�
2

1

�|1−a|

y(1−a)/2−|1−a|/2

So if 1− a = |1− a|, i.e. if 1− a ≥ 0, the value of this product is finite at y ↓ 0. Otherwise
it diverges to ∞. The case of ν = 0 i.e. a = 1 is special, but K0(z) also diverges and I0(z)
converges to a non-zero constant as z ↓ 0.

Note that v(0) and T (0) are both finite. For these two cases the Kolmogorov backward
equation has a = n/2 so 1 − a ≥ 0 iff n ≥ 2. In these cases we have that C2, the constant
associated with Kν must be zero. We can use the constant C1 to impose the boundary
condition T (ȳ) = 0 for T and to have a one dimensional representation of v in the range of
inaction given ȳ. Then we can use smooth pasting and value matching, i.e. two boundary
conditions, to find the constants C1 and ȳ.

Note that for f we don’t require that f(0) be zero, since the density at zero gap can be
infinite if the y mean reverts to zero fast enough. Thus in this case we will, in general, have
both constants be non-zero.
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G The price response to a monetary shock

To compute the IRF of the aggregate price level we find the contribution to the aggregate
price level of each firm at the time of the shock. They start with price gaps distributed
according to g, the invariant distribution. Then the monetary shock displaces them, by
subtracting the monetary shock δ to each of them. After that we divide the firms in two
groups. Those that adjust immediately and those that adjust at some future time. Note
that, for each firm in the cross section, it suffices to keep track only of the contribution to
the aggregate price level of the first adjustment after the shock because after that one the
future contributions are all equal to zero in expected value. Now we develop the notation to
define the impulse response of the aggregate price level.

Let g (p; n, λ/σ2, ȳ) be the density of firms with price gap vector p = (p1, ..., pn) at time
t = 0, just before the monetary shock, which corresponds to the invariant distribution with
constant money supply. The density g equals the density f of the steady state square norms
of the price gaps given by Lemma 2 evaluated at y = p2

1 + · · ·+ p2
n times a correction for area

of sphere and the different variables.38 In particular we have

g

�
p1, ..., pn ; n,

λ

σ2
, ȳ

�
= f

�
p2

1 + · · ·+ p2
n ; n,

λ

σ2
, ȳ

�
Γ (n/2)

πn/2 (p2
1 + · · ·+ p2

n)(n−2)/2
(40)

To define the impulse response we introduce two extra pieces of notation. First we let
{(p̄1(t, p), . . . , p̄n(t, p))} the process for n independent BM, each one with variance per unit
of time equal to σ2, which at time t = 0 start at p, so p̄i(0, p) = pi. We also define the
stopping time τ(p), also indexed by the initial value of the price gaps p as the minimum of
two stopping times, τ1 and τ2(p). The stopping time τ1 denotes the first time since t = 0 that
jump occurs for a Poisson process with arrival rate λ per unit of time. The stopping time
τ2(p) denotes the first time that ||p̄(t, p)||2 > ȳ. Thus τ(p) is the first time a price change
occurs for a firm that starts with price gap p at time zero. The stopped process p̄(τ(0), p) is
the vector of price gaps at the time of price change for such a firm.

The impulse response for the aggregate price level, of which Figure 9 displays several
cases, can be written as:

P(t, δ; σ,λ, ȳ) = Θ(δ; σ,λ, ȳ) +

� t

0

θ(δ, s; σ,λ, ȳ) ds , (41)

where Θ(δ) gives the impact effect, the contribution of the monetary shock δ to the aggregate
price level on impact, i.e. at the time of the monetary shock. The integral of the θ’s gives the
remaining effect of the monetary shock in the aggregate price level up to time t, i.e. θ(δ, s)ds
is the contribution to the increase in the average price level in the interval of times (s, s+ds)
from a monetary shock of size δ. Instead the functions θ and Θ are easily defined in terms
of the density g, the process {p̄} and the stopping times τ :

Θ(δ; σ, λ, ȳ) ≡
�

||p(0)−ιδ||≥ȳ

�
δ −

�n
j=0 pj(0)

n

�
g

�
p(0); n,

λ

σ2
, ȳ

�
dp1(0) · · · dpn(0)

38See Section 5 of Alvarez and Lippi (2014) for this result and the Online appendix for a derivation.
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Figure 9: CPI response to a monetary shock of size δ = 1%
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The figures represent an economy with N(∆pi) = 1.0 and std(∆pi) = 0.10.

and θ(δ, t; σ, λ, ȳ) is the density, i.e. the derivative with respect to t of the following expression:

�

||p(0)−ιδ||<ȳ

E
�
−

�n
j=0 p̄j (τ(p), p)

n
1{τ(p)≤t}

��� p = p(0)− ιδ

�
g

�
p(0); n,

λ

σ2
, ȳ

�
dp1(0) · · · dpn(0)

where ι is a vector of n ones. This expression takes each firm that has not adjusted price on
impact, i.e. those with p(0) satisfying ||p(0)− ιδ|| < ȳ, weights them by the relevant density
g, displaces the initial price gaps by the monetary shock, i.e. sets p = p(0) − ιδ, and then
looks a the (negative) of the average price gap at the time of the first price adjustment, τ(p),
provided that the price adjustment has happened before or at time t. We make a few remarks
about this expression. First, price changes equal the negative of the price gaps because price
gaps are defined as prices minus the ideal price. Second, we define θ as a density because,
strictly speaking, there is no effect on the price level due to price changes at exactly time t,
since in continuous time there is a zero mass of firms adjusting at any given time. Third, we
can disregard the effect of any subsequent adjustment because each of them has an expected
zero contribution to the average price level. Fourth, the impulse response is based on the
steady-state decision rules, i.e. adjusting only when y ≥ ȳ even after an aggregate shock
occurs.

Given the results in Proposition 3 -Proposition 4 we can parametrize our model either
in terms of (n, λ,σ2, ψ/B) or instead parametrize it, for each n, in terms of the implied
observable statistics (N(∆pi), Std(∆pi), �). These propositions show that this mapping is
indeed one-to-one and onto. We refer to � as an “observable” statistic, because we have
shown that the “shape” of the distribution of price changes depends only on it.
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Proposition 11 Fix an economy whose firms produce n products and with steady state statis-
tics (N(∆pi), Std(∆pi), �). The cumulative proportional response of the aggregate price level
t ≥ 0 periods after a once and for all proportional monetary shock of size δ can be obtained
from the one of an economy with one price change per period and with unitary standard
deviation of price changes as follows:

P (t , δ ; N(∆pi) , Std(∆pi)) = Std(∆pi) P
�

t N(∆pi) ,
δ

Std(∆pi)
; 1 , 1

�
. (42)

This proposition extends the result of Proposition 8 in Alvarez and Lippi (2014) to the
case of � ≡ λ/N(∆pi) > 0.39

Proof. (of Proposition 11). The proof proceeds by verification. It is made of three parts.
First we introduce a discrete-time, discrete-state version of the model. Second we show the
scaling of time with respect to Na , and finally the homogeneity of degree one with respect
to Std(∆pi) and δ. The step by step passages are reported in the online Appendix I.

The proposition establishes that the shape of the impulse response is completely deter-
mined by 2 parameters: n and �, whose comparative static is explored in Figure 9. Economies
sharing these parameters but differing in terms of N(∆pi) or Std(∆pi) are immediately an-
alyzed by rescaling the values of the horizontal and/or vertical axis. In particular, a higher
frequency of price adjustments will imply that the economy “travels faster” along the im-
pulse response function (this is the sense of the rescaling the horizontal axis). Instead, the
effect of a larger dispersion of price changes is seen by rescaling the monetary shock δ by
Std(∆pi) and by a proportional scaling of the vertical axis. A further simplification to the
last result is given by next corollary, showing that for small values of the monetary shocks
one can overlook the scaling by Std(∆pi) so that, for a given n and � determining the shape,
the most important parameter is the frequency of price changes N(∆pi):

Corollary 1 For small monetary shocks δ > 0, the impulse response is independent of
Std(∆pi). Differentiating equation (42) gives:

P (t , δ ; N(∆pi) , Std(∆pi) ) = δ
∂

∂δ
P (t N(∆pi) , 0 ; 1 , 1 ) + o(δ)

for all t > 0 and, since f(ȳ) = 0, then the initial jump in prices can be neglected, i.e.:

P (0 , δ ; N(∆pi) , Std(∆pi) ) ≡ Θn,� (δ; Std (∆pi)) = o(δ) .

H Fat-tailed shocks

This appendix compares the baseline multi-product model with random free adjustment
opportunities with an otherwise “equivalent” multi-product model with fat-tailed shocks to
costs. We present three propositions which show that:

39The proof in Alvarez and Lippi is constructive in nature, exploiting results from applied math on the
characterization of hitting times for brownian motions in hyper-spheres, which is not longer valid for λ > 0.
Here we use a different strategy which relies on limits of discrete-time, discrete state approximations.

17



1. If the fat-tailed shocks are sufficiently large, the threshold for adjustment is the same
as in the model with random free adjustment opportunities.

2. The distribution of price changes with fat-tailed shock is different, since it includes the
large shocks, and thus it contributes to kurtosis by mostly adding large price changes.

3. Since the model has more parameters, mainly the distribution of the fat-tailed shocks,
it can capture more behavior, or putt it differently it is hard to identify the parameters
with the same observations.

Set-up with fat-tailed shocks. Assume that the price gap for each product evolve as
follows:

dpi(t) = σ dWi(t) + ξi(t) dN (t) for i = 1, ..., n

where N (t) is the counter of a Poisson process with intensity λ ≥ 0. When dN (t) = 1,
the price gap has a change of size ξi. The vector ξ = (ξ1, ..., ξn), is drawn from a joint
distribution with cdf Q, assumed to be symmetric around zero. Furthermore we assume that
the marginal distribution of each of the coordinates of the vector ξ are identical. Each of the
Wi are standard BMs, independent across products i. The realization of the Poisson counter
N is common across the n products. This stylized set-up is meant to capture a generalization
(to any n ≥ 1) of the fat-tailed shocks in Midrigan’s (2011) model.

