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A The Perry Preschool Program Experiment and Curriculum

Preschool Overview During each wave of the experiment, each preschool class consisted of 20-25 children
of ages 3 to 4. The first wave admitted 4-year-olds who only received 1 year of treatment. The last wave was
taught alongside a group of 3-year-olds who were not included in the Perry study. Classes were 2.5 hours
every weekday during the regular school year (mid-October through May). The preschool teaching staff of
four produced a child-teacher ratio ranging from 5 to 6.25 over the course of the program, with teaching
positions filled by former public-school teachers. Teachers had special training for tutoring disadvantaged
children and were “certified in elementary, early childhood, and special education” (Schweinhart, Barnes,

and Weikart, 1993, p. 32).

Home Visits Weekly home visits lasting 1% hours were conducted by the preschool teachers. The purpose
of these visits was to “involve the mother in the educational process,” and “implement the curriculum in the
home,” (Schweinhart, Barnes, and Weikart, 1993, p. 32). By way of encouraging the mothers’ participation,
teachers also helped with problems arising in the home during the visit. Occasionally, these visits took the

form of field trips to stimulating environments, such as a zoo.

Curriculum The Perry Preschool curriculum was based on the concept of active learning, which is cen-
tered around play that is based on problem-solving and guided by open-ended questions. Children were
encouraged to plan, carry out, and then reflect on their own activities. The topics in the curriculum were
not based on specific facts or topics, but rather on key developmental factors related to planning, expression,
and understanding. These factors were then organized into 10 topical categories, such as “creative represen-

7w

tation,” “classification” (recognizing similarities and differences), “number,” and “time.”! These educational
principles were reflected in the types of open-ended questions asked by teachers: for example,“What hap-
pened? How did you make that? Can you show me? Can you help another child?” (Schweinhart, Barnes,
and Weikart, 1993, p. 33).

As the curriculum was developed over the course of the program, its details and application varied.
While the first year involved “thoughtful experimentation” on the part of the teachers, experience with the
program and a series of seminars during subsequent years led to the development and systematic application
of teaching principles with “an essentially Piagetian theory-base.” During the later years of the program,
all activities took place within a structured daily routine intended to help children “to develop a sense of

responsibility and to enjoy opportunities for independence” (Schweinhart, Barnes, and Weikart, 1993, pp.
32-33).

1For a full list, see Schweinhart, Barnes, and Weikart (1993).



B The Basic Evaluation Model

A standard model of program evaluation describes the observed outcome Y; by Y; = D;Y; 1 + (1 — D)Y, o,
where (Y;1,Y;0) are potential outcomes corresponding to treatment and control status for agent ¢, respec-
tively, and D; is an assignment indicator: D; = 1 if treatment occurs, D; = 0 otherwise. The focus of this
paper is on testing the null hypothesis of no treatment effect or, equivalently, that treatment and control
outcome distributions are the same: Y; ; 4 Y; 0, where 2 denotes equality in distribution.

An evaluation problem arises in standard observational studies because either Y; ; or Y; o is observed, but
not both. As a result, in nonexperimental samples, the simple difference in means between treatment and
control groups, E (Y;1 | D; =1) —E(Yio | D; =0), is not generally equal to the average treatment effect,
E(Y;1—Y,), or to the treatment effect conditional on participation, E (Y;1 —Y; ¢ | D; = 1). Bias can arise
from participant self-selection into the treatment group. Rigorous analysis of treatment effects distinguishes
impacts due to participant characteristics from impacts due to the program itself.

Randomized experiments solve the selection bias problem by inducing independence between (Y; ¢,Y 1)
and D;, interpreted as a treatment assignment indicator, (Y;¢,Y; 1) 1L D;, where L denotes independence.
Selection bias can be induced by randomization compromises, which occur when the implemented random-
ization differs from an ideal randomization protocol in a way that threatens the statistical independence
of treatment assignments D; and the joint distribution of counterfactual outcomes (¥;,Y;1). A common
feature of compromised experiments is reassignment of treatment and control status by a method different
from an ideal randomization. Randomization for the Perry experiment was compromised by the reassign-
ment of treatment and control labels after initial draws produced an imbalanced distribution of pre-program

variables. This creates a potential for biased inference, as described in the previous sub-section.



C Testing Methodology

This paper develops a framework for small-sample inference based on permutation testing conditional on a

given sample. This section specifies our notation and the theoretical framework for our testing procedures.

C.1 Setup and Notation

General We use calligraphic capital letters to denote sets. Capital letters denote two different entities:
either the maximum index of a set of natural numbers or random variables. The usage should be clear
from the context. We use lowercase letters to index elements of sets. We represent a vector of pooled
elements of a set with parentheses followed by its respective indexing. As an example, let [Vi,..., Vy] be

the N-dimensional vector V indexed by the set V = {1,..., N}, and be represented by V = (V,;v € V).

Treatment Assignment The set of indices of Perry participants is Z, where Z = {1,...,I} and I = 123.
Let D; be the treatment assignment for participant ¢ € Z, where D; = 1 if ¢ is treated and D; = 0 if not.

Let D = (D;;i € ) be the vector of random assignments.

Outcomes and Hypotheses We represent outcome k by the random vector Y, which represents an I-
dimensional vector of values of variables Y}¥ for participants i, Y* = (Y*;i € 7). The index set of outcomes
from 1 to K is represented by L = {1,..., K}. Our aim is to test the null hypothesis of no treatment effect
for outcome Y*. This hypothesis is written as Hy : Y* 1L D, that is, Y* is independent of D. The joint

null hypothesis of no treatment effect for outcomes Y*: V k € K, is represented by Hx = Npex Hi.

Permutation A transformation of D that permutes the position of its elements is represented by gD and

is defined as
gD = (5“2 eT| 52 = Dy, (), Where 7, is a permutation function (e, mg: T —Tisa bijection)) .

The permutation function 7, is indexed by g. To simplify notation, we represent the permutation that
acts on the data by g. This transformation can be applied to any data that are indexed by Z. In the
main text, we use the permutation over the treatment assignment D, where gD is the vector of permuted
assignments. Equivalently, a permutation can be written as a linear transformation gD = ByD, where B,

is a permutation matrix® that swaps the elements of any variable D according to the permutation g.

2A permutation matrix A of dimension L is a square matrix A = (aiz), % j =1,...,L, where each row and each column
has a single element equal to 1 and all other elements equal to 0 within the same row or column. Formally, a;; € {0,1},

Zle a;j =1, and ZiLzl a;j =1 for all ¢, 5.



The Randomization Hypothesis Permutation-based inference seeks to test the randomization hypoth-
esis, which states that the joint distribution of some outcome Y is invariant under permutations g € ¢, that
is, that outcome distributions are invariant to the swap of its elements according to g. We represent the
set of valid permutations for which the randomization hypothesis holds by ¢, so Vg € ¢, (Y, ¢D) L (Y, D),

where, as in the text, 2 means equality in distribution.

Interpreting the Randomization Hypothesis The hypothesis of no treatment effect for randomized
trials is equivalent to the hypothesis of independence between treatment assignments D and outcome Y, as
noted in Section 4.3. Suppose (Y, gD) 2 (Y, D) holds. Define T(Y, D) as our test statistic. We assume that
it is invariant to the relative ordering of the pair (Y;, D;) in the vector (Y, D). Then permuting Y instead
of D generates the same distribution of the test statistic T(Y, D). Stated differently, the distribution of the
test statistic T'(Y, D) will not change if the outcome positions of some treatment and control participants

are swapped in accordance with permutations g € 4. Equivalently, we can write T(Y, D) 4 T(gY, D).

