
Supplement to “Analyzing Social Experiments as Implemented:

A Reexamination of the Evidence From the HighScope Perry

Preschool Program”: Web Appendices

James Heckman, Seong Hyeok Moon, Rodrigo Pinto,

Peter Savelyev, and Adam Yavitz1

University of Chicago

July 22, 2010

1James Heckman is Henry Schultz Distinguished Service Professor of Economics at the University of Chicago,
Professor of Science and Society, University College Dublin, Alfred Cowles Distinguished Visiting Professor, Cowles
Foundation, Yale University, and Senior Fellow, American Bar Foundation. Seong Hyeok Moon, Rodrigo Pinto,
Peter Savelyev and Adam Yavitz are graduate students at the University of Chicago. A version of this paper was
presented at a seminar at the HighScope Perry Foundation, Ypsilanti, Michigan, December 2006; at a conference
at the Minneapolis Federal Reserve in December 2007; at a conference on the role of early life conditions at the
Michigan Poverty Research Center, University of Michigan, December 2007; at a Jacobs Foundation conference at
Castle Marbach, April 2008; at the Leibniz Network Conference on Noncognitive Skills in Mannheim, Germany, May
2008; at an Institute for Research on Poverty conference, Madison, Wisconsin, June 2008; and at a conference on
early childhood at the Brazilian National Academy of Sciences, Rio de Janeiro, Brazil, December 2009. We thank
the editor and two anonymous referees for helpful comments which greatly improved this draft of the paper. We
have benefited from comments received on early drafts of this paper at two brown bag lunches at the Statistics
Department, University of Chicago, hosted by Stephen Stigler. We thank all of the workshop participants. In
addition, we thank Amanda Agan, Mathilde Almlund, Joseph Altonji, Ricardo Barros, Dan Black, Steve Durlauf,
Chris Hansman, Tim Kautz, Paul LaFontaine, Devesh Raval, Azeem Shaikh, Jeff Smith, and Steve Stigler for helpful
comments. Our collaboration with Azeem Shaikh on related work has greatly strengthened the analysis in this paper.
This research was supported in part by the American Bar Foundation, the Committee for Economic Development;
by a grant from the Pew Charitable Trusts and the Partnership for America’s Economic Success; the JB & MK
Pritzker Family Foundation; Susan Thompson Buffett Foundation; Mr. Robert Dugger; and NICHD R01HD043411.
The views expressed in this presentation are those of the authors and not necessarily those of the funders listed here.
Supplementary materials for this paper may be found at http://jenni.uchicago.edu/Perry/.

http://jenni.uchicago.edu/Perry/


Contents

A The Perry Preschool Program Experiment and Curriculum 2

B The Basic Evaluation Model 3

C Testing Methodology 4

C.1 Setup and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

C.2 Conditional Exchangeability and Independence under the Randomization Hypothesis . . . . . 5

C.3 Restricted Permutation Groups and Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

C.4 The Test Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

C.5 Formal Permutation Testing with Mid-p-Values . . . . . . . . . . . . . . . . . . . . . . . . . . 14

D Multiple-Hypothesis Testing with Stepdown 16

D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

D.2 Overview of Multiple-Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

D.3 Subset Pivotality and Free Stepdown Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 18

D.3.1 The Free Stepdown Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

D.4 Stepdown Multiple-Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

D.5 The Stepdown Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E Asymptotic and Permutation p-Values 24

F Sensitivity Analysis 26

G Analysis of Test Scores 32

H Representativeness of the Perry Sample 35

I The Role of the Local Economy in Explaining Gender Differences in Treatment Out-

comes 43

1



A The Perry Preschool Program Experiment and Curriculum

Preschool Overview During each wave of the experiment, each preschool class consisted of 20–25 children

of ages 3 to 4. The first wave admitted 4-year-olds who only received 1 year of treatment. The last wave was

taught alongside a group of 3-year-olds who were not included in the Perry study. Classes were 2.5 hours

every weekday during the regular school year (mid-October through May). The preschool teaching staff of

four produced a child-teacher ratio ranging from 5 to 6.25 over the course of the program, with teaching

positions filled by former public-school teachers. Teachers had special training for tutoring disadvantaged

children and were “certified in elementary, early childhood, and special education” (Schweinhart, Barnes,

and Weikart, 1993, p. 32).

Home Visits Weekly home visits lasting 1 1
2 hours were conducted by the preschool teachers. The purpose

of these visits was to “involve the mother in the educational process,” and “implement the curriculum in the

home,” (Schweinhart, Barnes, and Weikart, 1993, p. 32). By way of encouraging the mothers’ participation,

teachers also helped with problems arising in the home during the visit. Occasionally, these visits took the

form of field trips to stimulating environments, such as a zoo.

Curriculum The Perry Preschool curriculum was based on the concept of active learning, which is cen-

tered around play that is based on problem-solving and guided by open-ended questions. Children were

encouraged to plan, carry out, and then reflect on their own activities. The topics in the curriculum were

not based on specific facts or topics, but rather on key developmental factors related to planning, expression,

and understanding. These factors were then organized into 10 topical categories, such as “creative represen-

tation,” “classification” (recognizing similarities and differences), “number,” and “time.”1 These educational

principles were reflected in the types of open-ended questions asked by teachers: for example,“What hap-

pened? How did you make that? Can you show me? Can you help another child?” (Schweinhart, Barnes,

and Weikart, 1993, p. 33).

As the curriculum was developed over the course of the program, its details and application varied.

While the first year involved “thoughtful experimentation” on the part of the teachers, experience with the

program and a series of seminars during subsequent years led to the development and systematic application

of teaching principles with “an essentially Piagetian theory-base.” During the later years of the program,

all activities took place within a structured daily routine intended to help children “to develop a sense of

responsibility and to enjoy opportunities for independence” (Schweinhart, Barnes, and Weikart, 1993, pp.

32–33).

1For a full list, see Schweinhart, Barnes, and Weikart (1993).
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B The Basic Evaluation Model

A standard model of program evaluation describes the observed outcome Yi by Yi = DiYi,1 + (1−D)Yi,0,

where (Yi,1, Yi,0) are potential outcomes corresponding to treatment and control status for agent i, respec-

tively, and Di is an assignment indicator: Di = 1 if treatment occurs, Di = 0 otherwise. The focus of this

paper is on testing the null hypothesis of no treatment effect or, equivalently, that treatment and control

outcome distributions are the same: Yi,1
d= Yi,0, where d= denotes equality in distribution.

An evaluation problem arises in standard observational studies because either Yi,1 or Yi,0 is observed, but

not both. As a result, in nonexperimental samples, the simple difference in means between treatment and

control groups, E (Yi,1 | Di = 1)− E (Yi,0 | Di = 0), is not generally equal to the average treatment effect,

E(Yi,1− Yi,0), or to the treatment effect conditional on participation, E (Yi,1 − Yi,0 | Di = 1). Bias can arise

from participant self-selection into the treatment group. Rigorous analysis of treatment effects distinguishes

impacts due to participant characteristics from impacts due to the program itself.

Randomized experiments solve the selection bias problem by inducing independence between (Yi,0, Yi,1)

and Di, interpreted as a treatment assignment indicator, (Yi,0, Yi,1) ⊥⊥ Di, where ⊥⊥ denotes independence.

Selection bias can be induced by randomization compromises, which occur when the implemented random-

ization differs from an ideal randomization protocol in a way that threatens the statistical independence

of treatment assignments Di and the joint distribution of counterfactual outcomes (Yi,0, Yi,1). A common

feature of compromised experiments is reassignment of treatment and control status by a method different

from an ideal randomization. Randomization for the Perry experiment was compromised by the reassign-

ment of treatment and control labels after initial draws produced an imbalanced distribution of pre-program

variables. This creates a potential for biased inference, as described in the previous sub-section.
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C Testing Methodology

This paper develops a framework for small-sample inference based on permutation testing conditional on a

given sample. This section specifies our notation and the theoretical framework for our testing procedures.

C.1 Setup and Notation

General We use calligraphic capital letters to denote sets. Capital letters denote two different entities:

either the maximum index of a set of natural numbers or random variables. The usage should be clear

from the context. We use lowercase letters to index elements of sets. We represent a vector of pooled

elements of a set with parentheses followed by its respective indexing. As an example, let [V1, . . . , VN ] be

the N -dimensional vector V indexed by the set V = {1, . . . , N}, and be represented by V ≡ (Vv; v ∈ V).

Treatment Assignment The set of indices of Perry participants is I, where I = {1, . . . , I} and I = 123.

Let Di be the treatment assignment for participant i ∈ I, where Di = 1 if i is treated and Di = 0 if not.

Let D = (Di; i ∈ I) be the vector of random assignments.