Value function. The state of the problem is p = (p1, ..., pn). For all p ∈ Rn the value
function must solve the variational inequalities:

r v (p1, ..., pn) ≤ B

�
n�

i=1

p2
i

�
+

n�

i=1

σ2

2
vii(p1, ..., pn) (43)

+ λ

�
· · ·

�
min {0 , ψ + v(0)− v (p1 + ξ1, ..., pn + ξn)} dQ (ξ1, · · · , ξn) ,

v (p1, ..., pn) ≤ v(0) + ψ . (44)

with at least one of the two inequalities holding as equality at each vector p ∈ Rn.
The variational inequality (43)-(44) has the advantage that it does not presume in the

form of the control and of the inaction region, which is a delicate issue for a stopping time
with fixed cost and jumps in the state. Nevertheless a function that solves this variational
inequality must be the solution of the problem.

This problem has more parameters. As in the problem with free adjustment opportuni-
ties we have one integer and four positive scalars: n, B, σ2, r, ψ. The new element on this
formulation is the function Q : Rn → [0, 1] for the distribution of the fat-tailed shocks.

No small fat-tailed shock. We assume that the shocks are bounded below. We consider
distributions where:

0 < ξ ≡ inf ||ξ|| : (ξ1, ..., ξn) ∈ supp Q and ξ �= 0 , (45)
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so that the minimization is on the support of Q for which not all the coordinates are equal
to zero. The assumption that ξ > 0 is very natural for the case of one product to capture
fat-tails. It is not clear what is the most natural generalization for multi-product case of
n > 1. Note that the assumption so far allows that the components of ξi to be independent
or not. In the case of independence, we can either assume that each coordinate of ξi as a
strictly positive support, or otherwise assume that there is a mass point at zero and that the
remaining of the support is strictly positive. In the latter case, the probability of the event
in which all the coordinates are simultaneously zero, can be ignored but suitable rescaling
λ.40

Simple threshold policies. We say that a firm follows a simple threshold policy if there
is a threshold ȳ > 0 for which the firm adjust its price the first time that ||p||2 ≥ ȳ reverting
its price gap to 0 in all components. Moreover, we require that the firm change prices every
time a fat-tailed shock arrives.

Note that a possibility is that for the general case of a stopping time with fixed cost and
jumps in the state there is the possibility that the optimal policy will be given by a inaction
region made of the union of disconnected sets, see Alvarez and Lippi (2013) for a discussion
and references on the applied math literature. The next lemma gives an intermediate step
to be used for the characterization of simple threshold policies in the proposition below. The
lemma finds a lower bound on the support of the shocks, relative to the threshold for the
norm of the state, so that the shocks will always take the post-shock state outside the region
where it is smaller than the threshold.

Lemma 5 Let p be a vector satisfying ||p||2 ≤ ȳ, and consider the size of the square norm
of the state after the occurrence of a large shock ||p + ξ||2. Then

||p + ξ||2 ≥ ȳ for all ξ for which ||ξ|| ≥
�
1 +

√
2
�√

ȳ .

The next proposition gives a straightforward way to characterize simple threshold policies.
It says that if the fat-tailed shocks are sufficiently large so that they always trigger an
adjustment, then one can use the same formulas than for the model with free adjustment
opportunities, for which we have a complete characterization of ȳ.

Proposition 12 Optimality of simple threshold policies for any n ≥ 1. Let ȳ ≥ 0 be the
optimal threshold for the problem with free adjustment opportunities at rate λ ≥ 0 but without
fat-tailed shocks. Then consider the problem with fat-tailed shocks ξ that occur with Poisson
rate λ ≥ 0 but without free adjustment opportunities. Assume that the support of the large
shocks satisfies ξ ≥

�
1 +

√
2
� √

ȳ. The optimal policy for this problem is a simple threshold
policy with the same value ȳ as in the problem with free adjustment opportunities.

The previous proposition highlights the similarities in the determination of the threshold
ȳ between random menu cost and fat-tailed shocks. We remark that even if the policy is not

40 Another case is the one in which only one product is subject to a large shock, a case we refer to a the
isolated shock case. This is equivalent to make the Poisson shock independent for the arrival of the large
changes to be independent across the n products.
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simple, under mild conditions (such as independence across products) it will be of threshold
type for the square norm of the vector; the difference is that characterization of the threshold
requires a different analysis. The following results explore the difference implications for price
changes for a given threshold.

Comparison of price changes. The distribution of price changes of a model with free-
adjusment opportunities and one with fat-tailed shocks are different. The main difference is
that in the fat tailed shock model considered above, every time that a ξ shock occur there
are (some) large change in prices. Thus, fat-tailed shocks contribute to kurtosis mostly by
having more frequent large shocks. Certainly, relative to the model with free-adjustment
opportunities they contribute more to large price changes than to small price changes. In
this context to have more frequent small price changes, the fat-tailed model relies on the
multi product features, as in Midrigan (2011), as can be easily seen in the version with n = 1
in which the fat-tailed model has no small price changes. This implies that the peakeadness
of the distribution of price changes around ∆p = 0 is mostly determined by the multi-product
feature of the model. For a more thorough analysis we need to add specify more about the
distribution Q.

Independent shock case. Assume that each of the component of ξi are independently
drawn, and that satisfy equation (45). Thus, without loss of generality, assume that ξi > 0
with probability one for each product i = 1, ..., n. Note that in this case the lower bound of
the support in each dimension satisfy:

ξ
i
≥

�
1 +

√
2
� �

ȳ/n (46)

Note that in this case it is possible to have, in some component, very small price changes
when there is a fat tail shock. Of course, if ξ

i
is large enough that is not possible. In this case

the marginal distribution is simpler to compute because it is the sum between the marginal
distribution in the model with free adjustment opportunities (conditional on ||p||2 < ȳ plus
the (marginal) distribution of ξi.)

Proposition 13 Assume that the fat-tailed shocks are independent across products and that
n ≥ 3. The resulting distribution of price changes is less peaked around small price changes
when compared with the model with the same value of λ describing the arrival of free ad-
justment opportunities. In particular the level of the density is smaller around zero and
the second derivative of this density around zero price changes is larger for the model with
fat-tailed shocks.

The proposition deals with the case of n ≥ 3 because for n = 2 the distribution does not
have a unique mode at ∆pi = 0, and indeed has density diverging to ∞ at values discreetly
away from ∆pi = 0.

Lack of identification. The version of the model we wrote has more parameters than
the equivalent model with free adjustment opportunities. In particular, there is a whole
new function Q. Because of this, without looking at more evidence it allows many more
possibilities. To illustrate this we take it to a extreme and show a lack of identification
result.
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Proposition 14 Let w be an arbitrary distribution of price changes. There are parameters
ψ and a function Q for which the model produces a distribution of price changes arbitrary
close to the w.

The proof of this proposition is trivial. Since we have shown that ȳ is decreasing in the
cost ψ and that ȳ tends to zero as ψ ↓ 0, then we let ξ be arbitrarily close to zero and allow
almost all the price changes to happen a the time of large shocks, i.e. we can set ∆pi = −ξ.
In other words, in a world with (almost) no menu cost, price changes will occur only because
there are cost changes, and they will mirror them. Note that his is consistent with few price
changes, because if cost changes happen infrequently so will price changes. This is clearly an
extreme result, but highlights the need to think about identification of the objects on this
version of the model.

Proofs.

Proof. (of Lemma 5)

||p + ξ||2 =
n�

i=1

(pi + ξi)
2 = ||p||2 + ||ξ||2 + 2

n�

i=1

ξi pi

≥ ||p||2 + ||ξ||2 − 2 ||p|| ||ξ||

where the inequality follows from the Cauchy-Schwarz inequality: |
�n

i=1 pi ξi| ≤ ||p|| ||ξ||.
Thus if ||p||2 ≤ ȳ and ||ξ|| ≥ κ

√
ȳ then

||p + ξ||2 ≥ ||p||2 + ||ξ||2 − 2 ||p|| ||ξ|| ≥ ||ξ|| (||ξ||− 2 ||p||)
≥ κ

√
ȳ

�
κ
√

ȳ − 2
√

ȳ
�

= ȳ κ (κ − 2)

Hence taking κ ≥ 1 +
√

2 we obtain the desired result. �

Proof. (of Proposition 12)We have shown that the solution of the value function for the
problem with free adjustment opportunities but without the large shocks can be obtained by
solving the value function v̂ and the simple policy given by threshold y so that:

(r + λ) v̂(p) = B ||p||2 +
σ2

2

n�

i=1

v̂ii(p) + λv̂(0) for all p : ||p||2 ≤ ȳ (47)

v̂(p) = v(0) + ψ , and v̂i(p) = 0 for all p : ||p||2 = ȳ (48)

Now consider the problem without free adjustment opportunities but with fat-tailed shocks.
We use a guess and verify strategy. The first part obtains a value function which satisfies
the pde in the inaction and the boundary conditions using the same threshold ȳ. Here we
use Lemma 5 which implies that every fat-tailed shocks takes the state out the inaction
region and hence leads to an adjustment. Then the value function in inaction and boundary
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conditions are:

(r + λ) v(p) = B ||p||2 +
σ2

2

n�

i=1

vii(p) + λ (v(0) + ψ) for all p : ||p||2 ≤ ȳ (49)

v(p) = v(0) + ψ , and vi(p) = 0 for all p : ||p||2 = ȳ (50)

That v solves equation (49) and equation (50) follows by setting v(p) = v̂(p) + a. The only
difference is that when the Poisson shock occurs the adjustment cost ψ is paid. Subtracting
one equation from the other in the inaction region:

(r + λ)a = λψ

so that a = −λψ/(r +λ) or v(p) = v̂(p)+λψ/(r +λ). Furthermore, the boundary conditions
are also satisfied since the constant either does not affect the derivative or cancel in both
sides of the equation. Finally, one can use the shape of the function v̂, which is increasing in
||p||2, to show that the variational inequalities (43)-(44) are satisfied. �

Proof. (of Proposition 13) The proof proceed by obtain an expression for the marginal
distribution of price changes for the case of fat-tailed shocks, and then examining both its
second derivative and its level around zero price changes. First, consider the price changes
conditional on ||p||2 = y < ȳ. This price changes have marginal distribution w̃(x; y). To
described this distribution we first introduce the distribution of the price gaps conditional on
the norm square just before the large shock. As shown in the body of the paper it is given
by