C.2 Conditional Exchangeability and Independence under the Randomization

Hypothesis

An idealized randomization generates treatment assignments D that are unconditionally independent of
outcomes Y and pre-program variables X = (X;,7 € Z). When randomization is compromised, the ran-
domization hypothesis must be altered to account for the failure of the unconditional independence between
treatment assignments D and outcomes Y.

The randomization procedure in the Perry experiment is compromised by reassignment of treatment
labels to balance pre-program variables across treatments and controls (see Section 2 of the main text).
The randomization protocol ranked children by IQ score and then allocated treatment status to either all
odd-ranked or all even-ranked children and control status to the rest. Alterations to this basic assignment
rule occurred from two types of treatment-assignment swaps between individuals. The first type of swap
was intended to balance observable pre-program variables (namely, SES index and gender). The second
type of swap was made after the designation of treatment status, and was intended to remove children with
working mothers from the treatment group due to logistical problems associated with their participation in
the treatment program. Compromises of the Perry randomization protocol embody both types of swaps.
The latter compromises the independence between D and X, and may also create a potential dependence
between treatment status D and some unobserved variables V = (V;;i € 7) as well.

Formally, treatment assignments can be said to have been generated by a randomization mechanism

described by a deterministic function M. The arguments of M are the variables that can affect treatment



assignment. Define R as a random variable that describes the outcome of a randomization device (in the
Perry study, the flip of a coin). Prior to determining the realization of R, two groups were formed on the
basis of observed variables X (e.g., on IQ). Then R was realized by a randomization device. By construction,
the distribution of R does not depend on the composition of the two groups. After the realization of R, some
individuals were swapped across initially assigned treatment groups based on some X values (e.g., mother’s
working status) and possibly on some unobserved (by the economist) variables V' as well. By assumption,
R is independent of (X,V), that is, R 1L (X,V). M captures all aspects of the treatment assignment

mechanism. In this notation, treatment assignments D can be written as
D = M(R7 X7 V)?

where M is a deterministic vector-valued function.
As a concrete example, suppose that there was only one child per family in Perry and there were no
swaps after initial ranking by IQ score. Denote IA@ as vector of indicator variables equal to 1 for odd-ranked

1Qs within each wave. The Perry treatment assignment mechanism is characterized as
5 —_~ —~—
D=> 1[W=u]o (1[1@ =1]by + 1[IQ = 0](1 — bw)>,
w=1

where (by,...,b5) are independent Bernoulli random variables representing the outcomes of the coin toss
used to assign treatment status after the initial IQ-score ranking and ® is a Hadamard product.® 1[-] is an
indicator function.

In Section 4.2, we assume that the randomization procedure is not based on unobserved variables V. If
unobserved variables V' were not used to assign treatment status, then the relevant information on (X, V)
can be represented by the observed characteristics X. Program participants are characterized by (X, V). X,
V', and R generate D. Any permutation g of the elements in (X, V'), conditioned on R, generates the same

permutation of D:

(M(g(X,V),R) = gD)|R. (C-1)
This logic leads to the following proof of the exchangeability of treatment assignments, conditional on X.

Theorem C.1. Treatment assignments D are exchangeable for participants with the same X if the random-

ization does not rely on the unobserved variable V' of the participants.

Proof. Let ¥x be the set of permutations among participants with the same X . In this case, gX = X V g € ¥Ux.

3This is an element-wise product.



By assumption, D = M (R, X),s0V g € ¥x,

where ¥x is defined by
Yx = {g; mg : L — T is a bijection and X; = Xﬂg(i), Vie I}.

O

Conditional Independence Another consequence of the randomization protocol M is independence
between D and (Yo, Y1), conditional on X. This follows from the observation that R is independent of
(Yp, Y1) by construction. The following theorem proves the conditional independence (Yp,Y:) L R | X,

assuming that D is generated by (R, X) via M and that X is observed:
Theorem C.2. Assuming that D = M(X,R), (Y1,Yy) LL D | X.

Proof. We have

1,Y0) LR|X (by assumption)
= W,Y) L ¢(R) | X (for any particular function ¢)
= (Y1, Yo) L M(R, X) | X

. (V1,Yy) LD | X.

This result justifies the following assumption:
Assumption A-1. (Y1,Y)) L D | X.

The assumption justifies matching as a method to correct for compromises in the randomization protocol.

Defining the Hypothesis of No Treatment Effect The null hypothesis of no treatment effect states

that the distribution of treatment outcomes Y; and control outcomes Y is equivalent: Y; 4 Y. Likewise,



in non-compromised experiments, treatment assignments D are independent of outcomes: (Y7,Yy) 1L D. As
noted in Section 4.2, these two statements imply unconditional independence between observed outcomes Y
and treatment assignments: Y 1 D.*

However, compromised randomization precludes the use of this statement of the null hypothesis of un-
conditional independence (Y 1L D) for treatment effect inference. To understand why, first recall that
compromised randomization means that treatment assignments D are not independent of covariates X.
Now, suppose that these X impact outcomes. In this case, a relationship between Y and D may be induced
via X regardless of whether any real treatment effect exists. Such an induced dependence between Y and
D would invalidate unconditional independence, even under the null hypothesis of no treatment effect, and
would render this representation of the null hypothesis unsuitable as a basis for testing.

In summary, under our maintained assumptions and compromised randomization, (Y1,Yy) L. D | X

holds, but (Y7,Ys) LL D may not. Thus, a natural way to test the null hypothesis is to condition on X:
Hypothesis H-1. (V3 4 Yo) | X.

As stated in Section 4.2, Assumption A-1 and Hypothesis H-1 together imply that Y 1L D | X, which

is the hypothesis of no treatment effect that we seek to test.

Useful Exchangeability Properties for Testing Procedures The mechanics of testing the hypothesis
Y 1l D | X rely on the exchangeability properties of the joint distribution (Y, D). The following theorem
shows that the joint distribution of (Y, D) is invariant across the set of permutations ¥x that swap treatment

assignments D within the same strata of X values, (Y, D) 4 (Y,gD).

Theorem C.3. Suppose that the randomization is as described in Theorem C.1. Under Hypothesis H-1,
the joint distribution of outcomes Y and treatment assignments D is invariant under permutations 9x of

treatment assignments within strata formed by values of X : (Y, D) 4 (Y,gD) V g € 9x.

Proof. Let ¢x be the set of permutations within participants that share the same data on X. Then, by
Theorem C.1, D 4 gD conditional on X. Moreover, Theorem C.2 shows that (¥7,Yy) LL D | X. Thus, for

4The proof is omitted for reasons of brevity, although the proof of a similar fact can be found in Section 4.2.



all g € ¥x we can write

Pr((Y,gD) € (Ay, Ap)|X) =E(1[Y € Ay] ® 1[gD € Ap]|X)

—E
=E(1[DoYi+(1-D)0Y, € Ay] ®@1[gD € Ap]|X)
E

(1[Yo € Ay] ®1[gD € Ap]|X)
by Y;1 4 Yio Vi€ Z, due to Hypothesis H-1

=E(1[Ys € Ay]|X) O E (1[gD € Ap]|X)

by (Y1,Y) L D | X
=E(1[Ys € Ay]|X) ©E (1[D € Ap]|X)

by Theorem C.1, D 4 gD conditional on X
=Pr(Y € Ay|X)Pr(D € Ap|X)
= Pr((Y, D) € (Ay, Ap)|X)

by Y 1 D|X.