Outcomes and Hypotheses We represent outcome k by the random vector Y k, which represents an I-

dimensional vector of values of variables Y ki for participants i, Y k = (Y ki ; i ∈ I). The index set of outcomes

from 1 to K is represented by K = {1, . . . ,K}. Our aim is to test the null hypothesis of no treatment effect

for outcome Y k. This hypothesis is written as Hk : Y k ⊥⊥ D, that is, Y k is independent of D. The joint

null hypothesis of no treatment effect for outcomes Y k; ∀ k ∈ K, is represented by HK ≡ ∩k∈KHk.

Permutation A transformation of D that permutes the position of its elements is represented by gD and

is defined as

gD =
(
D̃i; i ∈ I | D̃i = Dπg(i),where πg is a permutation function (i.e., πg : I → I is a bijection)

)
.

The permutation function πg is indexed by g. To simplify notation, we represent the permutation that

acts on the data by g. This transformation can be applied to any data that are indexed by I. In the

main text, we use the permutation over the treatment assignment D, where gD is the vector of permuted

assignments. Equivalently, a permutation can be written as a linear transformation gD ≡ BgD, where Bg

is a permutation matrix2 that swaps the elements of any variable D according to the permutation g.

2A permutation matrix A of dimension L is a square matrix A ≡ (aij) , i, j = 1, . . . , L, where each row and each column
has a single element equal to 1 and all other elements equal to 0 within the same row or column. Formally, aij ∈ {0, 1},∑L

j=1 aij = 1, and
∑L

i=1 aij = 1 for all i, j.
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The Randomization Hypothesis Permutation-based inference seeks to test the randomization hypoth-

esis, which states that the joint distribution of some outcome Y is invariant under permutations g ∈ G , that

is, that outcome distributions are invariant to the swap of its elements according to g. We represent the

set of valid permutations for which the randomization hypothesis holds by G , so ∀g ∈ G , (Y, gD) d= (Y,D),

where, as in the text, d= means equality in distribution.

Interpreting the Randomization Hypothesis The hypothesis of no treatment effect for randomized

trials is equivalent to the hypothesis of independence between treatment assignments D and outcome Y , as

noted in Section 4.3. Suppose (Y, gD) d= (Y,D) holds. Define T (Y,D) as our test statistic. We assume that

it is invariant to the relative ordering of the pair (Yi, Di) in the vector (Y,D). Then permuting Y instead

of D generates the same distribution of the test statistic T (Y,D). Stated differently, the distribution of the

test statistic T (Y,D) will not change if the outcome positions of some treatment and control participants

are swapped in accordance with permutations g ∈ G . Equivalently, we can write T (Y,D) d= T (gY,D).

C.2 Conditional Exchangeability and Independence under the Randomization

Hypothesis

An idealized randomization generates treatment assignments D that are unconditionally independent of

outcomes Y and pre-program variables X = (Xi, i ∈ I). When randomization is compromised, the ran-

domization hypothesis must be altered to account for the failure of the unconditional independence between

treatment assignments D and outcomes Y .

The randomization procedure in the Perry experiment is compromised by reassignment of treatment

labels to balance pre-program variables across treatments and controls (see Section 2 of the main text).

The randomization protocol ranked children by IQ score and then allocated treatment status to either all

odd-ranked or all even-ranked children and control status to the rest. Alterations to this basic assignment

rule occurred from two types of treatment-assignment swaps between individuals. The first type of swap

was intended to balance observable pre-program variables (namely, SES index and gender). The second

type of swap was made after the designation of treatment status, and was intended to remove children with

working mothers from the treatment group due to logistical problems associated with their participation in

the treatment program. Compromises of the Perry randomization protocol embody both types of swaps.

The latter compromises the independence between D and X, and may also create a potential dependence

between treatment status D and some unobserved variables V = (Vi; i ∈ I) as well.

Formally, treatment assignments can be said to have been generated by a randomization mechanism

described by a deterministic function M . The arguments of M are the variables that can affect treatment
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assignment. Define R as a random variable that describes the outcome of a randomization device (in the

Perry study, the flip of a coin). Prior to determining the realization of R, two groups were formed on the

basis of observed variables X (e.g., on IQ). Then R was realized by a randomization device. By construction,

the distribution of R does not depend on the composition of the two groups. After the realization of R, some

individuals were swapped across initially assigned treatment groups based on some X values (e.g., mother’s

working status) and possibly on some unobserved (by the economist) variables V as well. By assumption,

R is independent of (X,V ), that is, R ⊥⊥ (X,V ). M captures all aspects of the treatment assignment

mechanism. In this notation, treatment assignments D can be written as

D = M(R,X, V ),

where M is a deterministic vector-valued function.

As a concrete example, suppose that there was only one child per family in Perry and there were no

swaps after initial ranking by IQ score. Denote ĨQ as vector of indicator variables equal to 1 for odd-ranked

IQs within each wave. The Perry treatment assignment mechanism is characterized as

D =
5∑

w=1

1[W = w]�
(

1[ĨQ = 1]bw + 1[ĨQ = 0](1− bw)
)
,

where (b1, . . . , b5) are independent Bernoulli random variables representing the outcomes of the coin toss

used to assign treatment status after the initial IQ-score ranking and � is a Hadamard product.3 1[·] is an

indicator function.

In Section 4.2, we assume that the randomization procedure is not based on unobserved variables V . If

unobserved variables V were not used to assign treatment status, then the relevant information on (X,V )

can be represented by the observed characteristics X. Program participants are characterized by (X,V ). X,

V , and R generate D. Any permutation g of the elements in (X,V ), conditioned on R, generates the same

permutation of D:

(M(g(X,V ), R) = gD)|R. (C-1)

This logic leads to the following proof of the exchangeability of treatment assignments, conditional on X.

Theorem C.1. Treatment assignments D are exchangeable for participants with the same X if the random-

ization does not rely on the unobserved variable V of the participants.

Proof. Let GX be the set of permutations among participants with the sameX. In this case, gX = X ∀ g ∈ GX .
3This is an element-wise product.
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By assumption, D = M(R,X), so ∀ g ∈ GX ,

Pr(D ∈ A) = E
(

E
(
1[M(R,X) ∈ A]|R

))
= E

(
E
(
1[M(R, gX) ∈ A]|R

))
= E

(
E
(
1[gD ∈ A]|R

))
= Pr(gD ∈ A),

where GX is defined by

GX =
{
g; πg : I → I is a bijection and Xi = Xπg(i), ∀ i ∈ I

}
.

Conditional Independence Another consequence of the randomization protocol M is independence

between D and (Y0, Y1), conditional on X. This follows from the observation that R is independent of

(Y0, Y1) by construction. The following theorem proves the conditional independence (Y0, Y1) ⊥⊥ R | X,

assuming that D is generated by (R,X) via M and that X is observed:

Theorem C.2. Assuming that D = M(X,R), (Y1, Y0) ⊥⊥ D | X.

Proof. We have

(Y1, Y0) ⊥⊥ R | X (by assumption)

⇒ (Y1, Y0) ⊥⊥ φ(R) | X (for any particular function φ)

⇒ (Y1, Y0) ⊥⊥M(R,X) | X

∴ (Y1, Y0) ⊥⊥ D | X.

This result justifies the following assumption:

Assumption A-1. (Y1, Y0) ⊥⊥ D | X.

The assumption justifies matching as a method to correct for compromises in the randomization protocol.

Defining the Hypothesis of No Treatment Effect The null hypothesis of no treatment effect states

that the distribution of treatment outcomes Y1 and control outcomes Y0 is equivalent: Y1
d= Y0. Likewise,
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in non-compromised experiments, treatment assignments D are independent of outcomes: (Y1, Y0) ⊥⊥ D. As

noted in Section 4.2, these two statements imply unconditional independence between observed outcomes Y

and treatment assignments: Y ⊥⊥ D.4

However, compromised randomization precludes the use of this statement of the null hypothesis of un-

conditional independence (Y ⊥⊥ D) for treatment effect inference. To understand why, first recall that

compromised randomization means that treatment assignments D are not independent of covariates X.

Now, suppose that these X impact outcomes. In this case, a relationship between Y and D may be induced

via X regardless of whether any real treatment effect exists. Such an induced dependence between Y and

D would invalidate unconditional independence, even under the null hypothesis of no treatment effect, and

would render this representation of the null hypothesis unsuitable as a basis for testing.

In summary, under our maintained assumptions and compromised randomization, (Y1, Y0) ⊥⊥ D | X

holds, but (Y1, Y0) ⊥⊥ D may not. Thus, a natural way to test the null hypothesis is to condition on X:

Hypothesis H-1. (Y1
d= Y0) | X.

As stated in Section 4.2, Assumption A-1 and Hypothesis H-1 together imply that Y ⊥⊥ D | X, which

is the hypothesis of no treatment effect that we seek to test.