ω(xi; y) =
1

Beta
�

n−1
2 , 1

2

� √
y

�
1−

�
xi√
ȳ

�2
�(n−3)/2

(51)

In the case of fat-tailed shocks the price changes is the sum of the price gap before the shock
and the shock, namely xi + ξi and hence its distribution is given by:

w̃(∆pi; y) =

� ∞

−∞
ω(∆pi − x; y) q(x) dx

where q = Q�
i is the density of each of the coordinates of ξi. The second derivative of this

conditional density evaluated at zero is:

w̃��(0; y) =

� ∞

−∞
ω��(−x; y) q(x) dx =

� min{ξ
i
,
√

y}

−min{ξ
i
,
√

y}
ω��(−x; y) q(x) dx

= 2

� min{ξ
i
,
√

y}

0

ω��(x; y) q(x) dx > ω��(0; y) (52)

where the second equation use the symmetry of w̃ and of q around zero, as well as support
of pi and ξi. Note that for n = 3, the density w̃ is uniform, so its second derivative is zero
everywhere. For n ≥ 3 it has a peak at ∆pi = 0 with a strictly negative second derivative.
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For n ≥ 4 the distribution is concave and then convex. The last inequality uses the properties
described from w̃. The density of the distribution of price changes is given by

w(∆pi) = ω(∆pi; ȳ) (1− �) +

�� ȳ

0

w̃(∆pi; y)f(y)dy

�
� for n ≥ 2 . (53)

where we use the density of the price gaps f is independent of the fat-tailed shocks to price
gaps and where � has the same definition as in the body of the paper. Thus

w��(0) = ω��(0; ȳ) (1− �) +

�� ȳ

0

w̃��(0; y)f(y)dy

�
�

> ω��(0; ȳ) (1− �) +

�� ȳ

0

ω��(0; y)f(y)dy

�
� , (54)

and thus the second derivative is larger for the model with fat-tailed shocks.
Finally, the same steps imply that the level of the density at zero is smaller with fat-tailed

shocks, i.e.:

w(0) = ω(0; ȳ) (1− �) +

�� ȳ

0

w̃(0; y)f(y)dy

�
�

< ω(0; ȳ) (1− �) +

�� ȳ

0

ω(0; y)f(y)dy

�
� , (55)

since

w̃(0; y) =

� ∞

−∞
ω(−x; y) q(x) dx =

� min{ξ
i
,
√

y}

−min{ξ
i
,
√

y}
ω(−x; y) q(x) dx

= 2

� min{ξ
i
,
√

y}

0

ω(x; y) q(x) dx < ω(0; y) (56)

where we use that ω(·; y) is single peaked for n ≥ 3. �

I Discrete Time Formulation for Proposition 11.

We start with discrete time version of the process for price gaps, with length of the time
period ∆, which makes some of the arguments more accessible. Let N be

N(t + ∆) =

�
N(t) with probability (1− λ∆)

N(t) + 1 with probability λ∆
(57)

Thus, as ∆ ↓ 0 this process converges to a continuous time Poisson counter with instantaneous
intensity rate λ per unit of time. Let p̄i follow n drift-less random walks

p̄i(t + ∆, p) =

�
p̄i(t, p) + σ

√
∆ with probability 1/2

p̄i(t, p) − σ
√

∆ with probability 1/2
(58)
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where the initial condition satisfies:

p̄i(0) = pi for i = 1, .., n ,

and where the n random walks are independent of each other and of the Poisson counter. As
∆ ↓ 0 the process for p̄ converges to a Brownian motion whose changes have variance σ2 per
unit of time. We define the stopping time of the first price adjustment τ(p), conditional on
the starting at price gap vector p at time zero, as:

τ1 ≡ min {t = 0, ∆, 2∆, ... : N(j∆ + ∆)−N(j∆) = 1} ,

τ2(p) ≡ min

�
t = 0, ∆, 2∆, ... :

n�

i=1

(p̄i(j∆ + ∆, p))2 ≥ ȳ

�
and

τ(p) ≡ min {τ1 , τ2(p)} .

The function g is the density for the continuous time limit, i.e. the case where ∆ ↓ 0. For
small ∆, we can approximate the distribution of the fraction of firms with price gap vector p
as the product of the density g and a correction to convert it into a probability, i.e a fraction.
This gives:

g
�
p1, ..., p;n, λ/σ2, ȳ

� �
σ
√

∆
�n

where the last term uses that in each dimension price gaps vary discretely in steps of size
σ
√

∆. We can write the discrete time impulse response function as:

P(t, δ; σ,λ, ȳ, ∆) = Θ(δ; σ,λ, ȳ, ∆) +
t�

s=∆

θ(δ, s; σ, λ, ȳ, , ∆) ∆ ,

In this expression we can, without loss of generality, restrict t to be an integer multiple of
∆. We have divided the expression for θ by ∆, and hence multiplied its contribution back
by ∆ in P , so that it has the interpretation of the contribution per unit of time to the IRF
of price changes at time t, i.e. it has the units of a density. Moreover, in this manner the
term has a non-zero limit, and the expression in P converges to an integral. Thus we get the
P = limP(∆) as ∆ ↓ ∞. The functions θ and Θ are given by:

Θ(δ; σ,λ, ȳ, ∆) ≡
�

||p(0)−ιδ||≥ȳ

�
δ −

�n
j=0 pj(0)

n

�
g

�
p(0); n,

λ

σ2
, ȳ

� �
σ
√

∆
�n

, and

θ(δ, t; σ,λ, ȳ, ∆) ≡

− 1

∆

�

||p(0)−ιδ||<ȳ

E
��n

j=0 p̄j(t, p)

n
1{τ(p)=t}

��� p = p(0)− ιδ

�
g

�
p(0); n,

λ

σ2
, ȳ

� �
σ
√

∆
�n

Time scaling of the IRF with N(∆pi). For this (i) Note that if multiply the parameters
σ2 and λ by a constant k > 0, leaving ȳ unaltered, then N(∆pi)� = k N(∆pi), where primes
are used to denote the values that correspond to the scaled parameters. This follows directly
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from the expression we derive for N(∆pi) = 1/T (0) in Proposition 3. (ii) By Proposition 4
with these changes the distribution of price changes implied by (σ2, λ, ȳ) is exactly the same
as the one implied by (kσ2, kλ, ȳ). (iii) we change notation and write (σ2, λ, ȳ) instead of
(λ, σ2, ψ/B) and omit n. We establish that

Pn

�
t

k
, δ; kσ2, kλ, ȳ

�
= Pn

�
t, δ; σ2, λ, ȳ

�

We will do so by establishing this proposition for the discrete time version of the IRF. Yet
the result is immediate, since λ and σ2 are the only two parameters which are rates per unit
of time (the other parameters are n and ȳ), so by multiplying them by k we just scale time.
The details can be found in the discrete time formulation, whose notation we develop below.
We show that

P(t, δ; kσ2, kλ, ȳ, ∆/k) = P(t/k, δ; σ2, λ, ȳ, ∆) (59)

We will do so by establishing this proposition for the discrete time version of the IRF. Let
∆� = ∆ /k, σ�2 = σ2 k and λ� = λk. Note that, by construction σ�

√
∆� = σ

√
∆ and

λ�/(σ�)2 = λ/(σ)2. To establish this we first note that, for a given shock δ, Θ depends only
on n, ȳ, σ

√
∆, and λ/σ2. This is because the invariant density g and the scaling factor to

convert it into probabilities depends only on those parameters. Second we show that

t/k�

s=∆/k

∆

k
θ

�
s, δ; kσ2, kλ, ȳ,

∆

k

�
=

t�

s=∆

∆ θ (s, δ; σ, λ, ȳ, ∆)

This follows because for each s and p(0)

E
��n

j=0 p̄j (s, p)

n
1{τ(p)=s}

��� p = p(0)− ιδ ; σ,λ, ∆

�

= E
��n

j=0 p̄j

�
s
k , p

�

n
1{τ(p)= s

k}
��� p = p(0)− ιδ ; σ�, λ�, ∆�

�

where we include the parameters (λ, σ2, ∆) as argument of the expected values. This itself
follows because, using equation (57) and equation (58) then the processes for {p̄i} are the
same in the original time and in the time time scales by k since the probabilities of the
counter to go up λ�∆� = λ∆ and the steps of the symmetric random walks σ�

√
∆� = σ

√
∆

are the same in the original time and the time scaled by k. In particular we have that

p̄j

� s

k
, p; λ�, σ�2, ∆�

�
≡ p̄j

�
s

k
, p; kλ, kσ2,

∆

k

�
= p̄j

�
s, p; λ, σ2, ∆

�
= p̂

with exactly the same probabilities for each price gap p̂ ∈ R and each time s ≥ 0. Also, re-

peating the arguments used for Θ, we have g
�
p(0); n, λ

σ2 , ȳ
� �

σ
√

∆
�n

= g
�
p(0); n, λ�

σ�2 , ȳ
� �

σ�
√

∆�
�n

.
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Thus, since equation (59) holds for all ∆ > 0, taking limits

P
�

t

k
, δ; kσ2, kλ, ȳ

�
= lim

∆↓0
P

�
t

k
, δ; kσ2, kλ, ȳ,

∆

k

�
= lim

∆↓0
P

�
t, δ; σ2, λ, ȳ, ∆

�
= P

�
t, δ; σ2, λ, ȳ

�

Scaling of the IRF in the monetary shock with Std(∆pi). For this we use properties
of the invariant distribution f , which are then inherited by g. In particular, we will compare
the IRF with parameters (λ, σ2, ȳ) with one with parameters (λ�, σ�2, ȳ) where λ� = λ, σ�2 =
k σ2 and ȳ� = k ȳ. With this choice we have N(∆pi)� = N(∆pi) and thus � = λ�/N(∆pi)�

since λȳ/(nσ2) = λ�ȳ�/(nσ�2) (see Proposition 3). Then by Proposition 1 we have that
the standard deviation of price changes scales up with k, i.e.: Std(∆pi)� =

√
k Std(∆pi).

