
E¢ cient estimation of data combination models
by the method of auxiliary-to-study tilting (AST),

supplemental material: additional proofs and derivations

This supplemental appendix contains a proof of Theorem 2.1, descriptions of some additional examples of data
combination problems, further Monte Carlo results, and a computational algorithm that we have found to work well
in practice. It also details some of the more tedious calculations underlying the proofs of Theorems 3.1, 3.2 and
3.3. All notation is as de�ned in the main text unless stated otherwise. Equation and Table numbering continues in
sequence with that established in the main text. References not cited in the main text are listed below.

B Additional Examples
Poverty mapping: Let X be an indicator denoting whether a household�s total outlay falls below a poverty
line and W a vector of household characteristics. We seek to estimate the poverty rate in a speci�c study municipality
as in Elbers, Lanjouw and Lanjouw (2003) and Tarozzi and Deaton (2009). Available is a random sample of Ns

observations of W from this municipality; however, no poverty measurements are available in this sample. Also
available is a random sample of size Na of both X and W from the entire country. Our estimand is 
0 = Es [X]
which corresponds to setting  s (Y;W; 
) = 0 and  a (X;W; 
) = X � 
: In this example part two of Assumption 2.1
implies that the conditional probability of begin poor given W = w is the same in the entire country as it is in the
speci�c municipality of interest.

Counterfactual distributions and direct standardization: Let Y be wages of employed Black
males and X those of White males. Let W be a vector of worker characteristics. A random study sample of Black,
and another auxiliary sample of White, workers are available. We seek to decompose di¤erences in speci�c quantiles
of the Black and White wage distributions into portions due to (i) di¤erences in the distribution of characteristics,
and (ii) di¤erences in the mapping from those characteristics into wages, across the two populations. The latter
di¤erence is sometimes interpreted as a measure of labor market discrimination, although this interpretation is not
assumption free (cf., Darity and Mason, 1998).

This decomposition requires knowledge of the distribution of White wages that would prevail under the Black
distribution of worker characteristics. That is, what would the wage distribution look like in a hypothetical White
population whose distribution of W coincided with the one in the actual Black population? The �th quantile of this
counterfactual distribution, 
�W jB , is identi�ed by

Es
h
1(X � 
�W jB)� �

i
= 0;

which corresponds to setting  0 (Y0; X; 
) = � � 1(X � 
�W jB) and  1 (Y1; X; 
) to a vector of zeros. The �
th

quantiles of the actual Black and White earnings distributions are denoted by 
�BjB and 
�W jW . A decomposition
into wage structure and compositional e¤ects is then given by


�BjB � 
�W jW =
�

�BjB � 
�W jB

�
�
�

�W jW � 
�W jB

�
:

Barsky, Bound, Charles and Lupton (2002) and Fortin, Lemieux and Firpo (2010) survey alternative decomposition
methods. For discretely-valued W these methods are similar to techniques used by demographers to standardize
mortality rates across localities (e.g., Kitagawa, 1964).

C Proof of Theorem 2.1

Theorem 2.1 is a slight generalization of Theorem 3 of Chen, Hong and Tarozzi (2008). We provide a proof for com-
pleteness. In calculating the e¢ ciency bound for the semiparametric data combination model de�ned by Assumption
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2.1, we use the approach outlined by Bickel, Klaassen, Ritov and Wellner (1993) and, especially, Newey (1990, Sec-
tion 3). First, we characterize the nuisance tangent space. Second, we demonstrate pathwise di¤erentiability of the
parameter of interest, 
0: The e¢ cient in�uence function equals the projection of the pathwise derivative onto the
tangent space. The third and �nal step of the proof is to calculate the projection and demonstrate that lies in the
model tangent space. The result then follows from an application of Theorem 3.1 in Newey (1990).

Step 1: Characterization of the nuisance tangent space Let R = (1�D)X + DY ; the joint density of
(R;W;D), making use of parts (ii) and (v) of Assumption 2.1, is given by

f (r; w; d) = f (yjw)d f (xjw)1�d p (w; �)d [1� p (w; �)]1�d f (w) :

Consider a regular parametric submodel with f (r; w; d; �) = f (r; w; d) at � = �0. The submodel joint density is given
by

f (r; w; d; �) = f (yjw; �)d f (xjw; �)1�d p (w; � (�))d [1� p (w; � (�))]1�d f (w; �) :

The submodel score vector equals

s� (r; w; d; �) = ds� (yjw; �) + (1� d) s� (xjw; �) (35)

+

�
@� (�)

@�0

�0
d� p (w; � (�))

p (w; � (�)) [1� p (w; � (�))]
p� (w; � (�)) + t� (w; �) ;

where p� (w; �) = r�p (w; �) and

s� (yjw; �) = r� log f (yjw; �) ; s� (xjw; �) = r� log f (xjw; �) ; t� (w; �) = r� log f (w; �) :

By the usual conditional mean zero property of scores we have

E [s� (Y jW )jW ] = E [s� (XjW )jW ] = E [t� (W )] = 0; (36)

where the suppression of � in a function means that it is evaluated at its population value (e.g., t� (w) = t� (w; �0)).
From (35) and (36) the tangent set is evidently

T = fds (yjw) + (1� d) s (xjw) + cS� (d;w) + t (w)g ;

where S� (d;w) is the score vector associated with the parametric propensity score model evaluated at �0 = � (�0):

S� (d;w) =
d� p (w; �0)

p (w; �0) [1� p (w; �0)]
p� (w; �0) ;

with c a matrix of constants, and s (yjw), s (xjw) ; S� (d;w) and t (w) satisfying

E [s (Y jW )jW ] = E [s (XjW )jW ] = E [S� (D;W )jW ] = E [t (W )] = 0;

but otherwise unrestricted.