Useful Exchangeability Properties for Testing Procedures The mechanics of testing the hypothesis

Y ⊥⊥ D | X rely on the exchangeability properties of the joint distribution (Y,D). The following theorem

shows that the joint distribution of (Y,D) is invariant across the set of permutations GX that swap treatment

assignments D within the same strata of X values, (Y,D) d= (Y, gD).

Theorem C.3. Suppose that the randomization is as described in Theorem C.1. Under Hypothesis H-1,

the joint distribution of outcomes Y and treatment assignments D is invariant under permutations GX of

treatment assignments within strata formed by values of X: (Y,D) d= (Y, gD) ∀ g ∈ GX .

Proof. Let GX be the set of permutations within participants that share the same data on X. Then, by

Theorem C.1, D d= gD conditional on X. Moreover, Theorem C.2 shows that (Y1, Y0) ⊥⊥ D | X. Thus, for

4The proof is omitted for reasons of brevity, although the proof of a similar fact can be found in Section 4.2.
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all g ∈ GX we can write

Pr( (Y, gD) ∈ (AY , AD)|X) = E
(
1[Y ∈ AY ]� 1[gD ∈ AD]|X

)
= E

(
1[D � Y1 + (1−D)� Y0 ∈ AY ]� 1[gD ∈ AD]|X

)
= E

(
1[Y0 ∈ AY ]� 1[gD ∈ AD]|X

)
by Yi,1

d= Yi,0 ∀i ∈ I, due to Hypothesis H-1

= E
(
1[Y0 ∈ AY ]|X

)
� E

(
1[gD ∈ AD]|X

)
by (Y1, Y0) ⊥⊥ D | X

= E
(
1[Y0 ∈ AY ]|X

)
� E

(
1[D ∈ AD]|X

)
by Theorem C.1, D d= gD conditional on X

= Pr(Y ∈ AY |X) Pr(D ∈ AD|X)

= Pr((Y,D) ∈ (AY , AD)|X)

by Y ⊥⊥ D|X.

Appendix C.5 provides detailed information on how to use Theorem C.3 to design a testing procedure.

One particular consequence of (Y,D) d= (Y, gD) affects the use of test statistics. As mentioned, if a test

statistic relies only on the relationship between D and Y (that is, (Yi, Di), regardless of its position in the

matrix (Y,D)), then permuting D is equivalent to permuting Y for testing purposes. For example, suppose

we test using Student’s t. Then the value of the t-statistics computed after a permutation of two elements of

D is the same as if we had permuted the associated elements of Y instead. Put another way, using (gY,D)

instead of (Y, gD) would provide equivalent inference in this setting.

C.3 Restricted Permutation Groups and Sampling

Under the randomization hypothesis of no treatment effect, outcomes for treatments and controls are ex-

changeable within each stratum X = x. This section formally defines the procedure.

Partitioning the Data Suppose without loss of generality that the data on the pre-program variables

X take on J distinct values, say {a1, a2, . . . , aJ}. Let the index set I for participants be partitioned into J

disjoint sets Ij and let j ∈ J ≡ {1, . . . , J}, where each set Ij is defined by the set of participants that share

the same value aj for pre-program variables X. Recall that xi is the value of the pre-program variable X
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for participant i. We can define Ij by:

Ij ≡ {i ∈ I; xi = aj}.

By definition, the union of the disjoint sets Ij over j ∈ J is equal to the full set of participants I, which is

the definition of a partition. Alternatively, we can define the partition of the participants by

I =
J⋃
j=1

Ij , where xi = xi′ ⇔ i, i′ ∈ Ij , for some j.

Definition of a Restricted Permutation Group Under our assumptions, the set of admissible per-

mutations g comprises those that only permute indices of participants who share the same values on the

pre-program variables. Notationally, permutations can only occur within each set Ij , that is, among par-

ticipants whose values of pre-program variables are equal to aj . We call these restricted permutations. A

formal definition of the restricted permutation set GX can be written as

g ∈ GX ⇔ πg : I → I is such that ∀ i ∈ Ij , πg(i) ∈ Ij for all j ∈ J .

This definition says that if a permutation g operates on the participant index i, which belongs to some

partition set Ij , then the permutation image πg(i) of that participant index also belongs to the same partition

set Ij . The definition allows for multiple swaps in different partition sets, but all swaps are restricted to occur

only within each partition set. For example, suppose that I1 = {1, 2} and I2 = {3, 4}. Then a permutation

g for the set I1 and I2 that does not permute the elements in other sets can be defined by

πg : I → I; πg ≡


πg(i) = i ∀ i ∈ I \

(
I1 ∪ I2

)
;

πg(1) = 2;πg(2) = 1;

πg(3) = 4;πg(4) = 3.

Alternatively, the permutation g′ defined by

πg′ : I → I; πg′ ≡


πg′(i) = i ∀ i ∈ I \

(
I1 ∪ I2

)
;

πg′(1) = 1;πg′(2) = 3;

πg′(3) = 2;πg′(4) = 4,

permutes the index across partition sets and thus it does not satisfy the conditions required for inclusion in

GX . Recall that we can also write the restricted permutation in terms of a linear transformation Bg such
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that BgD ≡ gD, where Bg is the permutation matrix that imposes the restricted permutation g.

Sampling Procedure Among all possible restricted permutations GX defined in the previous subsection,

we select as valid permutations only the ones that result in equal label assignments for siblings. In other

words, gD assigns the same treatment labels to all members of the same family. A sampling procedure

randomly selects J draws of permutations g ∈ GX with replacement. Consequently, we have J permutation

matrixes Bg that correspond to each of the draws of the permutation g. We index these J permutations as

gj , where j = 1, . . . , J . The sample data are described by the identity permutation, which we define as the

(J + 1)st permutation (notationally, gJ+1).

1. To respect the non-random assignment of siblings, we use permutations that assign the younger siblings

to the same group to which the elder siblings were assigned. In this step we follow the randomization

protocol exactly. Further steps of the randomization protocol are approximated, as described below.

2. The IQ pairing and pre-randomization swaps are directed at balancing IQ, gender, and SES index. We

forbid permutations between genders as well as between the top and bottom half of the SES index.

Sensitivity analysis reveals that inference is robust to this choice of percentiles.

3. The post-randomization swaps led to unbalanced working status of mothers. However, we are unable

to restrict permutations based on mother’s working status due to data limitations, although we use it

as a linear covariate (see Appendix F for a discussion).

Simple Permutation Test Procedure Our permutation test is based on the following algorithm:

1. Sample a permutation g ∈ GX with replacement.

2. Compute a test statistic for the permutation draw, based on data modified by the permutation matrix

Bg.

3. Repeat Steps 1 and 2 to simulate the permutation distribution of the test statistic.

After a “reasonable” number of draws, we compute a test statistic (e.g., Student’s t for difference in

means between the treatment and the control groups) using the simulated permutation distribution. An

example of a permutation-based p-value is the fraction of the computed permutation distribution that is

greater than the statistic computed using the original unpermuted data. We use the mid-p-value described

in Appendix C.5. The next section describes the construction of our test statistic in greater detail.
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C.4 The Test Statistic

Conditional Inference in Small Samples As the Perry experiment has a sample of size 123, partitioning

participants into detailed categories based on the five pre-program variables is impractical. Restricted

permutation orbits would have so few observations as to preclude reliable inference. We obtain “reasonably-

sized” restricted permutation orbits by imposing the additional assumption of a linear relationship between

certain pre-program variables and outcomes. To this end, we divide the vector X into two parts: variables

X [L], which are assumed to have a linear relationship with Y , and the remaining variables X [N ], whose

relationship with Y is unconstrained. Using this partition, write X = [X [L], X [N ]]. The model for outcomes

can be written as Y = δX [L] + f(X [N ], ε), where ε is an error term assumed to be independent of X [L] and

X [N ].

Linearity Define Ỹ = Y − δX [L]. Under the null hypothesis of no treatment effect, the exchangeability

of Ỹ holds among participants who share the same value of X [N ] even if they have different values of X [L].