O

Appendix C.5 provides detailed information on how to use Theorem C.3 to design a testing procedure.
One particular consequence of (Y, D) 4 (Y,gD) affects the use of test statistics. As mentioned, if a test
statistic relies only on the relationship between D and Y (that is, (Y;, D;), regardless of its position in the
matrix (Y, D)), then permuting D is equivalent to permuting Y for testing purposes. For example, suppose
we test using Student’s t. Then the value of the ¢-statistics computed after a permutation of two elements of
D is the same as if we had permuted the associated elements of YV instead. Put another way, using (¢Y, D)

instead of (Y, gD) would provide equivalent inference in this setting.

C.3 Restricted Permutation Groups and Sampling

Under the randomization hypothesis of no treatment effect, outcomes for treatments and controls are ex-

changeable within each stratum X = x. This section formally defines the procedure.

Partitioning the Data Suppose without loss of generality that the data on the pre-program variables
X take on J distinct values, say {a1,as,...,as}. Let the index set Z for participants be partitioned into J
disjoint sets Z; and let j € J = {1,...,J}, where each set Z; is defined by the set of participants that share

the same value a; for pre-program variables X. Recall that z; is the value of the pre-program variable X



for participant . We can define Z; by:
Ii={ieZ; z; =a;}.

By definition, the union of the disjoint sets Z; over j € J is equal to the full set of participants Z, which is

the definition of a partition. Alternatively, we can define the partition of the participants by
J
7= U Z,, where x; = xy < i,i' € Z;, for some j.
j=1

Definition of a Restricted Permutation Group Under our assumptions, the set of admissible per-
mutations g comprises those that only permute indices of participants who share the same values on the
pre-program variables. Notationally, permutations can only occur within each set Z;, that is, among par-
ticipants whose values of pre-program variables are equal to a;. We call these restricted permutations. A

formal definition of the restricted permutation set ¥x can be written as
g E€9Yx & g1 — T issuch that Vi € Z;,my(i) € Z; for all j € J.

This definition says that if a permutation g operates on the participant index ¢, which belongs to some
partition set Z;, then the permutation image m4(¢) of that participant index also belongs to the same partition
set Z;. The definition allows for multiple swaps in different partition sets, but all swaps are restricted to occur
only within each partition set. For example, suppose that Z; = {1,2} and Zo = {3,4}. Then a permutation

g for the set 77 and 75 that does not permute the elements in other sets can be defined by

m(i) =iVi €T\ (I; ULy);
mg: 1L — I Tg = me(1) =2;m,(2) = 1;
74(3) = 4y (4) = 3.

Alternatively, the permutation ¢’ defined by

Wg/(i) =1V GI\ (Il UIQ);
g 1 L — 1 Ty = g (1) = 17y (2) = 3;
Ty (3) =2;7g(4) =4,

permutes the index across partition sets and thus it does not satisfy the conditions required for inclusion in

%x. Recall that we can also write the restricted permutation in terms of a linear transformation B, such

10



that ByD = gD, where By is the permutation matrix that imposes the restricted permutation g.

Sampling Procedure Among all possible restricted permutations ¥x defined in the previous subsection,
we select as valid permutations only the ones that result in equal label assignments for siblings. In other
words, gD assigns the same treatment labels to all members of the same family. A sampling procedure
randomly selects J draws of permutations g € ¥x with replacement. Consequently, we have J permutation
matrixes B, that correspond to each of the draws of the permutation g. We index these J permutations as
g;, where j = 1,...,J. The sample data are described by the identity permutation, which we define as the

(J 4 1)* permutation (notationally, gs41).

1. To respect the non-random assignment of siblings, we use permutations that assign the younger siblings
to the same group to which the elder siblings were assigned. In this step we follow the randomization

protocol exactly. Further steps of the randomization protocol are approximated, as described below.

2. The IQ pairing and pre-randomization swaps are directed at balancing IQ, gender, and SES index. We
forbid permutations between genders as well as between the top and bottom half of the SES index.

Sensitivity analysis reveals that inference is robust to this choice of percentiles.

3. The post-randomization swaps led to unbalanced working status of mothers. However, we are unable
to restrict permutations based on mother’s working status due to data limitations, although we use it

as a linear covariate (see Appendix F for a discussion).

Simple Permutation Test Procedure Our permutation test is based on the following algorithm:
1. Sample a permutation g € ¥x with replacement.

2. Compute a test statistic for the permutation draw, based on data modified by the permutation matrix
B,.
3. Repeat Steps 1 and 2 to simulate the permutation distribution of the test statistic.
After a “reasonable” number of draws, we compute a test statistic (e.g., Student’s ¢ for difference in
means between the treatment and the control groups) using the simulated permutation distribution. An
example of a permutation-based p-value is the fraction of the computed permutation distribution that is

greater than the statistic computed using the original unpermuted data. We use the mid-p-value described

in Appendix C.5. The next section describes the construction of our test statistic in greater detail.

11



C.4 The Test Statistic

Conditional Inference in Small Samples As the Perry experiment has a sample of size 123, partitioning
participants into detailed categories based on the five pre-program variables is impractical. Restricted
permutation orbits would have so few observations as to preclude reliable inference. We obtain “reasonably-
sized” restricted permutation orbits by imposing the additional assumption of a linear relationship between
certain pre-program variables and outcomes. To this end, we divide the vector X into two parts: variables

N whose

XE] which are assumed to have a linear relationship with Y, and the remaining variables X
relationship with Y is unconstrained. Using this partition, write X = [X [ x v ]}. The model for outcomes
can be written as Y = §XF 4 f(X[N]7 g), where € is an error term assumed to be independent of X[ and

XIVI

Linearity Define Y =Y — §X£. Under the null hypothesis of no treatment effect, the exchangeability
of Y holds among participants who share the same value of X[V even if they have different values of X[,
Formally, we have that (f/,D) 4 (Y,gD); g € Yxivi. As a result, we do not have to partition the data for
all possible combinations of X! and X! — we only partition based on values of XVl the variables not
assumed to have a linear relationship with the outcomes Y. If § were known, permuting Y =Y — 6XZ
(instead of Y') within the groups of participants that share the same pre-program variables X [N would solve
the problem of linear conditioning on X", However, § is unknown. We address this problem by using an
approach due to Freedman and Lane (1983), which entails permuting the residuals from the regression of
Y on X in orbits that share the same values of XM leaving D fixed. Specifically, Freedman and Lane

(1983) use a conditional exchangeability principle and assume a fully linear model,
Y =f(X,D(X),e) =6X +AD +e¢,

where ¢ is independent of X. As previously noted, if § is known, we can use the residuals Y=Y -6Xin
a permutation test of the null A = 0. However, § is generally not known and has to be estimated. The
Freedman-Lane procedure assumes exchangeability of errors under the null, that is, that the errors ¢ of the
regression Y = §X + ¢ are exchangeable under the null of no treatment effect: (Hp : A = 0). We capture the
concept of exchangeable errors in the Freedman-Lane procedure by permuting the residuals from the linear
regression of Y on X! that excludes D.> We account for the non-linear relationship between Y and X [V]
by using the permutation matrix B, associated with restricted permutations ¢y, which only permutes

participants who share the same values of pre-program variables XV, Notationally, define the residuals

5Permuting D and comparing test statistics for the different permutations assumes no statistical relationship between petl
and D. Namely, it assumes no correlation between X [L] and D, which seems unreasonable.