Step 2: Demonstration of pathwise di¤erentiability Under the parametric submodel 
0 = 
 (�0) is identi�ed
by the moment restriction

E� [ s (Y;W; 
 (�0))�  a (X;W; 
 (�0))jD = 1] = 0:

Di¤erentiating under the integral and evaluating at � = �0 gives

@
 (�0)

@�0
= �E

�
p0 (W )

Q0
�0 (W )

��1�
E
�
 s (Y;W; 
0)

@ log f (Y;W jD = 1; �0)

@�0

�
(37)

�E
�
 a (X;W; 
0)

@ log f (X;W jD = 1; �0)

@�0

��
:
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To demonstrate pathwise di¤erentiability of 
 we require F (R;W;D) such that

@
 (�0)

@�0
= E

�
F (R;W;D) s� (R;W;D)

0� : (38)

Recalling that p0 (w) = p (w; �0) ; qs (W ) = E [ s (Y;W; 
0)jW ] ; and qa (W ) = E [ a (X;W; 
0)jW ]. Let

F (R;W;D) = �E
�
p0 (W )

Q0
�0 (W )

��1
(39)

�
�
D

Q0
f s (Y;W; 
0)� qs (W )g � 1�D

Q0

p0 (W )

1� p0 (W )
f a (X;W; 
0)� qa (W )g

+
p0 (W )

Q0
fqs (W )� qa (W )g

+
1

Q0
E�
��

D

p0 (W )
� 1
�
p0 (W ) fqs (W )� qa (W )g

���� S��� :
Letting Q (�) =

Z
p (w; � (�)) f (w; �) dw we have, using part (ii) of Assumption 2.1, and Bayes�Law,

f (y; wj d = 1; �) = f (yjw; �) f (wj d = 1; �) = f (yjw; �) p (w; � (�)) f (w; �)
Q (�)

;

so that
@ log f (Y;W jD = 1; �0)

@�0
= s� (Y jW )0 +

�
p� (W; � (�0))

p (W; � (�0))

�0
@� (�0)

@�0
+ t� (W )� Q0

�

Q0
;

which allows the �rst term inside the f�g in (37) to be re-written as

E
�
 s (Y;W; 
0)

@ log f (Y;W jD = 1; �0)

@�0

����D = 1

�
= E

�
 s (Y;W; 
0) s� (Y jW )0

��D = 1
�

+E
�
 s (Y;W; 
0) S� (D;W )0

��D = 1
� @� (�0)

@�0

+E
�
 s (Y;W; 
0) t� (W )0

��D = 1
�

�E [ s (Y;W; 
0)jD = 1]
Q0
�

Q0
:

Using the conditional mean zero property of s� (Y jW ), part (ii) of Assumption 2.1, Bayes�Law, and iterated
expectations we can then show that

E
�
 s (Y;W; 
0) s� (Y jW )0

��D = 1
�

= E
�
D

Q0
f s (Y;W; 
0)� qs (W )g s� (Y jW )0

�
(40)

E
�
 s (Y;W; 
0) t� (W )0

��D = 1
�

= E
�
p0 (W )

Q0
qs (W ) t� (W )0

�
: (41)

We also have

E
�
 s (Y;W; 
0) S� (D;W )0

��D = 1
�

= E
�
 s (Y;W; 
0)

p� (W; �0)

p (W; �0)

0����D = 1

�
(42)

=
1

Q0
E
��

D

p0 (W )
� 1
�
p0 (W ) qs (W ) S� (D;W )0

�
:

Now observe that, for S� = S� (D;W ),

E�
��

D

p0 (W )
� 1
�
p0 (W ) qs (W )

���� S�� = E �� D

p0 (W )
� 1
�
p0 (W ) q1 (W ) S0�

�
E
�
S�S0�

��1 S�;
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so that

E
�
E�
��

D

p0 (W )
� 1
�
p0 (W ) qs (W )

���� S�� S0�� = E �� D

p0 (W )
� 1
�
p0 (W ) qs (W ) S0�

�
: (43)

Using the conditional mean zero property of s� (Y jW ), part (ii) of Assumption 2.1, Bayes�Law, and iterated
expectations we can also show that

E
�
 a (X;W; 
0) s� (XjW )0

��D = 1
�

= E
�
(1�D) p0 (W ) f a (X;W; 
0)� qa (X)g

(1� p0 (W ))Q0
s� (XjW )0

�
(44)

E
�
 a (X;W; 
0) t� (W )0

��D = 1
�

= E
�
p0 (W )

Q0
qa (W ) t� (W )0

�
(45)

E
�
 a (X;W; 
0) S� (D;W )0

��D = 1
�

=
1

Q0
E
��

D

p0 (W )
� 1
�
p0 (W ) qa (W ) S� (D;W )0

�
(46)

Using (40) to (46) it is straightforward to verify that condition (38) holds for F (R;W;D) as de�ned in (39) above.

Step 3: Calculation of e¢ cient in�uence function The variance bound for 
0 equals the expected square of
the projection of F (R;W;D) �as de�ned by (39) above �onto the tangent space. Since F (R;W;D) belongs to the
tangent space, this projection equals F (R;W;D) itself. To verify that F (R;W;D) lies in the model tangent space
note that

E�
��

D

p0 (W )
� 1
�
p0 (W ) fqs (W )� qa (W )g

���� S��
= E

��
D

p0 (W )
� 1
�
p0 (W ) fqs (W )� qa (W )g S0�

�
E
�
S�S0�

��1
| {z }

c

S�

plays the role of cS� (d;w), the �rst two terms in (39) play the role of ds (yjw) and (1� d) s (xjw) ; while the third
term plays the role of t (w).