The main idea is that the invariant distribution corresponding to the � parameters is a
radial expansion of the original, so that

� y

0 f(x; λ, σ2, ȳ)dx =
� yk

0 f(x; λ�, σ�2, ȳ�)dx and thus
f(y, λ,σ2, ȳ) = kf(yk, λ�, σ�2, ȳ�). Indeed using Lemma 2 we have:

f

�
y;

λ

σ2
, ȳ

�
= k f

�
yk;

λ

kσ2
, kȳ

�
≡ k f

�
yk;

λ�

σ�2
, ȳ�

�
. (60)

Thus we have:

g

�
p1, ..., p;n,

λ

σ2
, ȳ

�
= f

�
p2

1 + · · ·+ p2
n; n,

λ

σ2
, ȳ

�
Γ (n/2)

2 πn/2 (p2
1 + · · ·+ p2

n)(n−2)/2
=

= kf

�
k(p2

1 + · · ·+ p2
n); n,

λ�

σ�2
, ȳ�

�
Γ (n/2) k(n−1)/2

2 πn/2 (k(p2
1 + · · ·+ p2

n))(n−2)/2

= g

�√
k(p1, ..., pn); n,

λ�

σ�2
, ȳ�

�
k(n−2)/2 k

Using this for the discrete time formulation we have:

g

�
p; n,

λ

σ2
, ȳ

� �
σ
√

∆
�n

= g

�√
k p; n,

λ�

σ�2
, ȳ�

� �
σ�
√

∆
�n

k(n−2)/2 k k−n/2

= g

�√
k p; n,

λ�

σ�2
, ȳ�

� �
σ�
√

∆
�n

Note that {||p(0)− ιδ|| ≥ ȳ} = {||
√

k p(0)− ι
√

k δ|| ≥
√

k ȳ} = {||
√

k p(0)− ιδ�|| ≥ ȳ�}. Also

�
δ −

�n
j=0 pj(0)

n

�
√

k =

�
δ� −

�n
j=0

√
k pj(0)

n

�
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Thus

√
k

�

||p(0)−ιδ||≥ȳ

�
δ −

�n
j=0 pj(0)

n

�
g

�
p(0); n,

λ

σ2
, ȳ

� �
σ
√

∆
�n

=
�

||
√

kp(0)−ιδ�||≥ȳ�

�
δ� −

�n
j=0

√
kpj(0)

n

�
g

�√
k p(0); n,

λ�

σ�2
, ȳ�

� �
σ�
√

∆
�n

Using the definition of Θ(·, ∆):

√
k Θ(δ; σ, λ, ȳ, ∆) = Θ

�√
k δ; kσ2, λ, kȳ, ∆

�
≡ Θ

�
δ�; σ�2, λ�, ȳ�∆

�
.

Since this holds for all ∆, by taking limits as ∆ ↓ 0, we have shown the desired result for
Θ. The result for θ follows the steps for g. We set ∆� = ∆ and note that for all p(0) ∈ Rn,
scaling factor k > 0 and time horizon s > 0:

√
k E

��n
j=0 p̄j (s, p)

n
1{τ(p)=s}

��� p = p(0)− ιδ ; σ,λ, ∆

�

= E
��n

j=0 p̄j (s, p)

n
1{τ(p)=s}

��� p =
√

k p(0)− ιδ� ; σ�, λ�, ∆

�
.

This follows because λ� = λ and σ�
√

∆� =
√

k σ
√

∆, thus the each p ∈ Rn the paths√
k p̄(s, p; σ, λ) = p̄(s,

√
kp; σ�, λ�) occur with the same probabilities.

J Detailed Proof. of Proposition 9.

Proof. (of Proposition 9.) In general we have δ = 2
�

ȳ/n, since for a shock of this size every
single firm for which ||p||2 = y ≤ ȳ before the shock will find that ||p− ιδ||2 ≥ ȳ, where ι is
a vector of ones. In particular we want to find out the smallest value of δ for which

||p− ιδ||2 = ||p||2 − 2 δ
�

i

pi + nδ2 ≥ ȳ

for any ||p||2 ≤ ȳ. Using that
�

i pi ≤ n
�

y/n for y = ||p||2 it is easy to establish the desired
result.

We can rewrite it as δ = 2
�

ȳ/n = 2
�

σ2/λ
√

φ, which gives an equivalent way to write
the expression for δ as

δ = Std(∆pi) 2

�
φ

L(φ, n)
where φ ≡ ȳ λ/(nσ2) .

where φ(n, �) ≡ ȳλ/(nσ2) a function that depends only on � and n, as shown in Proposition 3.
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Using Proposition 1 we have:

(N(∆pi)/λ) V ar(∆pi) = σ2/λ or σ2/λ = V ar(∆pi)/�

Combining the two equations we obtain the desired result.
Note that φ(�, n)/� = φ/L(φ, n). Since L(φ, n) is increasing in φ with limφ→∞ L(φ, n) = 1,

then lim�→1 φ(�, n)/� = ∞. To study the limit as � → 0, using the functional form of L, and
taking a Taylor expansion of L(φ, n) = φ + o(φ), thus

φ

L(φ, n)
=

φ

φ + o(φ)
=

1

1 + o(φ)/φ
,

and hence

lim
�→0

φ(�, n)

�
= lim

φ→0

φ

L(φ, n)
= 1 .

Omitting n to simplify the notation we have:

∂

∂φ

�
φ

L(φ)

�
=

1

L(φ)

�
1− L�(φ)φ

L(φ)

�

and rewriting L(φ) = g(φ)
1+g(φ) we obtain: L�(φ) = g�(φ)

[1+g(φ)]2 and thus

L�(φ)φ

L(φ)
=

g�(φ)

(1 + g(φ))2

(1 + g(φ))

g(φ)
φ =

g�(φ)

(1 + g(φ))

φ

g(φ)

since g(·) is convex and g(0) = 0 then 0 = g(0) ≥ g(φ) + g�(φ)(0 − φ) or g(φ) ≤ g�(φ)φ
L�(φ)φ
L(φ) ≤

1
1+g(φ) ≤ 1 and thus φ(�, n)/� is strictly increasing in � for all � ∈ (0, 1). �

K Proof of Lemma 3

Proof. (of Lemma 3.) We use the property of the n independent BM’s to write m as a
function of a pair (z, y), where z =

�
i pi, as well as to write g as a function of (z, y) only. If

each price gap follows an independent BM with common variance per unit of time σ2, then,
applying Ito’s Lemma one can show that the pair (y, z) follows:

dy(t) = nσ2dt + 2σ
�

y(t) dWa(t)

dz(t) =
√

nσ




z(t)�
n y(t)

dWa(t) +

����1−
�

z(t)�
n y(t)

�2

dWb(t)





where Wa,Wb are 2 standard (univariate) independent BM’s. So that E(dy)2 = 4σ2y dt ,
E(dz)2 = nσ2 dt, and E(dz dy) = 2σ2z dt.
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Figure 10: Minimum size of monetary shock for full price flexibility
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Hence we can write m̃(p1, ..., pn) = m̃ (||p||2,
�n

i=1 pi), in which case m̃ solves the PDE :

λm̃(z, y) = −z + m̃y(z, y)nσ2 + m̃zz(z, y)
nσ2

2
+ m̃yy(z, y)

4σ2y

2
+ m̃zy(z, y) 2σ2z

with boundary conditions: m̃(z, ȳ) = 0 . We guess, and verify, that m̃(z, y) = z κn(z) for
some function κn(·) and where for emphasis we include the subindex n indicating the number
of products. We then obtain:

λκn(y) = −1 + κ�n(y) (n + 2)σ2 + κ��n(y) 2 σ2 y

for all 0 ≤ y ≤ ȳ and κn(ȳ) = 0. Note that, except of the sign, this function obeys the same
ODE and boundary conditions than the one for the time until adjustment Tn+2(y), which we
solved to obtain L as if there were n + 2 products instead of n products, and hence we get:

κn(y) = −Tn+2(y) (61)

The joint density of the invariant distribution h(z, y) can be written as:

h(z, y) = s(z|y) f(y)

where f is the invariant distribution of y and s(z|y) is the density distribution of the sum of
the coordinates of a uniform distribution on an n dimensional hypersphere with square norm
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equal to y. In Alvarez and Lippi (2014) we have shown that this distribution is given by

s(z|y) =
1

Beta
�

n−1
2 , 1

2

� √
n y

�
1−

�
z

√
y n

�2
�(n−3)/2

for z ∈ (−√y n ,
√

y n) (62)

Thus we can write

M(δ) =
1

�

� ȳ

0

� √
ny

−√ny

1

n
m̃(z − nδ, y − 2zδ + nδ2) h(z, y) dz dy (63)

and where we can express the invariant distribution of (z, y) with density h. Differentiating
this expression w.r.t. δ and evaluating it at δ = 0:

M�(0) = − 1

n�

� ȳ

0

� √
ny

−√ny

�
n

∂m̃(z, y)

∂z
+

∂m̃(z, y)

∂y
2 z

�
h(z, y) dz dy

= − 1

n�

�� ȳ

0

n κn(y) f(y) dy + 2

� ȳ

0

κ�n(y)

� √
ny

−√ny

z2 s(z|y)dz f(y) dy

�
.