12



from permutation g as €, such that

Z,= B\QxY

where Y is the estimated Y and the matrix Qx is defined as Qx = (I — Px), where [ is the identity matrix
and

Py = x ((X[L])/X[L])—l(X[L])/'

Matrices Px and @ x are well known linear transformations: Px is a linear projection in the space generated
by the columns of X", Qx is the projection into the orthogonal space generated by XX, We can write the
f/g = PxY 4 £, for a new outcome that preserves the linear relationship between X and Y, but permutes
the errors. Use }7g as the permuted outcome data for permutation g and compute the new linear coefficient
estimated for the dummy variable of treatment assignment D. This parameter, (D'Q XD)_1 D'Qx f/g, is the
Freedman-Lane coefficient for permutation ¢.° We denote by AJ the Freedman-Lane coefficient associated
with outcome Y and permutation g; (indexed by j), that is, AJ = (D’QXD)_lD’QXB;]_ QxY.

In a series of Monte Carlo studies, Anderson and Robinson (2001) compare the distributions of the test
statistics under various approximate permutation methods with the distribution from a conceptually exact
permutation method. All approximate methods produce permutation distributions under Hy that converge
to the same distribution. However, only the Freedman-Lane procedure has an expected correlation of 1
with the exact test, while the other methods are found to have smaller correlations. Thus, the Freedman-
Lane procedure comes closest to attaining the results of an exact test (where ¢ is known). In a series of
Monte Carlo experiments Anderson and Robinson show, for samples of the size used in this paper, that
the Freedman-Lane size is very close to the exact size where § is known. Another paper, by Anderson and
Legendre (1999), conducts extensive Monte Carlo simulations and shows that the Freedman-Lane procedure
generally gives the best results in terms of Type-I error and power. On the basis of these studies, we use the

Freedman-Lane coefficient as our primary test statistic.

60bserve that
~ -1
(D'QxD) ' D'QxY, = (D'QxD) ' D'Qx {X[L] ((X[L])’X[L]) XUy + Bl QxY

= (D'QxD) ' D'Qx (B,QxY).

13



C.5 Formal Permutation Testing with Mid-p-Values

In this section, we formally define a mid-p-value under permutation testing and prove that it constitutes a
valid level-a test.”

Following the notation of Section 4.4, suppose that we have a set of J +1 permutations g;, test statistics
AJ computed for each permutation, and ranks 77 = Z{:ll 1[A7 > A!]/(J + 1) for those test statistics.®

Then mid-p-values may be defined as

1 J+1 J+1
p - 1[Tl 2 TJ+1} + I[Tl > TJ+1} .
it =

To accurately describe our testing procedure, we need a few more definitions. Fix a nominal level for the
testing procedure at o and define

a=(J+1)—[a(J+1)],

where [a(J 4 1)| denotes the largest integer less than or equal to «(J + 1). Let the ordered values of
Ti: j=1,...,J + 1, be represented by TM ... T+ Define o as the percentage of test statistics 77

that are strictly greater than 7(®):

—
<
+
=

177 > 7).

<
+
N

<.
Il
—

Define o by the percentage of the test statistics 77 that is greater than or equal to T(%):

<
+
—

1

177 > 7).
(J+1) [ )

o] =

Il
-

J
Observe that « € [ap, @1]. Let the interval [0,1] be partitioned into the three intervals [0, cg), [cvo, c1],

and (aq, 1]. Our testing procedure assigns different rejection probabilities whenever p lies in each one of these

intervals. Namely, we reject the null hypothesis if p € [0, agp), we do not reject if p € (aq,1], and we reject

a—Q
a1 —ag’

with probability if p € [ag, a1]. We reject the null hypothesis with probability 7, where 7 is given by

=t <ol 170+t ) (22

The following theorem shows that this testing procedure yields a level-a test.

"Note that in this section, we use the fact that, under the randomization hypothesis, any real-valued statistic of the permuted
data (i.e., p?, 79, j = 1,...,J + 1) that provides J + 1 distinct values as g varies in ¢ is uniformly distributed across these
J + 1 values. For more details, see Lehmann and Romano (2005, Chapter 15).

8 AJ may be substituted for T7 without affecting single-hypothesis-testing results, but Romano and Wolf (2005) recommend
rank statistics to increase comparability for multiple-hypothesis testing.
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Theorem C.4. Suppose that the randomization hypothesis holds. Let J > 0 and 0 < a < 1 be given.
Then the test that rejects Hy : Y 1L D|X with probability T defined above satisfies Pr{reject Hy | X} =

« whenever Hy is true.

Proof. We have

Pr{reject Hy | X} = Pr{r=1}
= El]
- E [1[1) < ag] + 1[p € [ag, ] <“o‘°> ]
a1 — O
= E ll[p‘”‘1 < ap] + 1[p’ € [ag, a1]] (oz—ozo> ] (because p = p’ 1)
a1 — Qo

= -Lmupﬂ' < ap] + 1[p € [ag, o] | ——20

= J T 1 P 0 0, &1 a1 — ap
(because p’ is uniformly distributed across J + 1 permutation values)
i J+1 o J+1 . ( a—a

= |— 117 > 1@ 1[T? =T7@) [ ——
J+1(Z;[ SRR ](m—aﬂ>]

- . J+1 1 J+1 1
z;hm>Tm+(z;1m>ﬂM—2;uw>ﬂm)a_%
J+1 J+1 a1 — O

= |ao+ (a1 —ap) (M)]

= Q.

O

The cardinality of the set ¢ can be so large that computing p-values over all elements becomes infeasible.
In this case, we employ a test that uses random samples of J permutations g € ¢4 plus the identity permuta-
tion as the J + 1 draw.” By construction, a test that uses random sampling of elements in the permutation

set has the same expectation as a test that uses all elements in the permutation set.

9Recall that draw J + 1 is the sample data.
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D  Multiple-Hypothesis Testing with Stepdown'’

D.1 Introduction

In multiple-hypothesis testing, there are two generalized Type-I errors: the familywise error rate (FWER),
which is the probability of rejecting any true null hypothesis, and the false discovery proportion (FDP), which
is the proportion of true null hypotheses rejected. The stepdown algorithm described below exhibits strong
FWER control: FWER is held at or below a specified level regardless of the true configuration of the full set
of hypotheses (Lehmann, Romano, and Shaffer, 2005)." We test a number of hypotheses simultaneously,
mandating the choice of FWER as a criterion. FDP is more appropriate in the context of a very large number

of hypotheses, such as tens or hundreds of hypotheses, a common occurrence in fields such as genomics.

D.2 Overview of Multiple-Hypothesis Testing

Two traditional but conservative methods for multiple-hypothesis testing are the Bonferroni and the Holm
procedures (see Lehmann and Romano, 2005, for a description of these tests). Their goal is to test K joint
hypotheses. Each single hypothesis is represented by Hy, where k € K = {1,..., K}, for which we have

individual-hypothesis p-values p1,...,px. The joint hypothesis is given by Hx defined by
Hy = () Hx.
kel

To control for FWER < «, the traditional procedures use the following rejection rules:

Bonferroni Rejection Rule:
Reject each Hy with pp < o/K.
Holm Rejection Rule:
(1) Order the original p-values, with the notation p(yy,...,px)-
(2) Find the highest k with p) < o/ (K —k +1).
(3) Reject the hypotheses Hyy, ..., Hy,.

These two methods are computationally simple to implement, but they do not account for dependence

between outcomes, while less conservative methods described below do.

10The structure and examples in this appendix are developed by Romano and Wolf (2005). Readers are advised to consult
this primary source.