Formally, we have that (Ỹ , D) d= (Ỹ , gD); g ∈ GX[N] . As a result, we do not have to partition the data for

all possible combinations of X [L] and X [N ] — we only partition based on values of X [N ], the variables not

assumed to have a linear relationship with the outcomes Y . If δ were known, permuting Ỹ = Y − δX [L]

(instead of Y ) within the groups of participants that share the same pre-program variables X [N ] would solve

the problem of linear conditioning on X [L]. However, δ is unknown. We address this problem by using an

approach due to Freedman and Lane (1983), which entails permuting the residuals from the regression of

Y on X [L] in orbits that share the same values of X [N ], leaving D fixed. Specifically, Freedman and Lane

(1983) use a conditional exchangeability principle and assume a fully linear model,

Y = f(X,D(X), ε) = δX + ∆D + ε,

where ε is independent of X. As previously noted, if δ is known, we can use the residuals Ỹ = Y − δX in

a permutation test of the null ∆ = 0. However, δ is generally not known and has to be estimated. The

Freedman-Lane procedure assumes exchangeability of errors under the null, that is, that the errors ε of the

regression Y = δX + ε are exchangeable under the null of no treatment effect: (H0 : ∆ = 0). We capture the

concept of exchangeable errors in the Freedman-Lane procedure by permuting the residuals from the linear

regression of Y on X [L] that excludes D.5 We account for the non-linear relationship between Y and X [N ]

by using the permutation matrix Bg associated with restricted permutations GX[N] , which only permutes

participants who share the same values of pre-program variables X [N ]. Notationally, define the residuals
5Permuting D and comparing test statistics for the different permutations assumes no statistical relationship between X[L]

and D. Namely, it assumes no correlation between X[L] and D, which seems unreasonable.
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from permutation g as ε̃g such that

ε̃g ≡ B′gQXY

= B′g(Y − Ŷ ),

where Ŷ is the estimated Y and the matrix QX is defined as QX ≡ (I − PX), where I is the identity matrix

and

PX ≡ X [L]((X [L])′X [L])−1(X [L])′.

Matrices PX and QX are well known linear transformations: PX is a linear projection in the space generated

by the columns of X [L]. QX is the projection into the orthogonal space generated by X [L]. We can write the

Ỹg = PXY + ε̃g for a new outcome that preserves the linear relationship between X and Y , but permutes

the errors. Use Ỹg as the permuted outcome data for permutation g and compute the new linear coefficient

estimated for the dummy variable of treatment assignment D. This parameter, (D′QXD)−1
D′QX Ỹg, is the

Freedman-Lane coefficient for permutation g.6 We denote by ∆j the Freedman-Lane coefficient associated

with outcome Y and permutation gj (indexed by j), that is, ∆j ≡ (D′QXD)−1D′QXB
′
gj
QXY .

In a series of Monte Carlo studies, Anderson and Robinson (2001) compare the distributions of the test

statistics under various approximate permutation methods with the distribution from a conceptually exact

permutation method. All approximate methods produce permutation distributions under H0 that converge

to the same distribution. However, only the Freedman-Lane procedure has an expected correlation of 1

with the exact test, while the other methods are found to have smaller correlations. Thus, the Freedman-

Lane procedure comes closest to attaining the results of an exact test (where δ is known). In a series of

Monte Carlo experiments Anderson and Robinson show, for samples of the size used in this paper, that

the Freedman-Lane size is very close to the exact size where δ is known. Another paper, by Anderson and

Legendre (1999), conducts extensive Monte Carlo simulations and shows that the Freedman-Lane procedure

generally gives the best results in terms of Type-I error and power. On the basis of these studies, we use the

Freedman-Lane coefficient as our primary test statistic.
6Observe that (

D′QXD
)−1

D′QX Ỹg =
(
D′QXD

)−1
D′QX

[
X[L]

(
(X[L])′X[L]

)−1
X[L]Y + B′gQXY

]
=
(
D′QXD

)−1
D′QX

(
B′gQXY

)
.
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C.5 Formal Permutation Testing with Mid-p-Values

In this section, we formally define a mid-p-value under permutation testing and prove that it constitutes a

valid level-α test.7

Following the notation of Section 4.4, suppose that we have a set of J + 1 permutations gj , test statistics

∆j computed for each permutation, and ranks T j =
∑J+1
l=1 1[∆j > ∆l]/(J + 1) for those test statistics.8

Then mid-p-values may be defined as

p ≡ 1
2(J + 1)

(
J+1∑
l=1

1[T l > T J+1] +
J+1∑
l=1

1[T l > T J+1]

)
.

To accurately describe our testing procedure, we need a few more definitions. Fix a nominal level for the

testing procedure at α and define

a = (J + 1)− dα(J + 1)e,

where dα(J + 1)e denotes the largest integer less than or equal to α(J + 1). Let the ordered values of

T j ; j = 1, . . . , J + 1, be represented by T (1), . . . , T (J+1). Define α0 as the percentage of test statistics T j

that are strictly greater than T (a):

α0 ≡
1

(J + 1)

J+1∑
j=1

1[T j > T (a)].

Define α1 by the percentage of the test statistics T j that is greater than or equal to T (a):

α1 ≡
1

(J + 1)

J+1∑
j=1

1[T j > T (a)].

Observe that α ∈ [α0, α1]. Let the interval [0, 1] be partitioned into the three intervals [0, α0), [α0, α1],

and (α1, 1]. Our testing procedure assigns different rejection probabilities whenever p lies in each one of these

intervals. Namely, we reject the null hypothesis if p ∈ [0, α0), we do not reject if p ∈ (α1, 1], and we reject

with probability α−α0
α1−α0

, if p ∈ [α0, α1]. We reject the null hypothesis with probability τ , where τ is given by

τ ≡ 1[p < α0](1) + 1[p > α1](0) + 1[p ∈ [α0, α1]]
(
α− α0

α1 − α0

)
.

The following theorem shows that this testing procedure yields a level-α test.
7Note that in this section, we use the fact that, under the randomization hypothesis, any real-valued statistic of the permuted

data (i.e., pj , T j , j = 1, . . . , J + 1) that provides J + 1 distinct values as g varies in G is uniformly distributed across these
J + 1 values. For more details, see Lehmann and Romano (2005, Chapter 15).

8∆j may be substituted for T j without affecting single-hypothesis-testing results, but Romano and Wolf (2005) recommend
rank statistics to increase comparability for multiple-hypothesis testing.
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Theorem C.4. Suppose that the randomization hypothesis holds. Let J > 0 and 0 < α < 1 be given.

Then the test that rejects H0 : Y ⊥⊥ D|X with probability τ defined above satisfies Pr{reject H0 | X} =

α whenever H0 is true.

Proof. We have

Pr{reject H0 | X} = Pr{τ = 1}

= E[τ ]

= E

[
1[p < α0] + 1[p ∈ [α0, α1]]

(
α− α0

α1 − α0

)]

= E

[
1[pJ+1 < α0] + 1[pJ+1 ∈ [α0, α1]]

(
α− α0

α1 − α0

)]
(because p = pJ+1)

=

[
1

J + 1

J+1∑
j=1

1[pj < α0] + 1[pj ∈ [α0, α1]]
(
α− α0

α1 − α0

)]
(because pj is uniformly distributed across J + 1 permutation values)

=

[
1

J + 1

( J+1∑
j=1

1[T j > T (a)] +
J+1∑
j=1

1[T j = T (a)]
(
α− α0

α1 − α0

))]

=

[∑J+1
j=1 1[T j > T (a)]

J + 1
+

(∑J+1
j=1 1[T j > T (a)]−

∑J+1
j=1 1[T j > T (a)]

)
J + 1

(
α− α0

α1 − α0

)]

=

[
α0 + (α1 − α0)

(
α− α0

α1 − α0

)]
= α.

The cardinality of the set G can be so large that computing p-values over all elements becomes infeasible.

In this case, we employ a test that uses random samples of J permutations g ∈ G plus the identity permuta-

tion as the J + 1 draw.9 By construction, a test that uses random sampling of elements in the permutation

set has the same expectation as a test that uses all elements in the permutation set.

9Recall that draw J + 1 is the sample data.
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D Multiple-Hypothesis Testing with Stepdown10

D.1 Introduction

In multiple-hypothesis testing, there are two generalized Type-I errors: the familywise error rate (FWER),

which is the probability of rejecting any true null hypothesis, and the false discovery proportion (FDP), which

is the proportion of true null hypotheses rejected. The stepdown algorithm described below exhibits strong

FWER control: FWER is held at or below a specified level regardless of the true configuration of the full set

of hypotheses (Lehmann, Romano, and Shaffer, 2005).11 We test a number of hypotheses simultaneously,

mandating the choice of FWER as a criterion. FDP is more appropriate in the context of a very large number

of hypotheses, such as tens or hundreds of hypotheses, a common occurrence in fields such as genomics.

D.2 Overview of Multiple-Hypothesis Testing

Two traditional but conservative methods for multiple-hypothesis testing are the Bonferroni and the Holm

procedures (see Lehmann and Romano, 2005, for a description of these tests). Their goal is to test K joint

hypotheses. Each single hypothesis is represented by Hk, where k ∈ K ≡ {1, . . . ,K}, for which we have

individual-hypothesis p-values p1, . . . , pK . The joint hypothesis is given by HK defined by

HK =
⋂
k∈K

Hk.

To control for FWER ≤ α, the traditional procedures use the following rejection rules:

Bonferroni Rejection Rule:

Reject each Hk with pk ≤ α/K.

Holm Rejection Rule:

(1) Order the original p-values, with the notation p(1), . . . , p(K).

(2) Find the highest k with p(k) ≤ α/(K − k + 1).

(3) Reject the hypotheses H(1), . . . ,H(k).