Integrating z2 w.r.t. s gives
� √ny

−√ny z2 s(z|y)dz = y so

M�(0) = − 1

n�

� ȳ

0

[ n κn(y) + 2 κ�n(y)y ] f(y) dy

=
1

�

� ȳ

0

�
Tn+2(y) +

2

n
T �

n+2(y) y

�
f(y) dy

where the last equality uses equation (61). �

L Proof of Lemma 4

Proof. (of Lemma 4) We can rewrite this expression as

λ Kur (∆pi)

6 N (∆pi)
=

�∞
i=1

Γ(n
2 +1)

i! Γ(n
2 +1+i)

�
λȳ
2σ2

�i 1
1+i

�∞
i=0

Γ(n
2 +1)

i! Γ(n
2 +1+i)

�
λȳ
2σ2

�i 1
1+i

=

�∞
i=1 γi

1
1+i�∞

i=0 γi
1

1+i

(64)

Thus the equation

λ Kur (∆pi)

6 N (∆pi)
=

� ȳ

0

�
λ

�
Tn+2(y) + T �

n+2(y) y
2

n

��
f(y) dy (65)
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is equivalent to:

�∞
i=1 γi

1
1+i�∞

i=0 γi
1

1+i

−
�∞

i=1 γi�∞
i=0 γi

= −
�∞

i=1 γi

�
1 + 2 i

n

�
�∞

i=0 γi

� ȳ

0

�
y

ȳ

�i

f(y) dy

We can write this equation as:

(
�∞

i=0 γi)
��∞

i=1 γi
1

1+i

�
− (

�∞
i=1 γi)

��∞
i=0 γi

1
1+i

�
��∞

i=0 γi
1

1+i

�
(
�∞

i=0 γi)

= −
�∞

i=1 γi

�
1 + 2 i

n

�
�∞

i=0 γi

� ȳ

0

�
y

ȳ

�i

f(y) dy

or

(γ0 +
�∞

i=1 γi)
��∞

i=1 γi
1

1+i

�
− (

�∞
i=1 γi)

�
γ0 +

�∞
i=1 γi

1
1+i

�
�∞

i=0 γi
1

1+i

= −
� ∞�

i=1

γi

�
1 +

2 i

n

�� � ȳ

0

�
y

ȳ

�i

f(y) dy

or

γ0

��∞
i=1 γi

1
1+i

�
− (

�∞
i=1 γi) γ0�∞

i=0 γi
1

1+i

= −
� ∞�

i=1

γi

�
1 +

2 i

n

�� � ȳ

0

�
y

ȳ

�i

f(y) dy

and using that γ0 = 1 and rearranging:

∞�

i=1

γi
1

1+i�∞
j=0 γj

1
1+j

i =

� ∞�

i=1

γi

�
1 +

2 i

n

�� � ȳ

0

�
y

ȳ

�i

f(y) dy (66)

Using the expression for f , and solving the integrals of terms by term we have:

∞�

j=1

γj
1

1+j�∞
s=0 γs

1
1+s

j =
∞�

j=1

γj

�
1 +

2 j

n

�
× (67)









�
λȳ
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λȳ
2σ2

�i









31



canceling the values of ȳ, and defining

ξi =
1

i! Γ
�
i + n

2

�
�

λȳ

2σ2

�(n
2 +i−1)

and ρi =
1

i! Γ
�
i + 2− n

2

�
�

λȳ

2σ2

�i

∞�

j=1

γj
1

1+j�∞
s=0 γs

1
1+s

j =
∞�

j=1

γj

�
1 +

2 j

n

�
× (68)

���∞
i=0 ξi

1
n
2 +i+j�∞

i=0 ξi
−

�∞
i=0 ρi

1
i+1+j�∞

i=0 ρi

� � ��∞
i=0 ξi

1
n
2 +i�∞

i=0 ξi
−

�∞
i=0 ρi

1
i+1�∞

i=0 ρi

��

M Detailed Proof. of Proposition 8.

First we turn to the steady state firm’s problem considered in Section 3.2. In that firm’s
problem we use the same discount rate r for any inflation rate µ. The reason for this is
that the period return function is itself normalized by nominal wages which we assume that
growth at a constant rate µ and that the nominal rate is equal to r + µ, so that these two
effect cancel. The price gap pi is a real quantity, the difference between the ideal markup
and the current markup, and has drift equal to minus the inflation rate due to the increase
in the nominal wages. The period return is still B||p||2 ≡ B y, but each of the product’s
price gap evolve as dpi(t) = −µ dt + σ dWi(t). In this problem it is not longer true that y is
sufficient to index the state of the firm’s problem, since the distribution of y(t+dt) cannot be
computed only knowing y(t). While in Alvarez and Lippi (2014) we show that one can take
the state to be (y, z) where z is the sum of the price gaps: z =

�n
i=1 pi, for the arguments

here we keep the entire price gap vector p ∈ Rn as the state. In this case the inaction set is no
longer a hyper-sphere, nor is the optimal return point to set a zero price gap for each of the
products. We let I(µ) ⊂ Rn be the inaction set –so the firm adjust only if it receives a free
adjustment opportunity or if it exist the inaction set. We regard I(z) as a correspondence
parametrized by µ, and let p̂(µ) ∈ Rn be the optimal return point -which is identical across
all products- a function parametrized by µ. Note that for any rectangle ⊂Rn the uncontrolled
price gaps satisfy that Pr {p(t)− p(0) ∈ p |µ} = Pr {−(p(t)− p(0)) ∈ p | − µ}. This equality
uses that the increments of a standard brownian motion are normally distributed. Using this
property, and the symmetry around zero of the period return function, it is easy to show that
p̂(µ) = −p̂(µ). Also, one can see that if p ∈ I(µ) then it must be the case that −p ∈ I(−µ).
From these two properties of the decision rules one concludes that N(∆pi)(µ) and that any
even centered moment of the distribution of the price changes, and hence its ratio such as
kurtosis Kur(∆pi; µ), is symmetric around µ = 0. The same property is shown in Alvarez,
Lippi, and Paciello (2011) for a closely related model. Likewise, the (negative) symmetry of
M)(δ, µ) follows by considering first the invariant distribution of price gaps, and then the
dynamics of each one. For the invariant distribution of price gaps as defined in Section G,
whose density is denoted by g(p; µ), we note that g(p; µ) = g(−p;−µ) –where we now indexed
the density only by the inflation rate µ, allowing the optimal decision rule to change with
it. Following the same steps we can construct the impulse response of prices P(t, δ; µ) which
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we index in the same way as the density. We define this impulse response as the change in
price level t periods after a once and for all shock δ to the path of the level of money that
has occurred to an economy starting at the steady state distribution of price gaps. The price
level is in P(δ, t; µ) is measured relative to what the prices would have been absence of a
shock, where they would have been rising at a constant rate µ. Using the results previously
established we have: P(t,−δ;−µ) = −P(t, δ; µ). Using this property of the impulse response
of the price level into definition of M in equation (15), we obtain the desired (negative)
symmetry of this function.

Second, we sketch the differences in the GE set-up when µ �= 0. In this case the same
arguments yields that both nominal interest rates and wages growth at a constant rate µ
independently of the distribution of prices at time zero. Additionally, the nominal profit
function of the firm, once we replace the first order condition for the households for con-
sumption, labor, and money, can be written as a function of the price gap (i.e. the deviation
relative to the markup that maximizes static profits) and the period nominal wages. Hence,
one can approximate the real profits (deflated by the money supply) in the same way as
with zero inflation, obtaining the same second order approximation. Finally, the result in
Proposition 7 in Alvarez and Lippi (2014) which states that GE feedback effects are of order
higher than second order in the firm’s problem applies almost with no changes.

N Power series representation of Tn+2 + T �n+2 y (2/n)

Lemma 3 shows that ∂m/∂δ can be written in terms of Tn+2, the expected time until a
price adjustment, as characterized in Proposition 3. In that proof we obtain the power series
representation

Tn+2(y) =
∞�

i=0

αi, n+2 yi

with

α1,n+2 =
1

(σ2/λ)(n + 2)
α0,n+2 −

1

σ2(n + 2)
=

1

(σ2/λ)(n + 2)

�
α0,n+2 −

1

λ

�

and for i ≥ 1:

αi+1, n+2 =
αi, n+2

(i + 1) (σ2/λ) (n + 2 + 2i)
=

αi, n+2

(i + 1) (σ2/λ) (n/2 + 1 + i)

1

2

�
α0,n+2 −

1

λ

�
.

and using the properties of the Γ function:

αi, n+2 =
Γ

�
n
2 + 1

�

i! Γ
�

n
2 + i + 1

�
�

λ

2σ2

�i �
α0,n+2 −

1

λ

�

Note that Tn+2(0) = α0, n+2
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Given the power series representation we have for all y ∈ [0, ȳ]:

Tn+2(y) + T �
n+2(y) y
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i=0

αi, n+2
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1 + i
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Note that α0,n+2 = Tn+2(0) with
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Thus we have:
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(69)

We can write this as:

λ
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n+2(y) y
2
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=

�∞
i=1 γi�∞
i=0 γi

−

�∞
i=1 γi

�
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where

γi =
Γ
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2 + 1

�

i! Γ
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�
�

λȳ

2σ2
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(71)
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O Details of the solution for the model with n = 1

Integrating the Bellman equation gives the following value function

V (p) =
Bp2 + λV (0)

λ + r
+

Bσ2

(λ + r)2
+ C

�
ep

q
2(λ+r)

σ2 + e−p
q

2(λ+r)

σ2

�

where we already used that V (p) = V (−p). Notice that the value function has a minimum
(and zero derivative) at p = 0, which is the optimal return point. The constant C and the
threshold value p̄ are the values that solve the 2 equation system given by the value matching
condition and the smooth pasting conditions.

The expected time to adjustment, T (p) obeys the differential equation λT (p) = 1 +
σ2

2 T ��(p) with boundary condition T (p̄) = 0. Given the symmetry of the law of motion for p,

the function is symmetric, i.e. T (p) = T (−p). Integrating gives T (p) = 1
λ

�
1− e

√
2λ
σ2 p

+e
−
√

2λ
σ2 p

e

√
2λ
σ2 p̄

+e
−
√

2λ
σ2 p̄

�
.

The distribution of price gaps g(p) satisfies the Kolmogorov forward equation 0 = −2λ
σ2 g(p)+

g��(p) for 0 < |p| ≤ p̄. The density is symmetric, g(p) = g(−p), and satisfies the boundary
conditions: g(p̄) = 0 and it integrates to one i.e. 2

� p̄

0 g(p) dp = 1 where we used that it is
symmetric.41

P M and kur (∆pi) for n = 1 and n = ∞
This section discusses two limiting cases for which a tractable closed form expression can
be derived which bracket the possible range of output effects. For each case we derive the
implications for the cumulative output effect while considering the full range of values for
� ∈ (0, 1) and keeping the frequency and variance of price changes constant. We begin by
stating the main results:

M�(0) =






1
� N(∆pi)

(e
√

2φ+e−
√

2φ)(e
√

2φ+e−
√

2φ−2(1+φ))
(e
√

2φ+e−
√

2φ−2)
2 where � = e

√
2φ+e−

√
2φ−2

e
√

2φ+e−
√

2φ and n = 1

1
� N(∆pi)

�
1−(1+φ)e−φ

(1−e−φ)
2

�
where � = 1− e−φ and n →∞

where different values of φ map monotonically into the fraction of free adjustments � as shown
in the display. We find the n → ∞ case interesting because of its tractability and because,
as shown in Figure 5, it provides a benchmark for the cases where n is high (e.g. n ∼= 10).