D Computation

The �rst and third steps of AST may be completed using standard software. In this appendix we detail a method
for computing the second stage tilting parameters b�s and b�a. The algorithm described below is a modi�ed version of
the one developed in Graham, Pinto and Egel (2012). Let

' (v) =
v

G (v)
+

Z a

1=G(v)

G�1
�
1

t

�
dt; (47)

with G (�) as de�ned in the main text. The �rst and second derivatives of ' (v) are

'1 (v) =
1

G (v)
; '2 (v) = �

G1 (v)

G (v)2
; (48)

so that (47) is strictly concave.
We compute b�s by solving the following optimization problem

max
�s

lN (�s) ; lN (�s) =
1

N

NX
i=1

G
�
r (Wi)

0 b�� hDi'
�
r (Wi)

0 b� + t (Wi)
0 �s
�
� t (Wi)

0 �s
i
; (49)

where b� is the MLE of the propensity score parameter. Di¤erentiating lN (�s) with respect to �s gives an 1 +M � 1
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gradient vector of (for dim (�s) = 1 +M)

r�s lN (�s)
1+M�1

=
1

N

NX
i=1

G
�
r (Wi)

0 b�� hDi'1

�
r (Wi)

0 b� + t (Wi)
0 �s
�
� 1
i
t (Wi) (50)

=
1

N

NX
i=1

0@ Di

G
�
r (Wi)

0 b� + t (Wi)
0 �s
� � 1

1AG
�
r (Wi)

0 b�� t (Wi) ;

which coincides with (11) in the main text as required. The 1 +M � 1 +M Hessian matrix is

r�s�s lN (�s)
1+M�1+M

=
1

N

NX
i=1

Di'2

�
r (Wi)

0 b� + t (Wi)
0 �s
�
G
�
r (Wi)

0 b�� t (Wi) t (Wi)
0 (51)

This is a negative de�nite function of �s; the problem (49) is consequently concave with a unique solution (if one
exists).

When t (Wi)
0 �s is a large negative number the Hessian (51) will be ill-conditioned. We address this prob-

lem by noting that at a valid solution
PN

i=1DiG
�
r (Wi)

0 b�� =G�r (Wi)
0 b� + t (Wi)

0 b�s� =N = QN (�) for QN (�) =PN
i=1G

�
r (Wi)

0 �
�
=N (recall that t (Wi) includes a constant). Since G (v) is bounded below by zero, this means that

DiG
�
r (Wi)

0 b�� =G�r (Wi)
0 b� + t (Wi)

0 b�s� < NQN

�b�� for all i = 1; : : : ; N . Letting vi = r (Wi)
0 b� + t (Wi)

0 �s this

inequality corresponds to requiring that

G�1
�
DiG

�
r (Wi)

0 b�� =NQN

�b��� < vi; i = 1; : : : ; N (52)

at �s = b�s. Let v�N = G�1
�
1=NQN

�b���; note that v�N ! �1 as N !1 suggesting that (52) will be satis�ed for

most values of �s in large enough samples. In small samples (52) may be violated for some i at some iterations of the
maximization procedure (although not at a valid solution). For estimation we replace ' (v) with a quadratic function
when v � v�N ; this ensures that the denominator in (50) is bounded. This improves the condition of the Hessian with
respect to �s without changing the solution (cf., Owen 2001, Chapter 12).

Speci�cally we replace ' (v) in (49), (50) and (51) with

'�N (v) =

�
' (v) v > v�N

aN + bNv
�
N +

cN
2
(v�N )

2 v � v�N
; (53)

where aN , bN and cN are the solutions to

cN = '2 (v
�
N )

bN + cNv
�
N = '1 (v

�
N )

aN + bNv
�
N +

cN
2
(v�N )

2
= '0 (v

�
N ) :

This choice of coe¢ cients ensures that '�N (v) equals ' (v), as well as equality of �rst and second derivatives, at
v = v�N :

When G (v) is logit our algorithm is particularly simple to implement. We have ' (v) / v � exp (�v), '1 (v) =

1 + exp (�v) ; '2 (v) = � exp (�v) ; and v�N = ln
�

1

NQN(b�)�1
�
: Solving for aN , bN and cN yields

aN = �
�
NQN

�b��� 1�
241 + ln

0@ 1

NQN

�b��� 1
1A+ 1

2

24ln
0@ 1

NQN

�b��� 1
1A35235

bN = NQN

�b��+ �NQN

�b��� 1� ln
0@ 1

NQN

�b��� 1
1A

cN = �
�
NQN

�b��� 1� :
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E Additional Monte Carlo experiments

Recently Qin and Zhang (2008) have proposed an empirical likelihood type estimator for the di¤erence-in-di¤erences
program evaluation parameter (e.g., Abadie, 2005). This parameter may be viewed as a special case of the average
treatment e¤ect on the treated (ATT) parameter. Their procedure, like ours, calibrates estimates of the study
population distributions of (Y;W ) and (X;W ) to features of bF e�

s (w). They use empirical likelihood methods for this
purpose, as opposed to our �tilting�equations (9) and (11). In order to compare our method with the Qin and Zhang
(2008) EL procedure we replicated a subset of their Monte Carlo experiments. Adapting their setup to our notation
we let

W1 � N (0; 1) ; W2jW1 = w1 � N (1 + 0:6w1; 1) ;

and
Y jW;D � N

�
�Y (W ) ;W 2

2

�
; XjW;D � N

�
�X (W ) ;W 2

2

�
:

They assume the propensity score takes a logit form with an index linear in W = (W1;W2)
0 (this in turn induces

the conditional distributions of W given D = 0; 1). The intercept in the logit index is set equal to one across all
designs, while the two slope coe¢ cients equal 0:1, 0:2 or 0:5 (corresponding to increasing selection bias). The two
conditional mean parameters are set equal to �Y (W ) = 2+2W1+2W2 and �X (W ) = 2W1+2W2 in Design (a) and
�Y (W ) = 2+2W 2

1 �W2+3W
2
2 and �X (W ) = 2W 2

1 �W2+3W
2
2 in Design (b). Analogously to Qin and Zhang (2008)

we choose two di¤erent speci�cations for t (W ). First, a �linear�one of t (W ) = (1;W1;W2)
0 : This corresponds to the

locally e¢ cient choice in Design (a). Second, a �quadratic�one of t (W ) =
�
1;W 2

1 ;W
2
2

�0
: This choice in not e¢ cient

in either design, but is expected to be more appropriate for Design (b). Across all designs the propensity score is
correctly speci�ed with r (W ) = (1;W1;W2)

0 : We set N = 1; 000 and perform 1; 000 Monte Carlo replications. The
Monte Carlo statistics for the EL estimator are as reported in Table 2 of Qin and Zhang (2008, p. 341).