These two methods are computationally simple to implement, but they do not account for dependence

between outcomes, while less conservative methods described below do.
10The structure and examples in this appendix are developed by Romano and Wolf (2005). Readers are advised to consult

this primary source.
11For further discussion of stepdown and its alternatives, see Westfall and Young (1993), Benjamini and Hochberg (1995),

Romano and Shaikh (2004, 2006), Romano and Wolf (2005), and Benjamini, Krieger, and Yekutieli (2006).

16



Modern work is based on the procedure of “closure methods.”12 General closure methods belong to a

testing tradition called multiple comparison procedures (MCP). These constitute a more flexible and com-

prehensive framework for multiple-hypothesis testing on the power set ℘(HK) of hypotheses HK. However,

closure methods have two disadvantages: they are computationally impractical for large numbers of hy-

potheses, and computing the test statistics dictated by some joint hypotheses may be infeasible. Closure

methods, such as those developed by Einot and Gabriel (1975) and Begun and Gabriel (1981), are based on

a stepwise MCP. They start with the biggest set K of joint hypotheses and proceed through smaller sets of

joint hypotheses.

Let K′ ⊆ K. The test of the joint hypothesis HK′ =
⋂
k∈K′ Hk at a significance level α uses a statistic

TK′ with a critical value cK′(αK′) at level αK′ . Higher values of TK′ provide evidence against hypothesis HK,

and under HK′ , cK′(αK′) can be defined as

αK′ ≡ Pr(TK′ > cK′(αK′)),

that is, cK′(αK′) is the α-highest quantile of the distribution of the test statistic TK′ .

For the Newman (1939) and Keuls (1952) procedure, αK′ = α. For the Ryan (1959) procedure,

αK′ = 1− (1− α)
|K′|
|K| .

The test of HK′ is called αK′ -critical if the computed test statistic TK′ for the sample is bigger than its

critical value cK′(αK′). An MCP rejects HK′ if all sets K′′ ⊇ K′ are αK′′-critical, where K is the biggest set

of joint hypotheses to be tested, in particular, K′ ⊆ K. In other words, hypothesis HK′ is only rejected if all

combinations of the joint hypotheses in K that include the hypothesis in K′ are also rejected.

Observe that if a set of hypotheses K′ is not αK′ -critical, that is, it is not rejected, then all combination

sets of K′ are also not rejected. This rule is called acceptance by implication (Begun and Gabriel, 1981) and

it insures logical coherence. If one joint hypothesis is not rejected, all subsets of the hypotheses will also fail

to be rejected.

Traditional MCP algorithms start by targeting the larger set of joint hypotheses HK. If not rejected, all

remaining combinations of hypotheses are not rejected either. If HK is rejected, the procedure computes the

critical value for all combinations of K − 1 hypotheses in the set K without the most statistically significant

hypothesis. A new round of rejections requires the computation of the critical values of all combinations of

K − 2 hypotheses in K without the two most statistically significant hypotheses, and so forth.
12See Lehmann and Romano (2005).
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One computational problem arising from the method is the exponential increase of intersection hypotheses

as K increases. In the worst case, this could require as many as 2K − 1 tests. Another drawback is the

computation of the critical values, which may be difficult for some of the intersection hypotheses. Closure

methods strongly control for FWER, as shown in Marcus, Peritz, and Gabriel (1976).

D.3 Subset Pivotality and Free Stepdown Procedure

Data and Hypotheses Assume that the data Y have the true generating distribution P ∈ Ω. The

objective is to test the joint hypothesesHK = ∩k∈KHk, where eachHk corresponds to a family of distributions

ωk ⊆ Ω, which may contain the true data generating distribution P :

Hk : P ∈ ωk.

Assume that the evidence against hypothesis Hk has been summarized using a p-value pk; k ∈ K. Let

pK = (pk ; k ∈ K) be the vector of random p-values generated from P . Let K(P ) be the set of indices of the

true hypothesis.

Subset Pivotality The distribution of pK has the subset pivotality property if the joint distribution of any

sub-vector pL = (pl ; l ∈ L); for an L ⊂ K would be identical if either K(P ) = K or K(P ) = L. Westfall and

Young (1993) clarify further by stating that the subset pivotality condition requires that the multivariate

distribution of any sub-vector of p-values is unaffected by the truth or falsehood of hypotheses corresponding

to the p-values that are not included in the sub-vector.

Westfall and Young (1993) argue that the subset pivotality condition is important for two reasons.

First, resampling is particularly convenient under this condition: resampling is done under the assumption

that all null hypotheses are true, rather than a subset of the hypotheses. Second, when subset pivotality

holds, resampling-based methods provide strong control for FWER. At the time Westfall and Young (1993)

was published, it was believed that subset pivotality was a necessary condition for FWER strong control.

However, Romano and Wolf (2005) provide an algorithm that strongly controls for FWER under weaker

conditions.

Cases of Failure Westfall and Young (1993) consider the problem of testing whether the correlations

of a vector of N normally distributed random variables are all zero. Notationally, H(i,j) : ρi,j = 0 and

K = {(i, j); i, j ∈ {1, . . . , N}}. In large samples, a traditional test statistic is T(i,j) =
√
n · r(i,j), where n

is the sample size and r(i,j) is the sample correlation between variables i and j. Suppose that hypotheses
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H(1,2) and H(1,3) are true, with all others false. Previous analyses by Aitkin (1969, 1971) show that the

joint distribution of [T(1,2), T(1,3)] is approximately normal, with zero means, unit variances, and correlation

ρ2,3. The key observation is that the joint distribution of the test statistics for hypotheses H(1,2) and H(1,3)

has different statistical properties depending on whether ρ2,3 = 0 or ρ2,3 6= 0. Consider the hypothesis

H(2,3) : ρ2,3 = 0 as part of a set of hypotheses {H(1,2), H(1,3), H(2,3)}. In this case, inference on the joint set

of hypotheses H(1,2) and H(1,3) changes, depending on whether hypothesis H(2,3) is true or not. The subset

pivotality condition fails here because the distribution of [T(1,2), T(1,3)] depends on the value of ρ2,3, which

is associated with another hypothesis not directly tested by T(1,2) or T(1,3). Observe that subset pivotality

would hold if the hypotheses of interest involved only the means of the normal random variables.

D.3.1 The Free Stepdown Procedure

Westfall and Young (1993) use the assumption of subset pivotality to develop a stepdown procedure that

exhibits strong controls over FWER. As mentioned above, pk denotes the p-value associated with hypothesis

k and the set of hypotheses can be indexed by K = {1, . . . ,K}. Without loss of generality, let the computed

p-value statistic be sorted in increasing order; that is, p̂1 ≤ p̂2 ≤ · · · ≤ p̂K . Using some resampling method,

let (pj1, . . . , p
j
K) be the jth draw of the vector of p-values. These draws generate the joint testing distribution

of (p1, . . . , pK) under HK. Let J be the total number of draws, that is, j ∈ {1, . . . , J}.

Using this notation, the Westfall and Young (1993) algorithm is defined as follows:

1. For each draw j, compute the successive minima qjk = min{pjk, . . . , p
j
K}. This step enforces the original

monotonicity of observed p-values. Note that k denotes the original rank of the outcome by significance,

with k = 1 being the most significant and k = K being the least significant.

2. For each k ∈ K, compute p̄k = (
∑J
j=1 1[qjk ≤ p̂k])/J . This step gives the percentage of times that the

adjusted draws (qjk ; j = 1, . . . , J) are equal to or less than p̂k.

3. For each hypothesis k ∈ K, enforce the successive maxima p̃k = max{p̄1, . . . , p̄k}. This final enforcement

of monotonicity ensures that larger unadjusted p-values correspond to larger adjusted ones.

The final p̃k are the adjusted p-values proposed by Westfall and Young (1993). Anderson (2008) claims

to use this algorithm in performing multiple-hypothesis inference. However, the description of his algorithm

does not comply with the one proposed in Westfall and Young (1993). Specifically, his algorithm is described

as follows:

1. For each draw j, compute the successive minima qjk = min{pjk, . . . , p
j
K}. This step enforces the original

monotonicity of experimentally observed p-values.
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2. For each k ∈ K, compute p̄k = (
∑J
j=1 1[qjk < p̂k])/J . This step gives the percentage of times that the

adjusted draws (qjk ; j = 1, . . . , J) are strictly less than p̂k.

3. For each hypothesis k ∈ K, enforce the successive minima p̃k = min{p̄k, . . . , p̄K}.

His procedure is different from the one proposed by Westfall and Young (1993) in the last step. Observe

that while Westfall and Young (1993) use successive maxima on adjusted p-values, Anderson (2008) uses

successive minima. Anderson (2008) does not provide any proof that the method he uses strongly controls

for FWER.