41The first boundary can be derived as the limit of the discrete time, discrete state, low of motion where
each period is of length ∆ and where p increases or decreases with probability 1/2, so that g(p) = 1

2g(p +
∆) + 1

2g(p −∆). At the boundary p̄ this law of motion is g(p̄) = 1
2g(p̄ −∆), which shows that g(p̄) ↓ 0 as

∆ ↓ 0 .
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P.1 Analytical computation of M in the case of n = 1

We give an analytical summary expression for the effect of monetary shocks in two interesting
cases, those for one product, i.e. n = 1, and those for the large number of product, i.e. n = ∞.
The summary expression is the area under the impulse response for output, i.e. the sum of
the output above steady state after a monetary shock of size δ > 0, which we denote as:

Mn(δ) = (1/�)

� ∞

0

[δ − Pn(δ, t)] dt (72)

where � is a the reciprocal of intertemporal elasticity of substitution, and where Pn(δ, t) is
the cumulative effect of monetary shock δ in the (log) of the price level after t periods. For
large enough shocks, given the fixed cost of changing prices, the model display more price
flexibility. Because of their preminence in the literature, and because of realism, we consider
the case of small shocks δ by taking the first order approximation to equation (72), so we
consider Mn(δ) ≈M�

n(0)δ.
For the case of n = 1 we obtain an analytical expression which, after normalizing by

N(∆pi) depends only on λ/N(∆pi). Thus as λ/N(∆pi) ranges from 0 to 1 the model ranges
from a version of the menu cost model of Golosov and Lucas to a version using Calvo pricing.
The analytical expression is based upon the following characterization:

M1(δ) = (1/�)

� p̄−δ

−p̄

m(p0) g(p0 + δ) dp0 (73)

where p0 is the price gap after the monetary shocks and where m(p) gives the contribution
to the area under the IRF of firms that start with price gap, after the shock, equal to p0.
Since the monetary shock happens when the economy is in steady state, the distribution
right after the shock has the steady state density h displaced by δ. Immediately after the
shock the firms with the highest price gap have price gap p̄ − δ. Note that the integral in
equation (73) does not include the firms that adjust on impact, those that before the shock
have price gaps in the interval [−p̄, p̄− δ), whose adjustment does not contribute to the IRF.
The definition of m is:

m(p) = −E
�� τ

0

p(t) dt
�� p(0) = p

�
(74)

where τ is the stopping time denoting the first time that the firm adjusts its price. This
function gives the integral of the negative of the price gap until the first price adjustment.
This expression is based on the fact that those firms with negative price gaps, i.e. low
markups, contribute positively to output being in excess of its steady state value, and those
with high markups contribute negatively. Given a decision rule summarized by p̄ we can
characterize m as the solution to the following ODE and boundary conditions:

λm(p) = −p +
σ2

2
m��(p) for all p ∈ [−p̄, p̄] and m(p) = 0 otherwise . (75)
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The solution for the function m is:

m(p) = −p

λ
+

p̄

λ

�
e
√

2φ p
p̄ − e−

√
2φ p

p̄

e
√

2φ − e−
√

2φ

�
for all p ∈ [−p̄ , p̄] . (76)

φ ≡ λp̄2/σ2. We have then:

M(δ) ≈M�(0)δ = (δ/�)

� p̄

p̄

m(p) g�(p) dp = (δ/�) 2

� p̄

0

m(p) g�(p) dp (77)

since m(p̄)g(p̄) = 0. The last equality uses that m is negative symmetric, i.e. m(p) =
−m(−p), and that g is symmetric around zero. Using the expression for g in Section 3.1

g�(p) = − 2φ

2p̄2
�
e
√

2φ − 1
�2

�
e
√

2φ(2− p
p̄) + e

√
2φ p

p̄

�
for p ∈ [0, p̄] .

we obtain:

M�(0)δ =

�
δ

�

�
−2φ

λ
�
e
√

2φ − 1
�2

�
e
√

2φ
�
2 + 2φ− 2 cosh

�√
2φ

��

2φ

�

=

�
δ

�

�
−2

λ
�
e
√

2φ − 1
�2

�
e
√

2φ

�
1 + φ− e

√
2φ + e−

√
2φ

2

��

Using the expression for N(∆pi) for the n = 1 and simple algebra we can rewrite it as:

M�(0)δ =

�
δ

�

�
1

N(∆pi)

e
√

2φ + e−
√

2φ

�
e
√

2φ + e−
√

2φ − 2
�2

�
e
√

2φ + e−
√

2φ − 2− 2φ
�

(78)

which yields the cumulative output effect of a small monetary shock of size δ.42

Kurtosis. We now verify that the expression can be equivalently obtained by computing
the kurtosis, as stated in Proposition 7. For notation convenience let x ≡

√
2φ. Using the

distribution of price changes derived in Section 3.1 and the definition of kurtosis we get

Kur (∆pi) =

2�

�
12
x4 − 12+x2

x2(ex/2−e−x/2)
2

�
+ 1− �

�
2�

�
1
x2 + 1

2−e−x−ex

�
+ 1− �

�2 =
12− 12x2+x4

(ex/2−e−x/2)
2 + x4 1−�

2�

2�
�
1 + x2

2−e−x−ex + x2 1−�
2�

�2

42As a check of this formula compute the case for φ = 0, i.e. the cumulative output for the Golosov-Lucas
model. In this case we let λ = 0 and p̄ > 0. In this case we have: m(p) = − p̄2 p

3σ2 + p3

3σ2 . Also g�(p) = −1/p̄2

for p ∈ (0, p̄], so we have:

M�(0)δ =
�

δ

�

�
2

−3σ2p̄2

� p̄

0

�
−p̄2p + p3

�
dp =

�
δ

�

�
−2

3σ2p̄2

�
− p̄4

2
+

p̄4

4

�
=

�
δ

�

�
2p̄2

3σ2

2
8

=
�

δ

�

�
1

N(∆pi)
1
6

which is the same value obtained by taking the limit for φ → 0 in the general expression above.
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Recall from Section 3.1 that � = ex+e−x−2
ex+e−x so that , after some algebra

Kur (∆pi) = 6
ex + e−x

(ex + e−x − 2)2

�
ex + e−x − 2− x2

�

It is immediate that the kurtosis and the cumulative effect on output shown in equa-
tion (78) satisfy Proposition 7.

P.2 Analytical computation of M in the case of n = ∞
Define

Yn(t, δ) ≡ 1

n

n�

i=1

[pi(t)− δ] = Yn(t, 0)− 2δ

�n
i=1 pi(t)

n
+ δ2 .

where the pi(t) are independent of each other, start at pi(0) = 0 and have normal distribution
with E [pi(t)] = 0 and V ar [pi(t)] = σ2t. Then, by an application of the law of large numbers,
we have:

Y∞(t, δ) = Y∞(t, 0) + δ2 = tσ2 + δ2

Letting Ȳ ≡ limn→∞ ȳ(n)/n we can represent the steady state optimal decision rule as
adjusting prices when t, the time elapsed since last adjustment, attains T = Ȳ /σ2. We
compute the density of the distribution of products indexed by the time elapsed since the
last adjustment t and, abusing notation, we denote it by f . This distribution is a truncated
exponential with decay rate λ and with truncation T , thus the density is:

f(t) = λ
e−λ t

1− e−λT
for all t ∈ [0, T ] .

The (expected) number of price changes per unit of time is given by the sum of the free
adjustments and the ones that reach T , so

N(∆pi) = λ + f(T ) = λ

�
1 +

e−λ T

1− e−λT

�
=

λ

1− e−λT

Note that, using the definition of T given above, λT = Ȳ λ/σ2 the parameter which indexes
the shape of f and of the distribution of price changes. Since this figures prominently in this
expressions we define:

φ ≡ λ T =
Ȳ λ

σ2
.

which is consistent with the definition of φ in Proposition 3. Using this definition we get:

� =
λ

N(∆pi)
= 1− e−φ and thus N(∆pi) =

λ

1− e−φ

Impulse Response of Prices to a monetary Shock. We can now define the impulse
response. Note that after the monetary shock firms that have adjusted their prices t periods
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ago, in average will adjust their price up by δ. This highlights that as n → ∞ there is no
selection.

Now we turn to the characterization of the impact effect Θ. In this case we have

Y∞(t, δ) = Y∞(t, 0) + δ2 = tσ2 + δ2 ≥ Ȳ = σ2T ⇐⇒ t ≥ T − δ2/σ2 .

Thus the impact effect is:

Θ(δ) = δ

� T

T−δ2/σ2

f(t)dt = δ
e−λT+ λ

σ2 δ2 − e−λT

1− e−κ
= δ

e−κ+ λ
σ2 δ2 − e−κ

1− e−κ

Using that N(∆pi)V ar(∆pi) = σ2 we can write:

Θ(δ) = δ + δ
e−κ+ λ

N(∆pi)
δ2

V ar(∆pi) − 1

1− e−κ
= δ + δ

�
1− λ

N(∆pi)

�
e

λ
N(∆pi)

δ2

V ar(∆pi) − 1

λ/N(∆pi)

Note that

lim Θ(δ) =





δ
�

δ
Std(∆pi)

�2
as λ/N(∆pi) → 0

0 as λ/N(∆pi) → 1

and in general

Θ(δ)

∂(λ/N(∆pi))
= δ

e
λ

N(∆pi)
δ2

V ar(∆pi)

�
δ2

V ar(∆pi)
λ

N(∆pi)

�
1− λ

N(∆pi)

�
− 1

�
+ 1

(λ/N(∆pi))2
< 0

whenever δ < 2 Std(∆pi).