By Theorems 3.1 and 3.2 above, and Theorem 3 of Qin and Zhang (2008, p. 339), both the AST estimator
and the EL estimator should be consistent and asymptotically normal across both designs and choices of t (W ). Our
AST estimator should be e¢ cient in Design (a) when t (W ) takes the linear form. (see Table 5 in the supplemental
appendix).

In Design (a) the AST and EL estimator perform similarly in terms of bias (see Table 4). However, when t (W ) is
(correctly) speci�ed to be linear inW; AST has substantially less sampling variation that the EL estimator (consistent
with Theorem 3.2). This e¤ect is largest when selection bias is severe. In that case the sampling variation in the AST
estimate is just over one half that of the EL one. When t (W ) is (incorrectly) speci�ed to be quadratic, this e¢ ciency
ranking reverses. In Design (b) the EL estimate exhibits lower sample variation than the corresponding AST estimate
when t (W ) is (incorrectly) speci�ed to be linear. When t (W ) is quadratic, which more closely approximates the
e¢ cient choice, this ranking is reversed. As before, the e¢ ciency gains are increasing in the degree of selection bias. In
terms of inference the AST Wald con�dence intervals generally have actual coverage close to nominal coverage, while
the corresponding EL ones tend to be conservative (Qin and Zhang (2008) suggest the use of bootstrap con�dence
intervals in order to improve coverage).

While Qin and Zhang (2008) do not consider the semiparametric e¢ ciency properties of their procedure, the
results in Table 4 suggest that, in contrast to AST, their estimator is not Locally E¢ cient at Assumption 3.1 (although
this is only a conjecture based on the Monte Carlo results). Evidently the comparison of the two estimators when
Assumption 3.1 does not hold is more complicated.

Table 5 calculates the variance bound for 
0 for each of the Qin and Zhang (2008) Monte Carlo designs. The
table also reports �pencil and paper�calculations of the asymptotic variance of the AST estimator across each design
and t (W ) combination.
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Table 4: Monte Carlo results: Qin and Zhang (2008) designs with N =1,000
(1)
Mean
Bias

(2)
Sample
Var.

(3)
Mean
Est. Var.

(4)
RMSE

(5)
Cov. of
95% CI

(�1; �2) t (W ) Design (a): Linear CEFs
(0:1; 0:1) AST Lin -0.0004 0.0154 0.0151 0.1241 0.936

AST Qrd -0.0083 0.0285 0.0513 0.1690 0.988
EL Lin 0.0038 0.0204 0.0311 0.1429 0.981
EL Qrd 0.0040 0.0241 0.0357 0.1553 0.978

(0:2; 0:2) AST Lin -0.0065 0.0216 0.0195 0.1471 0.930
AST Qrd -0.0039 0.0371 0.0555 0.1926 0.983
EL Lin 0.0031 0.0275 0.0402 0.1659 0.975
EL Qrd -0.0009 0.0306 0.0430 0.1749 0.972

(0:5; 0:5) AST Lin 0.0024 0.0537 0.0428 0.2316 0.907
AST Qrd 0.0244 0.1015 0.0867 0.3193 0.920
EL Lin 0.0051 0.0900 0.7241 0.3000 0.912
EL Qrd -0.0089 0.1103 0.5842 0.3322 0.891

Design (b): Quadratic CEFs
(0:1; 0:1) AST Lin 0.0009 0.3050 0.2856 0.5520 0.942

AST Qrd -0.0011 0.0168 0.0174 0.1297 0.947
EL Lin 0.0347 0.1561 0.2003 0.3966 0.966
EL Qrd 0.0029 0.0226 0.1181 0.1504 0.995

(0:2; 0:2) AST Lin 0.0787 0.3620 0.3201 0.6065 0.916
AST Qrd 0.0078 0.0218 0.0217 0.1479 0.951
EL Lin 0.0477 0.1227 0.3790 0.3535 0.980
EL Qrd 0.0028 0.0309 0.4564 0.1758 0.998

(0:5; 0:5) AST Lin 0.1943 0.7010 0.4425 0.8591 0.817
AST Qrd 0.0095 0.0549 0.0429 0.2343 0.906
EL Lin 0.1969 0.2647 3.2656 0.5509 0.959
EL Qrd 0.0075 0.1026 2.1138 0.3204 0.993
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Table 5: Theoretical properties of AST in Qin and Zhang (2008) Monte Carlo designs with
N =1,000

(1.a)
I(
0)

�1=N

(2.a)
Asymptotic
Variance

(1.b)
I(
0)

�1=N

(2.b)
Asymptotic
Variance

t(W ) Design (a): Linear CEFs Design (b): Quadratic CEFs
�1= �2= 0:1 Linear 0.0114 0.0114 0.0114 0.2127

Quadratic 0.0205 0.0125
�1= �2= 0:2 Linear 0.0144 0.0144 0.0144 0.2253

Quadratic 0.0226 0.0154
�1= �2= 0:5 Linear 0.0373 0.0373 0.0373 0.4739

Quadratic 0.0495 0.0386

F Detailed calculations

F.1 Additional calculations for the proof of Theorem 2.1

Equation (42) follows from the calculations:

1

Q0
E
��

D

p0 (X)
� 1
�
p0 (X) qs (W ) S� (D;W )0

�
=

1

Q0
E
��

D

p0 (W )
� 1
�
p0 (W ) qs (W )

D � p (W; �0)

p (W; �0) [1� p (W; �0)]
p� (W; �0)

0
�

=
1

Q0
E
�
qs (W )

D �Dp (W; �0)

p (W; �0) [1� p (W; �0)]
p� (W; �0)

0
�
� 0

=
1

Q0
E
�
qs (X) p� (W; �0)

0�
=

1

Q0

Z
qs (w) p� (w; �0)

0 f (w) dw

=

Z
qs (w)

p� (w; �0)

p (w; �0)

0
f (wj d = 1) dw

= E
�
qs (W )

p� (W; �0)

p (W;
0)

0����D = 1

�
= E

�
 s (Y;W; 
0)

p� (W; �0)

p (W;
0)

0����D = 1

�
:

F.2 Additional calculations for the proof of Theorems 3.1, 3.2 and 3.3.