D.4 Stepdown Multiple-Hypothesis Testing

Stepdown methods improve upon general closure methods in two ways. First, they require only K separate

tests. Second, the method tests joint hypotheses using only the test statistics for individual hypotheses,

sidestepping the need to construct and compute specific test statistics for a large number of intersection

hypotheses. Westfall and Young (1993) describe various methods of resampling outcomes Y for stepdown

procedures, but those methods rely on the assumption of subset pivotality.

A recent result by Romano and Wolf (2005) shows that strong FWER control can be obtained by ensuring

a certain monotonicity condition on the test statistics for the joint hypothesis that is weaker than subset

pivotality. This monotonicity condition states that the critical value for a joint hypothesis that contains the

subset of true hypotheses must be at least as large as the critical value for the joint hypothesis formed only

by true hypotheses. Notationally, let K(P ) be the set of indices of the true hypothesis, such that K(P ) ⊆ K,

so that under probability law P , the monotonicity condition is defined by:

cK(α) ≥ cK(P )(α).

In other words, the critical value for the full set of joint hypotheses indexed by K, which contain the true

hypothesis indices K(P ), is greater than or equal to the critical value for the hypothesis that comprises only

true hypothesis HK(P ).

In this framework, a set of sufficient conditions for strong FWER control can be stated as follows:

1. The joint-hypothesis test statistic at each stepdown stage is chosen to be the maximum of the individual-

hypothesis test statistics.

2. If a permutation-based inference is adopted, then the same draw of permutation is used to compute

all test statistics at each stage.
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3. The permutation set from which permutations are drawn is chosen such that, under the null hypotheses,

the distribution of the data is invariant for each permutation.

Below, we discuss how to construct tests that satisfy the first two conditions. The third condition applies

to permutation testing of randomization hypotheses in general, and requires constructing the permutation

groups using knowledge of the experimental design that generated the data.

D.5 The Stepdown Algorithm

Data and Hypotheses Assume that we start with outcomes Y k; k ∈ K ≡ {1, . . . ,K}, which have the

true generating distribution P ∈ Ω. The objective is to test a set of null hypotheses HK =
⋂
k∈KHk jointly,

where each Hk corresponds to a family of distributions ωk ⊂ Ω which may contain the true data generating

distribution P :

Hk : P ∈ ωk.

Permutation Testing In randomized experiments, the goal is to test the joint hypothesis of no treatment

effect across outcomes Y k ; k ∈ K. The general representation of this hypothesis is given by Hk : Y k ⊥⊥ D,

where D is the treatment status. Thus Hk corresponds to a family of distributions ωk in which the treatment

status D is independent of outcome Y k. Let G be a set of permutations such that the randomization

hypothesis holds, that is, the joint distribution of (Y k, D), such that k ∈ K is invariant under permutations

g in G whenever the true generating distribution P belongs to the family of distributions specified by HK.

Formally,

P ∈
⋂
k∈K

ωk ⇒
[
(Y k, D) d= (Y k, gD) ∀ g ∈ G , ∀ k ∈ K

]
.

Let Tk ≡ T (Y k, D) be the test statistic computed using the sample data, for which greater values provide

evidence against the null hypothesis Hk. Let T gk ≡ T (Y k, gD) be the test statistic computed using the

permuted data according to g ∈ G . The distribution of Tk can be generated by varying g across G .

Sets of Joint Hypothesis The stepdown method starts by testing the full set of joint null hypotheses

HK. For notational purposes, define the set of hypotheses in this first step by K1, such that K1 ≡ K. In each

K − 1 successive step, the most individually significant hypothesis — the one most likely to contribute to

the significance of the joint null hypothesis — is dropped from the set of null hypotheses, and the joint test
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is performed on the reduced set of hypotheses. Thus the set of hypotheses for the second step is given by

K2 = K1 \ {k∗} ; k∗ = arg max(Tk; k ∈ K1).

Likewise, the set of hypotheses for the step s is given by:

Ks = Ks−1 \ {k∗} ; k∗ = arg max(Tk; k ∈ Ks−1).

Finally, the final step targets the least significant hypothesis: KK = {arg min(Tk; k ∈ K)}.

Joint Test Statistics and Critical Values The test statistic for any step s that tests the joint hypothesis

HKs , with Ks as defined above, is given by

TKs = max (Tk; k ∈ Ks).

Let T gKs
≡ max (T gk ; k ∈ Ks), which is the maximum of the the test statistics T gk such that k ∈ Ks and

g ∈ G . The distribution of TKs
can be generated by varying g across G . The critical value for each hypothesis

HKs , s ∈ {1, . . . ,K}, at level α is defined as the value of the α-highest quantile of the distribution of TKs .

Namely, if we relabel the statistics T gKs
, g ∈ G by arranging them in increasing order

T
(1)
Ks
≤ · · · ≤ T (|G |)

Ks
,

then the critical value for TKs
is given by

cKs(α) = T
(a)
Ks
,

where a = d(1 − α)|G |e, that is, the largest integer less than or equal to (1 − α)|G |. According to Romano

and Wolf (2005), the use of the maximum operator in the definition of the joint statistic ensures the required

monotonicity property of the critical values.

We assume full enumeration of the permutation set G for generating the distribution of the test statistics

and to compute critical values described in this section. However, for implementing the method, it is common

to randomly sample permutations g ∈ G and use the sampled permutations for computing the statistics.

Romano and Wolf (2005, p. 99, Corollary 3) show that FWER control of the stepdown procedure persists

when using randomly sampled permutations in G instead of its full enumeration.
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The Stepdown Algorithm The stepdown algorithm described in Romano and Wolf (2005) is defined as

follows: Beginning with K1 = K,

[s = 1]
If TK1 ≤ cK1(α), accept all Hk, k ∈ K1 and stop.

Otherwise, let K2 = K1 \ {k∗}, k∗ = arg max(Tk; k ∈ K1).
...

[1 < s < K]
If TKs

≤ cKs
(α), accept all Hk, k ∈ Ks and stop.

Otherwise, Ks+1 = Ks \ {k∗}, k∗ = arg max(Tk; k ∈ Ks).
...

[s = K]
If TKK

≤ cKK
(α), accept HKK

, KK = {arg min(Tk; k ∈ K)}.

Otherwise, reject all Hk, k ∈ K.

Romano and Wolf (2005, p. 99, Corollary 2) demonstrate strong FWER control on a test of multiple-

hypotheses HK at level α if one performs this stepdown algorithm using the joint test statistics and the

critical values defined above.
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E Asymptotic and Permutation p-Values

The Perry study has about 60 observations per outcome for each gender. Our analysis confirms a well

known fact about the validity of asymptotic statistics in samples of this size (Good, 2000). Traditional

resampling techniques, such as the bootstrap and unrestricted permutation, produce distributions of some

common sufficient statistics which are very close to their asymptotic versions. As an example, we compute

the asymptotic p-value for the t-statistics of the difference in means between treatment groups. We also

compute two comparison p-values: the p-value based on an unrestricted permutation method and another

based on the usual bootstrap procedure. All three p-values are computed for 350 Perry outcomes chosen for

their reliability and relevance to the topic of study. There is little difference between asymptotic p-values

and the values based on resampling. Indeed, in 50% of the outcomes, the absolute difference between the

asymptotic p-values and resampling values was less than 0.5 percentage point; in 95% of the cases, it was

less than 4 percentage points. Figure E.1 shows the histograms of the outcomes with respect to the absolute

difference between the asymptotic and permutation p-values.
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Figure E.1: Difference between Asymptotic and Permutation p-Values
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Notes: 350 observations of differences between one-sided asymptotic and one-sided permutation p-values were used.

No blocks or clusters were used while permuting. The 350 observations are p-values for the null hypothesis of no

treatment effect based on 350 outcomes of Perry subjects such as wages, test scores, number of arrests, and so forth,

chosen by the authors for Perry reanalysis for their reliability and relevance to the outcomes studied in this paper.
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F Sensitivity Analysis

The test results reported in this paper rely on Freedman-Lane linear parametric approximations. We can

choose either parametric or non-parametric conditioning for each covariate (see Section 4.5 of the paper). In

calculating our main results (Tables 3–6), we use non-parametric conditioning on an indicator for whether

the socio-economic status (SES) index is above or below the median and use parametric conditioning on the

remaining covariates: Stanford-Binet IQ, mother’s employment status, and father’s presence in the home,

all measured at the time of entry into the study.

The purpose of this appendix is to examine the sensitivity of our estimates to different choices of condi-

tioning variables. We focus on two aspects of our procedure. First, what happens when additional covariates

are introduced into the nonparametric conditioning set. Second, since some discretization of the continuous

variable SES index is necessary to make possible non-parametric conditioning, we examine the sensitivity of

our inferences to alternative plausible discretizations. The results of this analysis are described below. We

conclude that our main results are robust to alternative choices of the conditioning variables.