θ(t) = δe−λt

�
f

�
T − δ2/σ2 − t

�
+ λ

� T−δ2/σ2−t

0

f(s)ds

�

= δe−λt

�
λ

e−λ(T−δ2/σ2−t)

1− e−λT
+ λ

� T−δ2/σ2−t

0

λ
e−λs

1− e−λT
ds

�

= δe−λt

�
λ

e−λ(T−δ2/σ2−t)

1− e−λT
+ λ

1− e−λ(T−δ2/σ2−t)

1− e−λT

�

= δ
λe−λt

1− e−λT

�
e−λ(T−δ2/σ2−t) + 1− e−λ(T−δ2/σ2−t)

�

= δ
λe−λt

1− e−λT

We can interpret θ(t)dt as θ(t) times the number of firms that adjust its price at times (t, dt).
This is the sum of two terms. The first term is the fraction that adjust because they hit the
boundary between t and t + dt. The second term is the fraction that have not yet adjusted
times the fraction that adjust, λdt due to a free opportunity. Both terms are multiplied by
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e−λt to take into account those firms that have received a free adjustment opportunity before
after the monetary shock but before t.

Thus we have:

P∞(t, δ) = Θ(δ) + δ

� t

0

λe−λs

1− e−λT
ds = Θ(δ) + δ

1− e−λt

1− e−λT
= Θ(δ) + δ

1− e−
λ

N(∆pi)
t N(∆pi)

1− e−κ

= Θ(δ) + δ
1− e−

λ
N(∆pi)

t N(∆pi)

λ/N(∆pi)

Using P∞ we can compute the IRF for output, and a summary measure for it, namely
the area below it:

M∞(δ) =
1

�

� T

0

[δ − P∞(δ, t)] dt ≈ δ
1

�

� T

0

�
1− 1− e−λt

1− e−λT

�
dt

=
δ

�

�
T − T

1− e−λT
+

1

λ

�
=

δ

�

�
−T

e−λT

1− e−λT
+

1

λ

�

=
δ

�

1− e−λT

λ

1

1− e−λT

�
−λT

e−λT

1− e−λT
+ 1

�

=
δ

� N(∆pi)

1

1− e−φ

�
1− φ

e−φ

1− e−φ

�
=

δ

� N(∆pi)

�
1− (1 + φ) e−φ

(1− e−φ)2

�

where the approximation uses the expression for small δ, i.e. its first order Taylor’s expansion.

Kurtosis. For completeness we also include here an expression for the kurtosis of the
distribution of price changes in the case of n = ∞. Price changes are distributed as:

E
�
(∆pi)

2
�

= σ2/N(∆pi) =
σ2

λ

λ

N(∆pi)
=

Tσ2

Tλ

λ

N(∆pi)
= Tσ2 1

Tλ

λ

N(∆pi)

E
�
(∆pi)

4
�

= 3
λ

N(∆pi)

� T

0

(σ2t)2λe−λt

1− e−λT
dt +

�
1− λ

N(∆pi)

�
3
�
σ2T

�2

= 3σ4

�
λ

� T

0

t2e−λtdt +

�
1− λ

N(∆pi)

�
T 2

�

= 3σ4T 2

�
2− e−λT (λT (λT + 2) + 2)

(Tλ)2 +

�
1− λ

N(∆pi)

��
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Kurtosis is then given by:

E [(∆pi)4]

(E [(∆pi)2])2 = 3

2−e−λT (λT (λT+2))

(Tλ)2
+

�
1− λ

N(∆pi)

�

�
1

Tλ

�2
�

λ
N(∆pi)

�2 = 3
2− e−λT (λT (λT + 2) + 2) + (Tλ)2

�
1− λ

N(∆pi)

�

�
λ

N(∆pi)

�2

= 3

�
2− e−λT 2λT − e−λT 2

�
�

λ
N(∆pi)

�2 = 6

�
1− e−λT (1 + λT )

�
�

λ
N(∆pi)

�2 = 6
1− e−λT (1 + λT )

(1− e−λT )2

= 6
1− e−φ (1 + φ)

(1− e−φ)2

It is immediate to use the expression for kurtosis and the one above for M∞(δ) to verify
Proposition 7.

Q Special case of Proposition 7 for � = 0.

For � = 0, or equivalently λ = 0, we use the result in Alvarez and Lippi (2014) for

Tn+2(y) =
ȳ − y

(n + 2)σ2

gives:

M�(0) =
1

n�

� ȳ

0

�
n(ȳ − y)− 2y

(n + 2)σ2

�
f(y) dy

and using the following expression for f from Alvarez and Lippi (2014) :

f(y) =
1

ȳ
[log(ȳ)− log(y)] if n = 2, and

f(y) = (ȳ)−
n
2

�
n

n− 2

� �
(ȳ)

n
2−1 − (y)

n
2−1

�
otherwise (79)

gives that:

M�(0) =
1

n�

2 ȳ n(n− 2)

(n2 − 4)σ2
=

1

�

n(n− 2)

2 (n2 − 4)

1

[σ2/(ȳ/n)]
=

1

�

n(n− 2)

2 (n− 2)(n + 2))

1

[σ2/(ȳ/n)]

=
1

�

n

2 (n + 2))

1

N(∆pi)
=

1

�

3n

(n + 2)

1

6N(∆pi)
=

1

�

Kurt(∆pi)

6 N(∆pi)

since for λ = 0 then Kurt(∆pi) = 3n/(n+2) and N(∆pi) = σ2/(ȳ/n) we verified the equality
in Proposition 7.
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R Aggregation of heterogenous sectors

Assume that there are S sectors, each with an expenditure weight e(s) > 0, and with different
parameters so that each have N(s) price changes per unit of time, and a distribution of price
changes with kurtosis Kur(s). In this case, after repeating the arguments above for each
sector and aggregating, we obtain that the area under the IRF of aggregate output for a small
monetary shock δ is

M(δ) ∼= δM�(0) =
δ

6 �

�

s∈S

e(s)

N(s)
Kur(s) =

δ

6 �
D

�

s∈S

d(s) Kur(s) (80)

where D is the expenditure-weighted average duration of prices D ≡
�

s∈S
e(s)
N(s) and the

d(s) ≡ e(s)
N(s)D are weights taking into account both relative expenditures and durations. In

the case in which all sectors have the same durations then d(s) = e(s) and M is proportional
to the kurtosis of the standardized data. Likewise, the same result applies if all sectors have
the same kurtosis.43 In general, if sectors are heterogenous in the durations (or expenditures),
then the kurtosis of the sectors with longer duration (or expenditures) receive a higher weight
in the computation ofM. For the French data, computation of the duration weighted kurtosis
in equation (80) results in an increase of the order 15%, reflecting a correlation between
kurtosis and duration of the same magnitude.

S A model with random cheap adjustment

This version of the model assumes that with probability λ per unit of time the menu cost is
smaller than the regular adjustment, namely that it costs b ψ with b ∈ (0, 1). For simplicity
we kept the analysis of the model with one product, i.e. n = 1.

Firm’s problem. The firm’s optimal policy now involves two thresholds: 0 < p < p̄. If the
price gap is small, i.e. if |p| ∈ [0, p] the firm optimally decides not to adjust the price, even if
an opportunity for cheap adjustment occurs. If the price gap is large, i.e. if |p| ∈ [p, p̄), the
firm adjusts the price only if a cheap adjustment opportunity arises. As in the case where
b = 0, the firm adjust its price the first time that |p| reaches p̄.

Given the values of two thresholds p, p̄, the value function v can be describe as two
functions holding in each segment, as follows:

r v0(p) = B p2 +
σ2

2
v��0(p), for p ∈ [0, p] ,

r v1(p) = B p2 + λ [v0(0) + bψ − v1(p)] +
σ2

2
v��1(p), for p ∈ [p, p̄]

where we use that the optimal return point upon adjustment is v0(0) and where used that
by symmetry vi(p) = vi(−p) for i = 0, 1.

43The effect of heterogeneity in N(∆pi) on aggregation is well known, so that D is different from the
average of N(∆pi)’s, see for example Carvalho (2006) and Nakamura and Steinsson (2010).
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The value function can be expressed as the sum of a particular solution and two solutions
multiplied by constants K0 and K1 and the two parameters 0 < p, p̄. The value function
has the following boundary conditions v0(p) = v1(p) and v0(0) + ψ = v1(p̄), as well as the
smooth pasting conditions v�0(p) = v�1(p) and 0 = v�1(p̄). Using the four boundary conditions
one solve for both the value function (i.e. the constants Ki) and the thresholds p, p̄. We give
the details in Appendix S.1 and Appendix S.2.

Frequency of price changes. To find the frequency of price changes we first introduce
the expected time to adjustment function T (p). This function obeys the following ODE:

0 = 1 +
σ2

2
T ��0 (p) for 0 < |p| ≤ p and λT1(p) = 1 +

σ2

2
T ��1 (p) for p < |p| ≤ p̄

with Ti(p) = Ti(−p), and boundary conditions T0(p) = T1(p), T �0(p) = T �1(p) and T1(p̄) = 0.
Thus

T0(p) = J − p2

σ2
and T1(p) =

1

λ
+ Keϕ|p| + Le−ϕ|p|

where the J,K, L are constant to be determined using the boundary conditions, and where
ϕ =

�
2 λ/σ2. Thus, given thresholds p, p̄, solving for the function T boils down to solve three

linear equations in three unknowns as detailed in Appendix S.4. In particular the average
number of adjustment per period is simply:

N (∆pi) =
1

T0(0)
=

1

J
, (81)

Kurtosis of price changes. To measure the steady state kurtosis of price changes, we
first solve for the density function for the price gaps g(p) ∈ [0, p̄]. This density solves

0 = g��0(p) for 0 ≤ |p| ≤ p and 0 = −2λ

σ2
g1(p) + g��1(p) for p < |p| ≤ p̄ or

g0(p) = C1 + C2 |p| for 0 ≤ |p| ≤ p and g1(p) = C3e
ϕ|p| + C4e

−ϕ|p| for p ≤ |p| ≤ p̄

where the 4 constants solve the 4 equations g0(p) = g1(p), g�0(p) = g�1(p), g1(p̄) = 0 and 1/2 =� p

0 g0(p) dp +
� p̄

p g1(p) dp which use that the density is differentiable. Given p, p̄ the solution

boils down to solve four linear equations in four unknowns, as detailed in Appendix S.5.
Then using that only the fraction 2

� p̄

p g1(p)dp of cheap adjustment opportunities will

trigger an actual price change, the distribution of (non-zero) price changes p ∈ [−p̄,−p]∪[p, p̄]
is symmetric and is given by (we only report the formulas for x > 0) . Thus the distribution
of (positive) price changes is