Derivation of (20) To derive (20) in the main appendix we begin with the partition

M =

2664
M11 0 0 0
M21 M22 0 0
M31 0 M33 0
M41 M42 M43 M44

3775 :
Note that 24 M11 0 0

M21 M22 0
M31 0 M33

35�1 =
24 M�1

11 0 0
�M�1

22 M21M
�1
11 M�1

22 0
�M�1

33 M31M
�1
11 0 M�1

33

35 ;

8



since

�
�
M�1
22 0
0 M�1

33

��
M21

M31

�
M�1
11 = �

�
M�1
22 M21M

�1
11

M�1
33 M31M

�1
11

�
:

This gives an inverse of

M�1 =

0BB@
M�1
11

�M�1
22 M21M

�1
11

�M�1
33 M31M

�1
11

�M�1
44

�
M41M

�1
11 �M42M

�1
22 M21M

�1
11 �M43M

�1
33 M31M

�1
11

�
0 0 0

M�1
22 0 0
0 M�1

33 0
�M�1

44 M42M
�1
22 �M�1

44 M43M
�1
33 M�1

44

1CCA
since

�M�1
44

�
M41 M42 M43

�0@ M�1
11 0 0

�M�1
22 M21M

�1
11 M�1

22 0
�M�1

33 M31M
�1
11 0 M�1

33

1A
= �M�1

44

�
M41M

�1
11 �M42M

�1
22 M21M

�1
11 �M43M

�1
33 M31M

�1
11 M42M

�1
22 M43M

�1
33

�
:

Straightforward matrix multiplication then gives the last K elements of �M�1m (Z; �) equal to

�M�1
44 m4 (Z; �; �a; �s; 
) +M�1

44

�
M41M

�1
11 �M42M

�1
22 M21M

�1
11 �M43M

�1
33 M31M

�1
11

�
m1 (Z; �)

+M�1
44 M42M

�1
22 m2 (Z; �; �a) +M�1

44 M43M
�1
33 m3 (Z; �; �s)

= �M�1
44

�
m4 (Z; �; �a; �s; 
)�

�
M41M

�1
11 �M42M

�1
22 M21M

�1
11 �M43M

�1
33 M31M

�1
11

�
m1 (Z; �)

�M42M
�1
22 m2 (Z; �; �a)�M43M

�1
33 m3 (Z; �; �s)

�
= �M�1

44

�
m4 (Z; �; �a; �s; 
)�M41M

�1
11 m1 (Z; �)

+M42M
�1
22

�
M21M

�1
11 m1 (Z; �)�m2 (Z; �; �a)

�
+M43M

�1
33

�
M31M

�1
11 m1 (Z; �)�m3 (Z; �; �s)

� � ;
from which the result directly follows.

Derivation of (22) To derive (22) we start with the direct derivative calculation

M21 =
@

@�0
1

Q0
E

" 
1�D

1�G
�
r (W )0 � + t (W )0 �a

� � 1!G �r (W )0 �
�
t (W )

#

=
1

Q0
E

" 
1�D�

1�G
�
r (W )0 � + t (W )0 �a

��2
!
G
�
r (W )0 �

�
G1

�
r (W )0 � + t (W )0 �a

�
t (W ) r (W )0

#
+ 0

=
1

Q0
E

"
G
�
r (W )0 �

�
1�G

�
r (W )0 � + t (W )0 �a

�G1

�
r (W )0 � + t (W )0 �a

�
t (W ) r (W )0

#
;
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now observe that

E

"
1

Q0

 
1�D

1�G
�
r (W )0 � + t (W )0 �a

� � 1!G �r (W )0 �
�
t (W )m1 (Z; �)

0

#

= E

"
1

Q0

 
1�D

1�G
�
r (W )0 � + t (W )0 �a

� � 1!G �r (W )0 �
�
t (W )

 
D �G

�
r (W )0 �

�
G
�
r (W )0 �

� �
1�G

�
r (W )0 �

��G1

�
r (W )0 �

�
r (W )

!0#

= E

"
1

Q0

 
1�D

1�G
�
r (W )0 � + t (W )0 �a

�!G �r (W )0 �
�
t (W )

 
D �G

�
r (W )0 �

�
G
�
r (W )0 �

� �
1�G

�
r (W )0 �

��G1

�
r (W )0 �

�
r (W )

!0#
� 0

= 0� 1

Q0
E

" 
1�D

1�G
�
r (W )0 � + t (W )0 �a

�!G �r (W )0 �
�
t (W )

G
�
r (W )0 �

�
G
�
r (W )0 �

� �
1�G

�
r (W )0 �

��G1

�
r (W )0 �

�
r (W )0

#

= � 1

Q0
E

"
G
�
r (W )0 �

�
1�G

�
r (W )0 � + t (W )0 �a

�G1

�
r (W )0 �

�
t (W ) r (W )0

#
;

which gives (22) after recalling that the population value of �a is zero.

Derivation of (24) and (25) Equations (24) and (25) follow from

M22 =
@

@�0a
E

"
1

Q0

 
1�D

1�G
�
r (W )0 � + t (W )0 �a

� � 1!G �r (W )0 �
�
t (W )

#

= E

"
1

Q0

 
1�D�

1�G
�
r (W )0 � + t (W )0 �a

��2
!
G
�
r (W )0 �

�
G1

�
r (W )0 � + t (W )0 �a

�
t (W ) t (W )0

#

= E

"
1

Q0

G
�
r (W )0 �

�
1�G

�
r (W )0 � + t (W )0 �a

�G1

�
r (W )0 � + t (W )0 �a

�
t (W ) t (W )0

#
:

and

M42 =
@

@�0a
E

"
G
�
r (W )0 �

�
Q0

"
D

G
�
r (W )0 � + t (W )0 �s

� s (Y;W; 
0)� 1�D

1�G
�
r (W )0 � + t (W )0 �a

� a (X;W; 
0)
##

= �E
"
G
�
r (W )0 �

�
Q0

1�D�
1�G

�
r (W )0 � + t (W )0 �a

��2G1

�
r (W )0 � + t (W )0 �a

�
 a (X;W; 
0) t (W )0

#

= � 1

Q0
E

"
G
�
r (W )0 �

�
1�G

�
r (W )0 � + t (W )0 �a

�G1

�
r (W )0 � + t (W )0 �a

�
 a (X;W; 
0) t (W )0

#
:

Derivation of (23) To derive (23) we start with the direct derivative calculation