HFor further discussion of stepdown and its alternatives, see Westfall and Young (1993), Benjamini and Hochberg (1995),
Romano and Shaikh (2004, 2006), Romano and Wolf (2005), and Benjamini, Krieger, and Yekutieli (2006).
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Modern work is based on the procedure of “closure methods.”'? General closure methods belong to a
testing tradition called multiple comparison procedures (MCP). These constitute a more flexible and com-
prehensive framework for multiple-hypothesis testing on the power set p(Hy) of hypotheses Hx. However,
closure methods have two disadvantages: they are computationally impractical for large numbers of hy-
potheses, and computing the test statistics dictated by some joint hypotheses may be infeasible. Closure
methods, such as those developed by Einot and Gabriel (1975) and Begun and Gabriel (1981), are based on
a stepwise MCP. They start with the biggest set K of joint hypotheses and proceed through smaller sets of
joint hypotheses.

Let K’ C K. The test of the joint hypothesis Hxr = Mrexr Hi at a significance level o uses a statistic
Tx with a critical value cic/ (o) at level ax:. Higher values of Txr provide evidence against hypothesis Hy,

and under H/, cxr(axr) can be defined as

[ PI“(T;C/ > cxer (Ol)o)),

that is, cxs(ayer) is the a-highest quantile of the distribution of the test statistic Tyc.
For the Newman (1939) and Keuls (1952) procedure, ax: = . For the Ryan (1959) procedure,

K]
a =1—(1—a)TxT,

The test of Hy is called ay-critical if the computed test statistic Ty for the sample is bigger than its
critical value cxr(axr). An MCP rejects Hyr if all sets K” O K’ are axr-critical, where K is the biggest set
of joint hypotheses to be tested, in particular, X’ C K. In other words, hypothesis Hx is only rejected if all
combinations of the joint hypotheses in K that include the hypothesis in K’ are also rejected.

Observe that if a set of hypotheses K’ is not ax-critical, that is, it is not rejected, then all combination
sets of K" are also not rejected. This rule is called acceptance by implication (Begun and Gabriel, 1981) and
it insures logical coherence. If one joint hypothesis is not rejected, all subsets of the hypotheses will also fail
to be rejected.

Traditional MCP algorithms start by targeting the larger set of joint hypotheses Hy. If not rejected, all
remaining combinations of hypotheses are not rejected either. If Hy is rejected, the procedure computes the
critical value for all combinations of K — 1 hypotheses in the set & without the most statistically significant
hypothesis. A new round of rejections requires the computation of the critical values of all combinations of

K — 2 hypotheses in K without the two most statistically significant hypotheses, and so forth.

123ee Lehmann and Romano (2005).
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One computational problem arising from the method is the exponential increase of intersection hypotheses
as K increases. In the worst case, this could require as many as 2% — 1 tests. Another drawback is the
computation of the critical values, which may be difficult for some of the intersection hypotheses. Closure

methods strongly control for FWER, as shown in Marcus, Peritz, and Gabriel (1976).

D.3 Subset Pivotality and Free Stepdown Procedure

Data and Hypotheses Assume that the data Y have the true generating distribution P € Q). The
objective is to test the joint hypotheses Hx = Niex H, where each Hy, corresponds to a family of distributions

wi € Q, which may contain the true data generating distribution P:

Hy : P € wg.

Assume that the evidence against hypothesis Hj has been summarized using a p-value pg; k& € K. Let
pr = (px ; k € K) be the vector of random p-values generated from P. Let C(P) be the set of indices of the

true hypothesis.

Subset Pivotality The distribution of px has the subset pivotality property if the joint distribution of any
sub-vector pz = (p; ; | € L£); for an £ C K would be identical if either K(P) = K or K(P) = L. Westfall and
Young (1993) clarify further by stating that the subset pivotality condition requires that the multivariate
distribution of any sub-vector of p-values is unaffected by the truth or falsehood of hypotheses corresponding
to the p-values that are not included in the sub-vector.

Westfall and Young (1993) argue that the subset pivotality condition is important for two reasons.
First, resampling is particularly convenient under this condition: resampling is done under the assumption
that all null hypotheses are true, rather than a subset of the hypotheses. Second, when subset pivotality
holds, resampling-based methods provide strong control for FWER. At the time Westfall and Young (1993)
was published, it was believed that subset pivotality was a necessary condition for FWER strong control.
However, Romano and Wolf (2005) provide an algorithm that strongly controls for FWER under weaker

conditions.

Cases of Failure Westfall and Young (1993) consider the problem of testing whether the correlations
of a vector of N normally distributed random variables are all zero. Notationally, H; ;) : p;; = 0 and
K ={(,j5):i,5 € {1,...,N}}. In large samples, a traditional test statistic is T{; ;) = v/n - r(; j), where n

is the sample size and r(; ;) is the sample correlation between variables 7 and j. Suppose that hypotheses
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H1 2y and H, 3) are true, with all others false. Previous analyses by Aitkin (1969, 1971) show that the
joint distribution of [T(LQ)7 T(l,g)] is approximately normal, with zero means, unit variances, and correlation
p2,3- The key observation is that the joint distribution of the test statistics for hypotheses H ;o) and H(; 3)
has different statistical properties depending on whether p235 = 0 or pg 3 # 0. Consider the hypothesis
H33) : p2,3 = 0 as part of a set of hypotheses {H (1 2), H(13), H(2,3)}. In this case, inference on the joint set
of hypotheses H; 2) and H(; 3) changes, depending on whether hypothesis H( 3 is true or not. The subset
pivotality condition fails here because the distribution of [T{; 2),T(1,3)] depends on the value of po 3, which
is associated with another hypothesis not directly tested by T{; 2y or Ty 3). Observe that subset pivotality

would hold if the hypotheses of interest involved only the means of the normal random variables.

D.3.1 The Free Stepdown Procedure

Westfall and Young (1993) use the assumption of subset pivotality to develop a stepdown procedure that
exhibits strong controls over FWER. As mentioned above, p, denotes the p-value associated with hypothesis
k and the set of hypotheses can be indexed by K = {1, ..., K'}. Without loss of generality, let the computed
p-value statistic be sorted in increasing order; that is, p; < ps < --- < pr. Using some resampling method,
let (p{, ceey p%) be the j* draw of the vector of p-values. These draws generate the joint testing distribution
of (p1,...,px) under Hy. Let J be the total number of draws, that is, j € {1,...,J}.

Using this notation, the Westfall and Young (1993) algorithm is defined as follows:

1. For each draw j, compute the successive minima qi = min{pi, ey p&} This step enforces the original
monotonicity of observed p-values. Note that k denotes the original rank of the outcome by significance,

with £ = 1 being the most significant and &k = K being the least significant.

2. For each k € K, compute pj, = (E}le 1[qi < px])/J. This step gives the percentage of times that the

adjusted draws (qi ;j=1,...,J) are equal to or less than py.

3. For each hypothesis k € I, enforce the successive maxima py = max{pi, ..., px}. This final enforcement

of monotonicity ensures that larger unadjusted p-values correspond to larger adjusted ones.

The final py are the adjusted p-values proposed by Westfall and Young (1993). Anderson (2008) claims
to use this algorithm in performing multiple-hypothesis inference. However, the description of his algorithm
does not comply with the one proposed in Westfall and Young (1993). Specifically, his algorithm is described

as follows:

1. For each draw j, compute the successive minima qi = min{pi, ey p%} This step enforces the original

monotonicity of experimentally observed p-values.
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2. For each k € K, compute pj = (Z}'le l[qi < px))/J. This step gives the percentage of times that the

J

adjusted draws (qj,; j = 1,...,J) are strictly less than py.