Parametric vs. Non-Parametric Conditioning Columns (1)–(4) of Tables F.1–F.4 show the sensi-

tivity of the p-values derived from the Freedman-Lane procedure to shifting additional covariates from the

parametric portion of the model to the non-parametric portion. Column (1) shows partial linearity results

comparable to the “Partial Linearity” column of our main results (Tables 3–6), while columns (2), (3), and

(4) show the effect of shifting mother’s employment status, father’s presence, and Stanford-Binet IQ, respec-

tively, from the parametric portion to the non-parametric portion of the regression function. In each case,

we condition parametrically on the two remaining covariates.

The p-values are quite comparable across columns. Only rarely does inference vary, depending on choices

of conditioning variables. Similarly, p-values for the other outcomes—that is, the outcomes for which no

column indicates statistical significance—are comparable across alternative conditioning sets, although in

cases of nonsignificance, p-values vary greatly. The differences that arise do not exhibit an obvious pattern.

These results support the analysis of the text by indicating that the choice of the conditioning variables does

not greatly affect the main results reported in Section 5.

Discretizing Non-Parametric Conditioning Variables Columns (1), (5), and (6) of Tables F.1–F.4

show the sensitivity of our results to using different discretizations of the SES index for non-parametric

conditioning. To use non-parametric conditioning for a continuous covariate, that variable must be trans-

formed into a discrete covariate on which the permutation orbits used in testing can be restricted (see

26



Section 4.4).13 We examine three possible transformations of the non-parametric conditioning covariate

SES index: Column (1)—comparable to the “Partial Linearity” column of our main results (Tables 3–6)—

conditions non-parametrically on an indicator for whether SES index is above or below the median, column

(5) conditions on terciles, and column (6) conditions on quartiles. In all cases, we continue to condition para-

metrically on the remaining covariates (mother’s employment status, father’s presence, and Stanford-Binet

IQ, measured at study entry).

As with our comparison of parametric vs. non-parametric conditioning, p-values are comparable across

the columns. Inference varies across approaches for only a handful of outcomes. These results further

reinforce the conclusion that our choice of conditioning sets does not substantially affect the results reported

in Section 5.

13Kernel methods would be impractical in samples of the size analyzed in this paper.
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G Analysis of Test Scores

Additional Tables and Figures

Stanford-Binet IQ Scores During Childhood The graphs in Figure G.1 compare Stanford-Binet IQ

scores by gender. IQ effects for the Perry program fade out by age 9. Table G.1 shows that this is especially

true for males. For females there is some persistence of the treatment effect, but not in the Stanford-Binet

test. (See Table G.1, row labeled “Stanford-Binet”.) Yet, strong effects are found for achievement tests for

both males and females. Heckman, Malofeeva, Pinto, and Savelyev (2010) analyze this phenomenon in more

detail and establish that socioemotional skills were enhanced by the Perry program, driving the boost in

test performance. This is consistent with the evidence from Borghans, Golsteyn, Heckman, and Humphries

(2010), who report that roughly 50% of the variance in achievement tests is due to variability in noncognitive

skills. These results are also consistent with the evidence from Duckworth and Seligman (2005) that higher

motivation is predictive of better test scores.
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Figure G.1: Perry Subjects’ IQ by Gender and Treatment Status

(a) Males
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(b) Females
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Notes: Data are IQ scores measured using the Stanford-Binet IQ test (1960 revision). The first entry cohort is

excluded, as that treatment group received only 1 year of treatment.
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Table G.1: Early Cognitive Outcomes by Gender

Age
Measurement Ea 3 4 5 6 7 8 9

M
a
le

s

Stanford-Binet .191 — .000 .001 .004 .049 .630 .593
Leiter — .103 .001 .009 .458 .685 .793 .107
PPVT — .026 .001 .000 .069 .276 .110 .302
ITPA — .148 — .000 .236 .448 .299 .350

Joint Testa — .073 .000 .000 .014 .155 .312 .295

F
e
m

a
le

s Stanford-Binet .107 — .000 .002 .070 .036 .039 .108
Leiter — .001 .001 .000 .012 .035 .039 .004
PPVT — .067 .001 .001 .062 .057 .389 .245
ITPA — .073 — .000 .079 .035 .063 .043

Joint Testa — .001 .000 .000 .039 .100 .133 .015

Notes: p-Values are for the joint hypothesis consisting of one-sided hypotheses for the significance of treatment effect, corre-

sponding to the first step of a stepdown test on the group of outcomes. Constituent p-values are computed using Mann-Whitney

U -statistics, with permutations conditioned on maternal employment and paternal presence, and restricted on SES index and

IQ percentiles and maternal employment; siblings were permuted as a block. A complete set of cognitive test scores and detailed

tests of California Achievement Test scores can be found in Table G.2. p-values below 0.1 are in bold. (a) For each age, the

joint test p-value is the joint-hypothesis test of all available outcomes in the rows above for that gender.

Table G.2: California Achievement Test (CAT) Scores by Gender

CATa

Subscore

Age
7 8 9 10 11 14

M
a
le

s Reading .324 .443 .208 .148 .154 .086
Arithmetic .207 .114 .069 .082 .366 .032

Language .454 .627 .092 .087 .188 .013

Joint Test .403 .226 .135 .148 .243 .032

F
e
m

a
le

s Reading .024 .022 .055 .042 .112 .041
Arithmetic .020 .038 .017 .205 .304 .063

Language .085 .031 .039 .078 .158 .002

Joint Test .043 .043 .030 .076 .180 .006

Notes: p-Values are for the joint hypothesis consisting of one-sided hypotheses for the significance of treatment effect, corre-

sponding to the first step of a stepdown test on the group of outcomes. Constituent p-values are computed using Mann-Whitney

U -statistics, with permutations conditioned on maternal employment and paternal presence, and restricted on SES index and IQ

percentiles and maternal employment; siblings were permuted as a block; each test comprises a single outcome (and hypothesis)

in the joint test. p-values below 0.1 are in bold. (a) At ages prior to 14, the CAT hypotheses corresponded to the reading,

arithmetic, and language subscores; at age 14, each divided into two further subscores.
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H Representativeness of the Perry Sample

Perry Control Group vs. NLSY79 Subsamples Figures H.1–H.5 compare the Perry control group

with two comparison groups on selected background characteristics that mimic the Perry eligibility criteria.

To extract these comparison groups, we use the National Longitudinal Survey of Youth 1979 (NLSY79),

which is a nationally representative longitudinal survey whose respondents represent almost the same birth

cohorts as the Perry sample (1956–1964 and 1957–1962, respectively).

The first comparison group is the full black subsample of the NLSY79, while the second is restricted by

subject birth order, socio-economic status (SES) index, and Armed Forces Qualification Test (AFQT) score.

These restrictions are chosen to mimic the program eligibility criteria of the Perry study.

A practical difficulty in imposing these restrictions on NLSY79 is that we do not have enough information

to perfectly mimic the original Perry experiment eligibility criteria. Specifically, we do not know the number

of rooms in each NLSY79 respondent’s dwelling at age 3, which was used to construct the SES index in the

Perry study; neither do we know their IQ scores. Given this lack of information, we construct proxies for

these two variables. First, to construct a proxy for the SES index, we first regress the number of rooms in

the Perry data set on mother’s education, father’s occupation, and family size to estimate a linear predictor

for the number of rooms. The estimated function is used to predict the number of rooms for each NLSY79

black respondent, which in turn is used to construct a proxy for the SES index. Second, without having IQ

scores in the NLSY79, we instead use the AFQT scores as our proxy. While AFQT is an achievement test,

not an ability test like the IQ test, it can serve as a proxy for ability as long as achievement and ability

are highly correlated. We adjust the AFQT score for age and educational level at the time of testing and

use it as our proxy. The method used for adjustment is based on the method of Carneiro, Heckman, and

Masterov (2005), which is a simpler version of the method of Hansen, Heckman, and Mullen (2004). This

method corrects for reverse causality arising from the effect of education on test scores. The early childhood

background characteristics — pre-experimental measures in the Perry sample — that we are comparing in

this appendix are parents’ average highest grade completed, an SES index, and mother’s age at subject’s

birth, all measured at age 3. Adult outcomes consist of earnings at ages 27 and 40.