M31 =
@

@�0
E

"
1

Q0

 
D

G
�
r (W )0 � + t (W )0 �s

� � 1!G �r (W )0 �
�
t (W )

#

= � 1

Q0
E

"
D

G
�
r (W )0 � + t (W )0 �s

�2G �r (W )0 �
�
G1

�
r (W )0 � + t (W )0 �s

�
t (W ) r (W )0

#
+ 0

= � 1

Q0
E
�
G1

�
r (W )0 � + t (W )0 �s

�
t (W ) r (W )0

�
:
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Next observe that

E

"
1

Q0

 
D

G
�
r (W )0 � + t (W )0 �s

� � 1!G �r (W )0 �
�
t (W )

 
D �G

�
r (W )0 �

�
G
�
r (W )0 �

� �
1�G

�
r (W )0 �

��G1

�
r (W )0 �

�
r (W )

!0#

=
1

Q0
E

" 
D

G
�
r (W )0 � + t (W )0 �s

�!G �r (W )0 �
� D �G

�
r (W )0 �

�
G
�
r (W )0 �

� �
1�G

�
r (W )0 �

��G1

�
r (W )0 �

�!
t (W ) r (W )0

#
� 0

=
1

Q0
E

" 
G
�
r (W )0 �

�
G
�
r (W )0 � + t (W )0 �s

�! D �DG
�
r (W )0 �

�
G
�
r (W )0 �

� �
1�G

�
r (W )0 �

��G1

�
r (W )0 �

�!
t (W ) r (W )0

#

=
1

Q0
E

" 
G
�
r (W )0 �

�
G
�
r (W )0 � + t (W )0 �s

�!G1

�
r (W )0 �

�
t (W ) r (W )0

#

=
1

Q0
E
�
G1

�
r (W )0 �

�
t (W ) r (W )0

�
which gives (23) after recalling that the population value of �s is zero.

Derivation of (26) and (27) Equations (26) and (27) follow from

M33 =
@

@�0s
E

"
1

Q0

 
D

G
�
r (W )0 � + t (W )0 �s

� � 1!G �r (W )0 �
�
t (W )

#

= �E
"
1

Q0

 
D

G
�
r (W )0 � + t (W )0 �s

�2
!
G
�
r (W )0 �

�
G1

�
r (W )0 � + t (W )0 �s

�
t (W ) t (W )0

#

= � 1

Q0
E
�
G1

�
r (W )0 � + t (W )0 �s

�
t (W ) t (W )0

�
:

and

M43 =
@

@�0s
E

"
G
�
r (W )0 �

�
Q0

"
D

G
�
r (W )0 � + t (W )0 �s

� s (Y;W; 
0)� 1�D

1�G
�
r (W )0 � + t (W )0 �a

� a (X;W; 
0)
##

= �E
"
G
�
r (W )0 �

�
Q0

D

G
�
r (W )0 � + t (W )0 �s

�2G1

�
r (W )0 � + t (W )0 �s

�
 s (X;W; 
0) t (W )0

#

= � 1

Q0
E
�
G1

�
r (W )0 � + t (W )0 �s

�
 s (X;W; 
0) t (W )0

�
:
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Derivation of (21) To derive (21) we start with the direct derivative calculation

M41 =
@

@�0
E

"
G
�
r (W )0 �

�
Q0

"
D

G
�
r (W )0 � + t (W )0 �s

� s (Y;W; 
0)� 1�D

1�G
�
r (W )0 � + t (W )0 �a

� a (X;W; 
0)
##

= E

"
G1

�
r (W )0 �

�
Q0

"
D

G
�
r (W )0 � + t (W )0 �s

� s (Y;W; 
0)� 1�D

1�G
�
r (W )0 � + t (W )0 �a

� a (X;W; 
0)
#
r (W )0

#

+E

"
G
�
r (W )0 �

�
Q0

"
� D

G
�
r (W )0 � + t (W )0 �s

�2 s (Y;W; 
0)
� 1�D�
1�G

�
r (W )0 � + t (W )0 �a

��2 a (X;W; 
0)
#
G1

�
r (W )0 � + t (W )0 �s

�
r (W )0

#

=
1

Q0
E

""
D

G
�
r (W )0 � + t (W )0 �s

�G1

�
r (W )0 �

�
� D

G
�
r (W )0 � + t (W )0 �s

�G1

�
r (W )0 �

�#
 s (Y;W; 
0) r (W )0

#

� 1

Q0
E

"
1�D

1�G
�
r (W )0 � + t (W )0 �a

�G1

�
r (W )0 �

�
 a (X;W; 
0) r (W )0

#

�E
"
G
�
r (W )0 �

�
Q0

"
1�D�

1�G
�
r (W )0 � + t (W )0 �a

��2 a (X;W; 
0)
#
G1

�
r (W )0 � + t (W )0 �s

�
r (W )0

#

= 0� 1

Q0
E

"
(1�D)

�
1�G

�
r (W )0 � + t (W )0 �a

�
+G

�
r (W )0 �

���
1�G

�
r (W )0 � + t (W )0 �a

��2 G1

�
r (W )0 �

�
 a (X;W; 
0) r (W )0

#

= 0� 1

Q0
E

"
(1�D)�

1�G
�
r (W )0 � + t (W )0 �a

��2G1

�
r (W )0 �

�
 a (X;W; 
0) r (W )0

#

= � 1

Q0
E

"
G1

�
r (W )0 �

�
1�G

�
r (W )0 � + t (W )0 �a

� a (X;W; 
0) r (W )0
#
:

Now observe that

E

"
1

Q0

"
1�D

1�G
�
r (W )0 � + t (W )0 �a

�# a (X;W; 
0)m1 (Z; �)
0

#

=
1

Q0
E

"
1�D

1�G
�
r (W )0 � + t (W )0 �a

� a (X;W; 
0)
 

D �G
�
r (W )0 �

�
G
�
r (W )0 �

� �
1�G

�
r (W )0 �

��G1

�
r (W )0 �

�
r (W )

!0#

= � 1

Q0
E

"
1�D

1�G
�
r (W )0 � + t (W )0 �a

� a (X;W; 
0)
 

G
�
r (W )0 �

�
G
�
r (W )0 �

� �
1�G

�
r (W )0 �

��G1

�
r (W )0 �

�
r (W )

!0#

= � 1

Q0
E

""
G1

�
r (W )0 �

�
1�G

�
r (W )0 � + t (W )0 �a

�# a (X;W; 
0) r (W )0
#
:

which gives (21).

Details of �nal steps of the derivation of the in�uence function appearing in Theorem 3.1 The in�uence
function (20) consists of four parts. The �rst part, m4 (Zi; �0; �a0; �s0; 
0) �M41M

�1
11 m1 (Zi; �0) ; using expressions

derived previously, equals, after some rearrangement,

D

Q0
f s (Y;W; 
0)� qs (W )g � 1�D

Q0

p0 (W )

1� p0 (W )
f a (X;W; 
0)� qa (W )g (54)

+
D

Q0
qs (W )� 1�D

Q0

p0 (W )

1� p0 (W )
qa (W )

+
1

Q0
E�
�

1�D

1� p0 (W )
qa (W )

���� S�� :
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The second term, M42M
�1
22

�
M21M

�1
11 m1 (Zi; �0)�m2 (Zi; �0; �a0)

�
; equals

��
�
a

Q0

�
E�
��

1�D

1� p0 (W )
� 1
�
p0 (W ) t (W )

���� S��� � 1�D

1� p0 (W )
� 1
�
p0 (W ) t (W )

�
(55)

= � 1

Q0

�
E�
��

1�D

1� p0 (W )
� 1
�
p0 (W ) q�a (W )

���� S��� � 1�D

1� p0 (W )
� 1
�
p0 (W ) q�a (W )

�
= � 1

Q0

�
E�
��

1�D

1� p0 (W )
� 1
�
p0 (W ) qa (W )

���� S��� � 1�D

1� p0 (W )
� 1
�
p0 (W ) qa (W )

�
� 1

Q0

�
E�
��

1�D

1� p0 (W )
� 1
�
p0 (W ) fq�a (W )� qa (W )g

���� S���
+
1

Q0

�
1�D

1� p0 (W )
� 1
�
p0 (W ) fq�a (W )� qa (W )g :

The third term, M43M
�1
33

�
M31M

�1
11 m1 (Zi; �0)�m3 (Zi; �0; �s0)

�
; equals

��s
Q0

�
E�
��

D

p0 (W )
� 1
�
p0 (W ) t (W )

���� S��� � D

p0 (W )
� 1
�
p0 (W ) t (W )

�
(56)

=
1

Q0

�
E�
��

D

p0 (W )
� 1
�
p0 (W ) q�s (W )

���� S��� � D

p0 (W )
� 1
�
p0 (W ) q�s (W )

�
=

1

Q0

�
E�
��

D

p0 (W )
� 1
�
p0 (W ) qs (W )

���� S��� � D

p0 (W )
� 1
�
p0 (W ) qs (W )

�
+
1

Q0
E�
��

D

p0 (W )
� 1
�
p0 (W ) fq�s (W )� qs (W )g

���� S��
� 1

Q0

�
D

p0 (W )
� 1
�
p0 (W ) fq�s (W )� qs (W )g :

Adding (54), (55) and (56) yields

D

Q0
f s (Y;W; 
0)� qs (W )g � 1�D

Q0

p0 (W )

1� p0 (W )
f a (X;W; 
0)� qa (W )g

+
D

Q0
qs (W )� 1�D

Q0

p0 (W )

1� p0 (W )
qa (W )

+
1

Q0
E�
�

1�D

1� p0 (W )
qa (W )

���� S��
� 1

Q0

�
E�
��

1�D

1� p0 (W )
� 1
�
p0 (W ) qa (W )

���� S��� � 1�D

1� p0 (W )
� 1
�
p0 (W ) qa (W )

�
+
1

Q0

�
E�
��

D

p0 (W )
� 1
�
p0 (W ) qs (W )

���� S��� � D

p0 (W )
� 1
�
p0 (W ) qs (W )

�
+Rs (D;W )�Ra (D;W )

=
D

Q0
f s (Y;W; 
0)� qs (W )g � 1�D

Q0

p0 (W )

1� p0 (W )
f a (X;W; 
0)� qa (W )g (57)

+
D

Q0
qs (W )� 1

Q0

�
D

p0 (W )
� 1
�
p0 (W ) qs (W )

�1�D

Q0

p0 (W )

1� p0 (W )
qa (W ) +

1

Q0

�
1�D

1� p0 (W )
� 1
�
p0 (W ) qa (W )

+
1

Q0
E�
�

1�D

1� p0 (W )
qa (W )

���� S��� 1

Q0
E�
��

1�D

1� p0 (W )
� 1
�
p0 (W ) qa (W )

���� S��
+
1

Q0
E�
��

D

p0 (W )
� 1
�
p0 (W ) qs (W )

���� S��+Rs (D;W )�Ra (D;W ) :

13



By linearity of the LP operator and the conditional mean zero property of the score (i.e., E [S�jW ] = 0 implies that
S� and qa (W ) are uncorrelated).