3. For each hypothesis k € K, enforce the successive minima py = min{pg, ...,Dx }-

His procedure is different from the one proposed by Westfall and Young (1993) in the last step. Observe
that while Westfall and Young (1993) use successive maxima on adjusted p-values, Anderson (2008) uses
successive minima. Anderson (2008) does not provide any proof that the method he uses strongly controls

for FWER.

D.4 Stepdown Multiple-Hypothesis Testing

Stepdown methods improve upon general closure methods in two ways. First, they require only K separate
tests. Second, the method tests joint hypotheses using only the test statistics for individual hypotheses,
sidestepping the need to construct and compute specific test statistics for a large number of intersection
hypotheses. Westfall and Young (1993) describe various methods of resampling outcomes Y for stepdown
procedures, but those methods rely on the assumption of subset pivotality.

A recent result by Romano and Wolf (2005) shows that strong FWER control can be obtained by ensuring
a certain monotonicity condition on the test statistics for the joint hypothesis that is weaker than subset
pivotality. This monotonicity condition states that the critical value for a joint hypothesis that contains the
subset of true hypotheses must be at least as large as the critical value for the joint hypothesis formed only
by true hypotheses. Notationally, let JC(P) be the set of indices of the true hypothesis, such that I(P) C K,

so that under probability law P, the monotonicity condition is defined by:

e (@) > ex(py(@).

In other words, the critical value for the full set of joint hypotheses indexed by K, which contain the true
hypothesis indices KC(P), is greater than or equal to the critical value for the hypothesis that comprises only
true hypothesis Hy(p-

In this framework, a set of sufficient conditions for strong FWER control can be stated as follows:

1. The joint-hypothesis test statistic at each stepdown stage is chosen to be the maximum of the individual-

hypothesis test statistics.

2. If a permutation-based inference is adopted, then the same draw of permutation is used to compute

all test statistics at each stage.
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3. The permutation set from which permutations are drawn is chosen such that, under the null hypotheses,

the distribution of the data is invariant for each permutation.

Below, we discuss how to construct tests that satisfy the first two conditions. The third condition applies
to permutation testing of randomization hypotheses in general, and requires constructing the permutation

groups using knowledge of the experimental design that generated the data.

D.5 The Stepdown Algorithm

Data and Hypotheses Assume that we start with outcomes Y*; k € K = {1,..., K}, which have the
true generating distribution P € €. The objective is to test a set of null hypotheses Hic = [, ¢, Hy jointly,
where each Hj corresponds to a family of distributions wy C £ which may contain the true data generating
distribution P:

Hy : P € wg.

Permutation Testing In randomized experiments, the goal is to test the joint hypothesis of no treatment
effect across outcomes Y* ; k € K. The general representation of this hypothesis is given by Hy : Y* 1L D,
where D is the treatment status. Thus Hy, corresponds to a family of distributions wy, in which the treatment
status D is independent of outcome Y*. Let & be a set of permutations such that the randomization
hypothesis holds, that is, the joint distribution of (Y'*, D), such that k& € K is invariant under permutations
g in ¢ whenever the true generating distribution P belongs to the family of distributions specified by H.

Formally,

Pe(w = [(Yk,D)i(Yk,gD)vgeg, VEkek].
ke
Let T}, = T(Y'*, D) be the test statistic computed using the sample data, for which greater values provide
evidence against the null hypothesis Hy. Let Tf = T (Y* gD) be the test statistic computed using the

permuted data according to g € ¢. The distribution of T}, can be generated by varying g across ¢.

Sets of Joint Hypothesis The stepdown method starts by testing the full set of joint null hypotheses
Hy.. For notational purposes, define the set of hypotheses in this first step by K1, such that K1 = K. In each
K — 1 successive step, the most individually significant hypothesis — the one most likely to contribute to

the significance of the joint null hypothesis — is dropped from the set of null hypotheses, and the joint test
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is performed on the reduced set of hypotheses. Thus the set of hypotheses for the second step is given by
Ko =K1\ {k*}; k" = arg max(Ty; k € K1).
Likewise, the set of hypotheses for the step s is given by:
Ks=Ks_1 \{k*}; k" = arg max(Tk; k € Ks—1).
Finally, the final step targets the least significant hypothesis: Kx = {arg min(Ty; k € K)}.

Joint Test Statistics and Critical Values The test statistic for any step s that tests the joint hypothesis

Hyc,, with KCs as defined above, is given by
T, = max (Ty; k € Ks).

Let T¢ = max (T; k € K,), which is the maximum of the the test statistics 7}/ such that k € Ky and
g € 4. The distribution of Tk, can be generated by varying g across ¢. The critical value for each hypothesis
Hi,, s€{l,...,K}, at level a is defined as the value of the a-highest quantile of the distribution of Ty, .
Namely, if we relabel the statistics T,‘és, g € 4 by arranging them in increasing order
1) (1¢1)
T < <170,

then the critical value for T, is given by

CKC, (O{) = T}g?»

where a = [(1 — «)|¢|], that is, the largest integer less than or equal to (1 — «)|¥4]. According to Romano
and Wolf (2005), the use of the maximum operator in the definition of the joint statistic ensures the required
monotonicity property of the critical values.

We assume full enumeration of the permutation set ¢ for generating the distribution of the test statistics
and to compute critical values described in this section. However, for implementing the method, it is common
to randomly sample permutations g € ¢ and use the sampled permutations for computing the statistics.
Romano and Wolf (2005, p. 99, Corollary 3) show that FWER control of the stepdown procedure persists

when using randomly sampled permutations in ¢ instead of its full enumeration.
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The Stepdown Algorithm The stepdown algorithm described in Romano and Wolf (2005) is defined as

follows: Beginning with 1 = K,

If Tic, < ek, (@), accept all Hy, k € K; and stop.

s =1)
Otherwise, let Ko = Ky \ {k*}, k* = arg max(Ty; k € K1).
If Tie, < cx (o), accept all Hy, k € Ks and stop.
[1<s<K]
Otherwise, Ks11 = Ks \ {k*}, k* = arg max(Ty; k € Ky).
5= K] If Tic,, <cxp(a@), accept H,. , Kx = {arg min(Ty; k € K)}.
S =

Otherwise, reject all Hg, k € K.

Romano and Wolf (2005, p. 99, Corollary 2) demonstrate strong FWER control on a test of multiple-
hypotheses Hyx at level « if one performs this stepdown algorithm using the joint test statistics and the

critical values defined above.
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E Asymptotic and Permutation p-Values

The Perry study has about 60 observations per outcome for each gender. Our analysis confirms a well
known fact about the validity of asymptotic statistics in samples of this size (Good, 2000). Traditional
resampling techniques, such as the bootstrap and unrestricted permutation, produce distributions of some
common sufficient statistics which are very close to their asymptotic versions. As an example, we compute
the asymptotic p-value for the t-statistics of the difference in means between treatment groups. We also
compute two comparison p-values: the p-value based on an unrestricted permutation method and another
based on the usual bootstrap procedure. All three p-values are computed for 350 Perry outcomes chosen for
their reliability and relevance to the topic of study. There is little difference between asymptotic p-values
and the values based on resampling. Indeed, in 50% of the outcomes, the absolute difference between the
asymptotic p-values and resampling values was less than 0.5 percentage point; in 95% of the cases, it was
less than 4 percentage points. Figure E.1 shows the histograms of the outcomes with respect to the absolute

difference between the asymptotic and permutation p-values.