Relative to the full black NLSY79 subsample, children in the Perry control group have more disadvantaged

family backgrounds. This is not surprising, as the Perry program was targeted toward such children through

the aforementioned eligibility. One interesting finding is that this disadvantage is also reflected in adult

earnings. Compared to the fully restricted NLSY79 subsample (the final column), however, the relative

disadvantage disappears in both childhood and adult outcome measures. These restrictions induce broad

comparability between the subsample of the NLSY79 constructed using these principles and the controls in
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Table H.1: Comparison of Perry Subjects and the US Black Population: Males at Ages 3, 27, and 40

Perry Subjects NLSY79: Restricted Black Subsamples

Ctl. Treat. Alla
Younger
Siblingb

Low-
Abilityc Low-SESd All Re-

rictionse

Sample Size 39 33 706 564 352 290 128
Pop. Represented 2,222,597 1,749,519 1,085,137 879,363 372,004

A
g
e

3

Parents’
Education

9.5 9.3 10.7 10.5 9.9 9.8 9.3
(2.0) (2.0) (2.6) (2.7) (2.5) (2.3) (2.4)

SES Index
8.6 8.9 10.7 10.6 10.0 8.9 8.6

(1.4) (1.7) (3.0) (3.0) (2.6) (1.3) (1.4)

Mother’s
Age at Birth

25.6 26.5 25.1 26.2 25.2 25.6 26.7
(6.6) (6.5) (6.7) (6.5) (7.0) (7.0) (6.9)

A
g
e

2
7

High School
Graduation

0.54 0.48 0.71 0.68 0.59 0.71 0.59
(0.51) (0.51) (0.45) (0.47) (0.49) (0.45) (0.49)

Employed
0.56 0.60 0.82 0.80 0.77 0.84 0.76

(0.50) (0.50) (0.38) (0.40) (0.42) (0.37) (0.43)

Yearly
Earnings

12,495 14,858 20,239 18,799 16,349 19,268 14,579
(11,354) (10,572) (18,261) (15,850) (14,835) (16,305) (11,819)

A
g
e

4
0 Employed

0.50 0.70 0.84 0.83 0.76 0.82 0.75
(0.51) (0.47) (0.37) (0.37) (0.43) (0.38) (0.43)

Yearly
Earnings

21,119 27,347 28,729 27,581 19,700 26,992 18,860
(23,970) (24,224) (26,929) (26,059) (17,947) (25,256) (21,256)

Notes: All NLSY79 figures weighted by the initial (1979) sampling weights. Numbers in parentheses are standard deviations.

All monetary values in year-2000 dollars. (a) No restrictions; (b) Subjects with at least one elder sibling (all Perry subjects also

meet this criterion); (c) AFQT scores below the black median; (d) Socio-economic status (SES) index at most 11; (e) Combines

the three restrictions to the left.

the Perry sample. This analysis supports the use of this NLSY79 subsample as a comparison group for the

Perry control group.

The U.S. population in 1960 was 180 million, of which 10.6% (19 millions) were black.14 We use NLSY79,

a representative sample of the total population that was born between 1957 and 1964, to estimate the number

of persons in the United States that resemble the Perry population at study entry (age 3). According to

NLSY79, the black cohort born in 1957–1964 is composed of 2.2 million males and 2.3 million females. Our

criteria indicate that 712,000 persons out of this 4.5 million black cohort resemble the Perry population. We

estimate that 17% of the male cohort and 15% of the female cohort would be eligible for the Perry program

if it were applied nationwide.

14Visit: http://www.census.gov/population/www/documentation/twps0056/twps0056.html for more details.
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Table H.2: Comparison of Perry Subjects and the US Black Population: Females at Ages 3, 27, and 40

Perry Subjects NLSY79: Restricted Black Subsamples

Ctl. Treat. Alla
Younger
Siblingb

Low-
Abilityc Low-SESd All Re-

rictionse

Sample Size 26 25 957 732 434 385 146
Pop. Represented 2,305,560 1,757,547 1,007,214 902,001 341,721

A
g
e

3

Parents’
Education

9.0 9.0 10.4 10.1 9.6 9.4 8.7
(2.0) (1.9) (2.7) (2.8) (2.7) (2.5) (2.8)

SES Index
8.5 8.7 10.6 10.3 9.7 8.9 8.4

(1.2) (1.4) (3.0) (2.9) (2.6) (1.3) (1.4)

Mother’s
Age at Birth

25.7 26.7 25.1 26.5 24.9 25.5 27.2
(7.5) (5.9) (6.9) (6.7) (7.0) (7.3) (6.9)

A
g
e

2
7

High School
Graduation

0.31 0.84 0.76 0.75 0.60 0.75 0.60
(0.47) (0.37) (0.42) (0.43) (0.49) (0.43) (0.49)

Employed
0.55 0.80 0.65 0.62 0.50 0.60 0.45

(0.51) (0.41) (0.48) (0.48) (0.50) (0.49) (0.50)

Yearly
Earnings

8,986 11,554 12,701 11,849 7,582 11,430 6,263
(9,007) (9,393) (12,880) (12,235) (8,578) (12,120) (7,779)

A
g
e

4
0 Employed

0.82 0.83 0.78 0.78 0.70 0.78 0.70
(0.39) (0.38) (0.41) (0.41) (0.46) (0.42) (0.46)

Yearly
Earnings

17,374 20,866 20,365 19,511 12,588 19,624 11,530
(16,907) (20,292) (18,433) (17,655) (11,386) (18,663) (10,885)

Notes: All NLSY79 figures weighted by the initial (1979) sampling weights. Numbers in parentheses are standard deviations.
All monetary values in year-2000 dollars. (a) No restrictions; (b) Subjects with at least one elder sibling (all Perry subjects also
meet this criterion); (c) AFQT scores below the black median; (d) Socio-economic status (SES) index at most 11; (e) Combines
the three restrictions to the left.
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I The Role of the Local Economy in Explaining Gender Differ-

ences in Treatment Outcomes

The local economic history of Washtenaw County15 has peculiarities that may explain the age pattern

of male treatment effects, and thus explain gender differences in a number of program outcomes. In the

1970s, employment in Ypsilanti and Washtenaw increased by 50% — a much higher rate than for the

state (14%) or the country (25%) as a whole (see Table I.1). This rapid growth coincided with a boom in

the local manufacturing sector, which subsequently contracted during later decades, although the service

sector continued to expand (see Figure I.1). The boom was particularly prevalent in the male-friendly

manufacturing sector.16,17 This economic boom created plentiful jobs during subjects’ late teens, increasing

the opportunity cost of attending school and resulting in a higher dropout rate for boys. In later decades,

as the manufacturing sector shrank, it became more difficult for males to find jobs, while sectors in which

females were mostly employed (such as the service sector) expanded.

These labor market dynamics may partially explain the lack of a positive male program treatment effect

for high school graduation. Further, the exceptionally rapid employment growth in the Ypsilanti area

suggests the possibility that regional economic shocks drive program treatment effects. Therefore, we do

not observe a significant treatment effect on male employment at age 19 or for male educational attainment,

since at the time Perry participants entered the labor market, manufacturing jobs did not require a high

school degree.

While it is not easy to verify this interpretation with any precision, it is consistent with observed patterns

of migration out of economically troubled Michigan. At age 27, treatment males were more likely to migrate

than their control counterparts, although the difference is not statistically significant at conventional levels

(see Table I.2). This evidence is consistent with a positive effect of Perry on the skills of participants.

Many studies of migration show a positive link between education and migration (Sjaastad, 1962; Vigdor,

2002a,b). The observed differences in migration between treatments and controls support the interpretation

that treatment had some positive effect on skills and motivation, even if we do not observe this directly in

terms of its effect on educational attainment of males. This pattern is also consistent with the pattern that

males had strong treatment effects on earnings outcomes despite insignificant treatment effects on education,

as well as the finding that treatment males had greater noncognitive skills and better achievement test scores

than their control counterparts. (See Heckman, Malofeeva, Pinto, and Savelyev, 2010.)

15Washtenaw County, which contains Ypsilanti and Ann Arbor, is located in the Detroit metropolitan area.
16Goldin and Katz, 2008, discuss the positive relationship between the demand for labor in the manufacturing sector and the

high school dropout rate. Manufacturing jobs did not require skilled workers (high school graduates).
17At age 19, 12 out of 31 working males reported their jobs as assembly or auto mechanic, while 8 out of 15 working females

reported their jobs as cashier, food service, or dishwasher.
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Figure I.1: Michigan Employment, by Industry
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Table I.1: Historical Employment Trends in Ypsilanti, Michigan

Year Ypsilanti Washtenaw Michigan U.S. Total
Emp. ∆ % Emp. ∆ % Emp. ∆ % Emp. ∆ %

1970 12,634 - 105,058 - 3,558,467 - 91,281,600 -
1980 19,441 54 164,723 57 4,039,438 14 114,231,200 25
1990 19,773 2 213,928 30 4,826,388 19 139,426,900 22
2000 17,716 -10 232,175 9 5,654,522 17 167,465,300 20

Source: Southeast Michigan Council of Governments (2002).

Table I.2: Migration, by Gender

% Out of Males Females
Michigan Ctl. Trt. pa Ctl. Trt. pa

at age 27b 12.8 21.2 .174 26.9 8.0 .040
at age 40c 25.0 26.7 .440 13.6 4.2 .132

N 39 33 26 25

Notes: (a) p-values are for asymptotic one-sided tests; (b) At the time of age-27 survey; (c) 1996–2002.
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