1

Q0
E�
�

1�D

1� p (W )
qa (W )

���� S��� 1

Q0
E�
��

1�D

1� p0 (W )
� 1
�
p0 (W ) qa (W )

���� S��
=

1

Q0
E�
�

1�D

1� p (W )
qa (W )�

�
1�D

1� p0 (W )
� 1
�
p0 (W ) qa (W )

���� S��
=

1

Q0
E�
��

(1�D) (1� p0 (W ))

1� p0 (W )
+ p0 (W )

�
qa (W )

���� S��
= � 1

Q0
E� [ (�1 + (D � p0 (W ))) qa (W )j S�]

� 1

Q0
E�
��

D

p0 (W )
� 1
�
p0 (W ) qa (W )

���� S�� :
We also have that

D

Q0
qs (W )� 1

Q0

�
D

p0 (W )
� 1
�
p0 (W ) qs (W )

=
1

Q0

�
D �

�
D

p0 (W )
� 1
�
p0 (W )

�
qs (W )

=
1

Q0
fD � (D � p0 (W ))g qs (W )

=
p0 (W )

Q0
qs (W )

and

�1�D

Q0

p0 (W )

1� p0 (W )
qa (W ) +

1

Q0

�
1�D

1� p0 (W )
� 1
�
p0 (W ) qa (W )

=
1

Q0

�
� (1�D)

p0 (W )

1� p0 (W )
+

�
1�D

1� p0 (W )
� 1
�
p0 (W )

�
qa (W )

=
1

Q0

�
� (1�D)

p0 (W )

1� p0 (W )
+

�
(1�D)

p0 (W )

1� p0 (W )
� p0 (W )

��
qa (W )

= �p0 (W )

Q0
qa (W ) :

Using these results we get (57), less the inverse Jacobian component, equal to

D

Q0
f s (Y;W; 
0)� qs (W )g � 1�D

Q0

p0 (W )

1� p0 (W )
f a (X;W; 
0)� qa (W )g

+
p0 (W )

Q0
fqs (W )� qa (W )g

+
1

Q0
E�
��

D

p0 (W )
� 1
�
p0 (W ) fqs (W )� qa (W )g

���� S��
+Rs (D;W )�Ra (D;W ) ;

and hence the claimed form of �AST (Z; 
0) :
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Derivation of (30). To derive (30) we manipulate:

E
��

1�D

1� p0 (W )
� 1
�
p0 (W ) fq�a (W )� qa (W )g S0�

�
= E

��
1�D

1� p0 (W )
� 1
�
p0 (W ) fq�a (W )� qa (W )g D � p0 (W )

p0 (W ) (1� p0 (W ))
G1

�
r (W )0 �0

�
r (W )0

�
= E

��
1�D � (1� p0 (W ))

1� p0 (W )

�
p0 (W ) fq�a (W )� qa (W )g D � p0 (W )

p0 (W ) (1� p0 (W ))
G1

�
r (W )0 �0

�
r (W )0

�
= �E

�
D � p0 (W )

1� p0 (W )
p0 (W ) fq�a (W )� qa (W )g D � p0 (W )

p0 (W ) (1� p0 (W ))
G1

�
r (W )0 �0

�
r (W )0

�
= �E

�
fq�a (W )� qa (W )g (D � p0 (W ))2

(1� p0 (W ))2
G1

�
r (W )0 �0

�
r (W )0

�
= �E

�
fq�a (W )� qa (W )g p0 (W )

1� p0 (W )
G1

�
r (W )0 �0

�
r (W )0

�
:

Derivation of (31). To derive (31) we begin by calculating

V (Rs (D;W )) =
1

Q2
0

E

"�
D

p0 (W )
� 1
�2

p0 (W )2 (qs (W )� q�s (W )) (qs (W )� q�s (W ))
0

#

=
1

Q2
0

E
�
p0 (W ) (1� p0 (W )) (qs (W )� q�s (W )) (qs (W )� q�s (W ))

0�
V (Ra (D;W )) =

1

Q2
0

E

"�
1�D

1� p0 (W )
� 1
�2

p0 (W )2 (qa (W )� q�a (W )) (qa (W )� q�a (W ))
0

#

=
1

Q2
0

E
�
(D � p0 (W ))2

p0 (W )2

(1� p0 (W ))2
(qa (W )� q�a (W )) (qa (W )� q�a (W ))

0
�

=
1

Q2
0

E
�
p0 (W )3

1� p0 (W )
(qa (W )� q�a (W )) (qa (W )� q�a (W ))

0
�

C (Rs (D;W ) ; Ra (D;W )) =
1

Q2
0

E
��

D

p0 (W )
� 1
��

1�D

1� p0 (W )
� 1
�
p0 (W )2 (qs (W )� q�s (W )) (qa (W )� q�a (W ))

0
�

= � 1

Q2
0

E
��

D

p0 (W )
+

1�D

1� p0 (W )
� 1
�
p0 (W )2 (qs (W )� q�s (W )) (qa (W )� q�a (W ))

0
�

= � 1

Q2
0

E
�
p0 (W )2 (qs (W )� q�s (W )) (qa (W )� q�a (W ))

0�
;

which then gives (assuming that dim (
0) = 1 to keep the expressions compact)

V (Rs (D;W )�Ra (D;W ))

= E
�
p0 (W )2

Q2
0

�
1� p0 (W )

p0 (W )
(qs (W )� q�s (W )) (qs (W )� q�s (W ))

0

+
p0 (W )

1� p0 (W )
(qa (W )� q�a (W )) (qa (W )� q�a (W ))

0

+2 (qs (W )� q�s (W )) (qa (W )� q�a (W ))
0	�

= E
�
1

Q2
0

p0 (W )2

p0 (W ) (1� p0 (W ))

�
(1� p0 (W ))2 (qs (W )� q�s (W )) (qs (W )� q�s (W ))

0

+p0 (W )2 (qa (W )� q�a (W )) (qa (W )� q�a (W ))
0

+2p0 (W ) (1� p0 (W )) (qs (W )� q�s (W )) (qa (W )� q�a (W ))
0	�

=
1

Q2
0

E
�

p0 (W )

1� p0 (W )
f(1� p0 (W )) (qs (W )� q�s (W )) + p0 (W ) (qa (W )� q�a (W ))g2

�
as asserted.
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