24



Figure E.1: Difference between Asymptotic and Permutation p-Values
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Notes: 350 observations of differences between one-sided asymptotic and one-sided permutation p-values were used.
No blocks or clusters were used while permuting. The 350 observations are p-values for the null hypothesis of no
treatment effect based on 350 outcomes of Perry subjects such as wages, test scores, number of arrests, and so forth,
chosen by the authors for Perry reanalysis for their reliability and relevance to the outcomes studied in this paper.



F Sensitivity Analysis

The test results reported in this paper rely on Freedman-Lane linear parametric approximations. We can
choose either parametric or non-parametric conditioning for each covariate (see Section 4.5 of the paper). In
calculating our main results (Tables 3—6), we use non-parametric conditioning on an indicator for whether
the socio-economic status (SES) index is above or below the median and use parametric conditioning on the
remaining covariates: Stanford-Binet 1Q, mother’s employment status, and father’s presence in the home,
all measured at the time of entry into the study.

The purpose of this appendix is to examine the sensitivity of our estimates to different choices of condi-
tioning variables. We focus on two aspects of our procedure. First, what happens when additional covariates
are introduced into the nonparametric conditioning set. Second, since some discretization of the continuous
variable SES index is necessary to make possible non-parametric conditioning, we examine the sensitivity of
our inferences to alternative plausible discretizations. The results of this analysis are described below. We

conclude that our main results are robust to alternative choices of the conditioning variables.

Parametric vs. Non-Parametric Conditioning Columns (1)—(4) of Tables F.1-F.4 show the sensi-
tivity of the p-values derived from the Freedman-Lane procedure to shifting additional covariates from the
parametric portion of the model to the non-parametric portion. Column (1) shows partial linearity results
comparable to the “Partial Linearity” column of our main results (Tables 3-6), while columns (2), (3), and
(4) show the effect of shifting mother’s employment status, father’s presence, and Stanford-Binet IQ), respec-
tively, from the parametric portion to the non-parametric portion of the regression function. In each case,
we condition parametrically on the two remaining covariates.

The p-values are quite comparable across columns. Only rarely does inference vary, depending on choices
of conditioning variables. Similarly, p-values for the other outcomes—that is, the outcomes for which no
column indicates statistical significance—are comparable across alternative conditioning sets, although in
cases of nonsignificance, p-values vary greatly. The differences that arise do not exhibit an obvious pattern.
These results support the analysis of the text by indicating that the choice of the conditioning variables does

not greatly affect the main results reported in Section 5.

Discretizing Non-Parametric Conditioning Variables Columns (1), (5), and (6) of Tables F.1-F.4
show the sensitivity of our results to using different discretizations of the SES index for non-parametric
conditioning. To use non-parametric conditioning for a continuous covariate, that variable must be trans-

formed into a discrete covariate on which the permutation orbits used in testing can be restricted (see
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Section 4.4).1% We examine three possible transformations of the non-parametric conditioning covariate
SES index: Column (1)—comparable to the “Partial Linearity” column of our main results (Tables 3-6)—
conditions non-parametrically on an indicator for whether SES index is above or below the median, column
(5) conditions on terciles, and column (6) conditions on quartiles. In all cases, we continue to condition para-
metrically on the remaining covariates (mother’s employment status, father’s presence, and Stanford-Binet
IQ, measured at study entry).

As with our comparison of parametric vs. non-parametric conditioning, p-values are comparable across
the columns. Inference varies across approaches for only a handful of outcomes. These results further
reinforce the conclusion that our choice of conditioning sets does not substantially affect the results reported

in Section 5.

13Kernel methods would be impractical in samples of the size analyzed in this paper.
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G Analysis of Test Scores

Additional Tables and Figures

Stanford-Binet IQ Scores During Childhood The graphs in Figure G.1 compare Stanford-Binet 1Q
scores by gender. 1Q effects for the Perry program fade out by age 9. Table G.1 shows that this is especially
true for males. For females there is some persistence of the treatment effect, but not in the Stanford-Binet
test. (See Table G.1, row labeled “Stanford-Binet”.) Yet, strong effects are found for achievement tests for
both males and females. Heckman, Malofeeva, Pinto, and Savelyev (2010) analyze this phenomenon in more
detail and establish that socioemotional skills were enhanced by the Perry program, driving the boost in
test performance. This is consistent with the evidence from Borghans, Golsteyn, Heckman, and Humphries
(2010), who report that roughly 50% of the variance in achievement tests is due to variability in noncognitive
skills. These results are also consistent with the evidence from Duckworth and Seligman (2005) that higher

motivation is predictive of better test scores.
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Figure G.1: Perry Subjects’ IQ by Gender and Treatment Status

(a) Males
105
100 Treatment
95
— — — —~
90 S ~
& -
— 85
80 s
/
75
Treatment | 79.2 94.9 95.4 91.5 91.1 88.3 88.4 83.7
Control - 77.8 83.1 84.8 85.8 87.7 89.1 89.0 86.0
T T T T T T T T
Entry 4 5 6 7 8 9 10
Age
(b) Females
105
100 Treatment
95
90
<4 -
— 85
80 —~
-~ Control
75
Treatment -{ 80.0 96.4 94.3 90.9 92.5 87.8 86.7 86.8
Control o 79.6 83.7 81.7 87.2 86.0 83.6 83.0 81.8
T T T T T T T T
Entry 4 5 6 7 8 9 10

Age

Notes: Data are IQ scores measured using the Stanford-Binet IQ test (1960 revision). The first entry cohort is
excluded, as that treatment group received only 1 year of treatment.
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Table G.1: Early Cognitive Outcomes by Gender

Age
Measurement E? 3 4 5 6 7 8 9

Stanford-Binet 191 — .000 .001 .004 .049 .630 .593

8 Leiter — .103 .001 .009 .458 .685 .793 .107
® PPVT — .026 .001 .000 .069 .276 .110 .302
E ITPA — .148 — .000 .236 .448 .299 .350
Joint Test? — .073 .000 .000 .014 .155 .312 .295

" Stanford-Binet 107 — .000 .002 .070 .036 .039 .108
.% Leiter — .001 .001 .000 .012 .035 .039 .004
g PPVT — .067 .001 .001 .062 .057 .389 .245
;2 ITPA —  .073 — .000 .079 .035 .063 .043
Joint Test? — .001 .000 .000 .039 .100 .133 .015

Notes: p-Values are for the joint hypothesis consisting of one-sided hypotheses for the significance of treatment effect, corre-
sponding to the first step of a stepdown test on the group of outcomes. Constituent p-values are computed using Mann-Whitney
U-statistics, with permutations conditioned on maternal employment and paternal presence, and restricted on SES index and
IQ percentiles and maternal employment; siblings were permuted as a block. A complete set of cognitive test scores and detailed
tests of California Achievement Test scores can be found in Table G.2. p-values below 0.1 are in bold. (a) For each age, the

joint test p-value is the joint-hypothesis test of all available outcomes in the rows above for that gender.