Price changes ∼
�

density for a price change of size p ∈ [p, p̄) : λ
Na

g1(p)

mass point at p̄ : 1
2 −

λ
Na

� p̄

p g1(p)dp
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The j − th moment of price changes for j even is

E
�
∆pj

�
=

λ

Na
2

� p̄

p

xj g1(p) dp +



1−
λ 2

� p̄

p g1(p)dp

Na



 p̄j

Using that V ar (∆p) N (∆p) = σ2, the kurtosis of price changes is given by:

Kur (∆p) =
E (∆p4)

(σ2/N (∆p))2 . (82)

Area under impulse response. To find an expression for M�(0) we first define the con-
tribution to the area under impulse response of a firm that starts with price gap p. Letting
m(p) the integral of the (minus) expected price gap until the first time the firms adjusts its
price, and starting the economy with a distribution of price gaps with density f we have

M(δ) =

� p̄

−p̄

m(p− δ) g(p) dp (83)

and differentiating it:

M�(0) = −
� p̄

−p̄

m�(p) g(p) dp (84)

To obtain the solution for m we consider two functions in each segments which solves:

0 = −p +
σ2

2
m

��

0(p) for 0 ≤ p ≤ p (85)

λ m1(p) = −p +
σ2

2
m

��

1(p) for p ≤ p ≤ p̄ (86)

The boundary conditions are that these functions meet in a continuously differentiable man-
ner in the lower boundary, i.e. m0(p) = m1(p), m�

0(p) = m�
1(p), and that a price change occurs

at the upper boundary, i.e. m1(p̄) = 0. The solution, with three constant of integration is:

m0(p) = A1 p +
p3

3 σ2
(87)

m1(p) = −p

λ
+ A2 epϕ + A3 e−pϕ (88)

Thus, given p, p̄ boils down to solving three linear equations in three unknowns, as detailed
in Appendix S.6.

Hence, given any pair (p, p̄) we can find the solution for the density g, the solution to the
function m and compute:

M�(0) = − 2

� p̄

0

m�(p) g(p) dp
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Likewise, given any pair (p, p̄), we can find the solution for g, N (∆p) and compute Kur (∆p)
as in equation (82). In Appendix S.7 we collect the solutions as function of the thresholds
(p, p̄) and constants (A1, A2, A3, J, C3, C4). From this one can easily compute both expressions
and check the equality in

M�(0) =
Kur (∆p)

6 N (∆p)
.

S.1 Solution of ode for value function in inaction

v0(p) =
B p2

r
+

B σ2

r2
+ K0

�
e

p
q

2r
σ2 + e

−p
q

2r
σ2

�

v1(p) =
B p2 + λ (v0(0) + bψ)

λ + r
+

B σ2

(λ + r)2
+ K1

�
ep

q
2(λ+r)

σ2 + e−p
q

2(λ+r)

σ2

�

S.2 Solution for value function

Note that smooth pasting v�1(p̄) = 0 gives

0 =
2Bp̄

λ + r
+ K1

�
2(λ + r)

σ2

�
ep̄

q
2(λ+r)

σ2 − e−p̄
q

2(λ+r)

σ2

�

or K1 as function of p̄

K1 =
2Bp̄

λ + r

��
2(λ + r)

σ2

�
e−p̄

q
2(λ+r)

σ2 − ep̄
q

2(λ+r)

σ2

��−1

(89)

Using v0(0) = Bσ2

r2 + 2K0 and value matching v0(0) + ψ = v1(p̄) gives

r

λ + r
v0(0) + ψ =

λbψ + Bp̄2

λ + r
+

Bσ2

(λ + r)2
+ K1

�
ep̄

q
2(λ+r)

σ2 + e−p̄
q

2(λ+r)

σ2

�

or K0 as function of p̄

2rK0 = Bp̄2 − (λ(1− b) + r)ψ − λBσ2

r(λ + r)
+ (λ + r)K1

�
ep̄

q
2(λ+r)

σ2 + e−p̄
q

2(λ+r)

σ2

�
(90)

Value matching at p gives

Bp2

r
+

Bσ2

r2
+ K0

�
e

p
q

2r
σ2 + e

−p
q

2r
σ2

�
=

Bp2 + λ (v0(0) + bψ)

λ + r
+

Bσ2

(λ + r)2
+ K1

�
ep

q
2(λ+r)

σ2 + e−p
q

2(λ+r)

σ2

�

or an equation implicitly defining p in terms of p̄

Bp2λ

r(r + λ)
+

Bσ2λ

(λ + r)2r
+ K0

�
e

p
q

2r
σ2 + e

−p
q

2r
σ2 − 2λ

λ + r

�
=

λbψ

λ + r
+ K1

�
ep

q
2(λ+r)

σ2 + e−p
q

2(λ+r)

σ2

�
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Given these 3 equations implicitly defining K0, K1, p as function of p̄, the smooth pasting
at p gives one equation in one unknown to solve for p̄ , namely

�
2B

r
− 2B

r + λ

�
p +

�
2r

σ2
K0

�
e

p
q

2r
σ2 − e

−p
q

2r
σ2

�
=

�
2(λ + r)

σ2
K1

�
ep

q
2(λ+r)

σ2 − e−p
q

2(λ+r)

σ2

�

S.3 Value function approximation

Recall

v0(p) =
Bp2

r
+

Bσ2

r2
+ K0

�
e

p
q

2r
σ2 + e

−p
q

2r
σ2

�

v1(p) =
Bp2 + λ (v0(0) + bψ)

λ + r
+

Bσ2

(λ + r)2
+ K1

�
ep

q
2(λ+r)

σ2 + e−p
q

2(λ+r)

σ2

�

We approximate the value functions v0(p), v1(p) using a fourth order expansion around
p = 0. We get

v0(p) =
Bσ2

r2
+ 2K0 +

�
B

r
+ K0ϕ

2
0

�
p2 +

K0

12
ϕ4

0 p4

v1(p) =
λ(v0(0) + bψ)

λ + r
+

Bσ2

(λ + r)2
+ 2K1 +

�
B

λ + r
+ K1ϕ

2
1

�
p2 +

K1

12
ϕ4

1 p4

where ϕ0 ≡
�

2r

σ2
and ϕ1 ≡

�
2(λ + r)

σ2

The smooth pasting at p , namely v�0(p)− v�1(p) = 0, gives

p

��
B

r
+ K0ϕ

2
0

�
−

�
B

λ + r
+ K1ϕ

2
1

�
+

�
K0ϕ

4
0 −K1ϕ

4
1

� p2

6

�
= 0

which gives

p = ±

��
B

λ+r + K1ϕ2
1

�
−

�
B
r + K0ϕ2

0

�

(K0ϕ4
0 −K1ϕ4

1) /6

Similarly smooth pasting at p̄ gives

p̄ = ±

��
B

λ+r + K1ϕ2
1

�

−K1ϕ4
1/6
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S.4 Boundary conditions for Ti

We have the following three linear equations for Ti:

−1

λ
= Keϕp̄ + Le−ϕp̄

−
2 p

σ2
= ϕ

�
Keϕp − Le−ϕp

�

J =

�
p
�2

σ2
+

1

λ
+ Keϕp + Le−ϕp

S.5 Density function

The 4 unknowns of the density function, using g1(p̄) = 0 and g�0(p) = g�1(p), give

C3 = −C4e
−2ϕp̄ and C2 = −C4ϕ

�
e−2ϕp̄+ϕp + e−ϕp

�

Next, using g0(p) = g1(p) gives

C1 = −C2p− C4

�
e−2ϕp̄+ϕp − e−ϕp

�
= C4

�
e−2ϕp̄+ϕp

�
ϕp− 1

�
+ e−ϕp

�
ϕp + 1

��

Finally we solve for C4 by imposing 1/2 =
� p

0 g0(p) dp +
� p̄

p g1(p) dp i.e.

1

2
= C1p +

1

2
C2p

2 +
1

ϕ

�
C3 (eϕp̄ − eϕp)− C4

�
e−ϕp̄ − e−ϕp

��

or, substituting the expressions,

1

2C4
=

�
e−2ϕp̄+ϕp

�
ϕp− 1

�
+ e−ϕp

�
ϕp + 1

��
p− 1

2
ϕ

�
e−2ϕp̄+ϕp + e−ϕp

�
p2

− 1

ϕ

�
e−2ϕp̄ (eϕp̄ − eϕp) + e−ϕp̄ − e−ϕp

�

S.6 Equation for the solution of m

The boundary conditions are: m1(p̄) = 0, m1(p) = m0(p) and m�
1(p) = m�

0(p). They give a
linear system of equations on A1, A2, A3 :

0 = − p̄

λ
+ A2 ep̄ϕ + A3 e−p̄ϕ (91)

A1 +
(p)2

σ2
= −1

λ
+ ϕ A2 epϕ − ϕ A3 e−pϕ (92)

A1 p +
(p)3

3 σ2
= −

p

λ
+ A2 epϕ + A3 e−pϕ (93)
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S.7 Algebraic details for main proposition

For the area under the IRF of output we get:

M�(0) = − 2

� p

0

�
A1 + A3

p2

σ2

�
[C1 + C2p] dp

− 2

� p̄

p

�
−1

λ
+ ϕ A2 epϕ + ϕ A3 e−pϕ

� �
C3e

ϕp + C4e
−ϕp

�
dp

For the kurtosis of steady state price changes we get:

Kur (∆p)

6 N (∆p)
= N (∆p)

E (∆p4)

6 σ4

=

λ J 2
� p̄

p p4 [C3eϕp + C4e−ϕp] dp +

�
1−

λ 2
R p̄

p [C3eϕp+C4e−ϕp]dp

Na

�
p̄4

6 J σ4

=
λ 2

6 σ4

� p̄

p

p4
�
C3e

ϕp + C4e
−ϕp

�
dp +

1

6 J σ4
− λ 2

6 σ4

� p̄

p

p̄4
�
C3e

ϕp + C4e
−ϕp

�
dp

=
λ 2

6 σ4

� p̄

p

�
p4 − p̄4

� �
C3e

ϕp + C4e
−ϕp

�
dp +

1

6 J σ4
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