Table G.2: California Achievement Test (CAT) Scores by Gender

CAT*® Age
Subscore 7 8 9 10 11 14

Reading 324 443 208 148 154 .086

)]
% Arithmetic 207 114 .069 .082 .366 .032
s Language 454 627 .092 .087 .188 .013
Joint Test 403 226 135 148 .243 .032
3 Reading .024 .022 .055 .042 .112 .041
®  Arithmetic .020 .038 .017 .205 .304 .063
g Language .085 .031 .039 .078 .158 .002
&

Joint Test .043 .043 .030 .076 .180 .006

Notes: p-Values are for the joint hypothesis consisting of one-sided hypotheses for the significance of treatment effect, corre-
sponding to the first step of a stepdown test on the group of outcomes. Constituent p-values are computed using Mann-Whitney
U-statistics, with permutations conditioned on maternal employment and paternal presence, and restricted on SES index and 1Q
percentiles and maternal employment; siblings were permuted as a block; each test comprises a single outcome (and hypothesis)
in the joint test. p-values below 0.1 are in bold. (a) At ages prior to 14, the CAT hypotheses corresponded to the reading,

arithmetic, and language subscores; at age 14, each divided into two further subscores.
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H Representativeness of the Perry Sample

Perry Control Group vs. NLSY79 Subsamples Figures H.1-H.5 compare the Perry control group
with two comparison groups on selected background characteristics that mimic the Perry eligibility criteria.
To extract these comparison groups, we use the National Longitudinal Survey of Youth 1979 (NLSY79),
which is a nationally representative longitudinal survey whose respondents represent almost the same birth
cohorts as the Perry sample (1956-1964 and 1957-1962, respectively).

The first comparison group is the full black subsample of the NLSY79, while the second is restricted by
subject birth order, socio-economic status (SES) index, and Armed Forces Qualification Test (AFQT) score.
These restrictions are chosen to mimic the program eligibility criteria of the Perry study.

A practical difficulty in imposing these restrictions on NLSY79 is that we do not have enough information
to perfectly mimic the original Perry experiment eligibility criteria. Specifically, we do not know the number
of rooms in each NLSY79 respondent’s dwelling at age 3, which was used to construct the SES index in the
Perry study; neither do we know their IQ scores. Given this lack of information, we construct proxies for
these two variables. First, to construct a proxy for the SES index, we first regress the number of rooms in
the Perry data set on mother’s education, father’s occupation, and family size to estimate a linear predictor
for the number of rooms. The estimated function is used to predict the number of rooms for each NLSY79
black respondent, which in turn is used to construct a proxy for the SES index. Second, without having 1Q
scores in the NLSY79, we instead use the AFQT scores as our proxy. While AFQT is an achievement test,
not an ability test like the IQ test, it can serve as a proxy for ability as long as achievement and ability
are highly correlated. We adjust the AFQT score for age and educational level at the time of testing and
use it as our proxy. The method used for adjustment is based on the method of Carneiro, Heckman, and
Masterov (2005), which is a simpler version of the method of Hansen, Heckman, and Mullen (2004). This
method corrects for reverse causality arising from the effect of education on test scores. The early childhood
background characteristics — pre-experimental measures in the Perry sample — that we are comparing in
this appendix are parents’ average highest grade completed, an SES index, and mother’s age at subject’s
birth, all measured at age 3. Adult outcomes consist of earnings at ages 27 and 40.

Relative to the full black NLSY79 subsample, children in the Perry control group have more disadvantaged
family backgrounds. This is not surprising, as the Perry program was targeted toward such children through
the aforementioned eligibility. One interesting finding is that this disadvantage is also reflected in adult
earnings. Compared to the fully restricted NLSY79 subsample (the final column), however, the relative
disadvantage disappears in both childhood and adult outcome measures. These restrictions induce broad

comparability between the subsample of the NLSY79 constructed using these principles and the controls in
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Table H.1: Comparison of Perry Subjects and the US Black Population: Males at Ages 3, 27, and 40

Perry Subjects NLSY79: Restricted Black Subsamples
a Younger Low- d All Re-
Ctl. Treat. All Siblingb Ability® Low-SES rictions®
Sample Size 39 33 706 564 352 290 128
Pop. Represented 2,222 597 1,749,519 1,085,137 879,363 372,004
Parents’ 9.5 9.3 10.7 10.5 9.9 9.8 9.3
Education (2.0) (2.0) (2.6) (2.7) (2.5) (2.3) (2.4)
o)
8.6 8.9 10.7 10.6 10.0 8.9 8.6
)
2 SES Index (1.4) (1.7) (3.0) (3.0) (2.6) (1.3) (1.4)
Mother’s 25.6 26.5 25.1 26.2 25.2 25.6 26.7
Age at Birth (6.6) (6.5) (6.7) (6.5) (7.0) (7.0) (6.9)
High School 0.54 0.48 0.71 0.68 0.59 0.71 0.59
N Graduation (0.51) (0.51) (0.45) (0.47) (0.49) (0.45) (0.49)
C; Emploved 0.56 0.60 0.82 0.80 0.77 0.84 0.76
<b:0 ploy’ (0.50) (0.50) (0.38) (0.40) (0.42) (0.37) (0.43)
Yearly 12,495 14,858 20,239 18,799 16,349 19,268 14,579
Farnings (11,354) (10,572) (18,261) (15,850) (14,835) (16,305) (11,819)
o Emploved 0.50 0.70 0.84 0.83 0.76 0.82 0.75
: ploy’ (0.51) (0.47) (0.37) (0.37) (0.43) (0.38) (0.43)
fﬁc Yearly 21,119 27,347 28,729 27,581 19,700 26,992 18,860
Farnings (23,970) (24,224) (26,929) (26,059) (17,947) (25,256) (21,256)

Notes: All NLSYT79 figures weighted by the initial (1979) sampling weights. Numbers in parentheses are standard deviations.
All monetary values in year-2000 dollars. (a) No restrictions; (b) Subjects with at least one elder sibling (all Perry subjects also
meet this criterion); (¢) AFQT scores below the black median; (d) Socio-economic status (SES) index at most 11; (e) Combines

the three restrictions to the left.

the Perry sample. This analysis supports the use of this NLSY79 subsample as a comparison group for the
Perry control group.

The U.S. population in 1960 was 180 million, of which 10.6% (19 millions) were black.'* We use NLSY79,
a representative sample of the total population that was born between 1957 and 1964, to estimate the number
of persons in the United States that resemble the Perry population at study entry (age 3). According to
NLSYT79, the black cohort born in 1957-1964 is composed of 2.2 million males and 2.3 million females. Our
criteria indicate that 712,000 persons out of this 4.5 million black cohort resemble the Perry population. We
estimate that 17% of the male cohort and 15% of the female cohort would be eligible for the Perry program

if it were applied nationwide.

1Visit: http://www.census.gov/population/www/documentation/twps0056/twps0056.html for more details.
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Table H.2: Comparison of Perry Subjects and the US Black Population: Females at Ages 3, 27, and 40

Perry Subjects

NLSYT79: Restricted Black Subsamples

N Younger Low- d All Re-
Ctl. Treat. All Sibling®  Abiliye  Low-SEST i
Sample Size 26 25 957 732 434 385 146
Pop. Represented 2,305,560 1,757,547 1,007,214 902,001 341,721
Parents’ 9.0 9.0 10.4 10.1 9.6 9.4 8.7
Education (2.0) (1.9) (2.7) (2.8) (2.7) (2.5) (2.8)
[~p]
8.5 8.7 10.6 10.3 9.7 8.9 8.4
Q
k. SES Index (12)  (1.4) (3.0) (2.9) (2.6) (1.3) (1.4)
Mother’s 25.7 26.7 25.1 26.5 24.9 925.5 27.2
Age at Birth (7.5) (5.9) (6.9) (6.7) (7.0) (7.3) (6.9)
High School 0.31 0.84 0.76 0.75 0.60 0.75 0.60
N Graduation (0.47)  (0.37) (0.42) (0.43) (0.49) (0.43) (0.49)
~ Erloved 0.55 0.80 0.65 0.62 0.50 0.60 0.45
» ploy (0.51)  (0.41) (0.48) (0.48) (0.50) (0.49) (0.50)
Yearly 8,98 11,554 12,701 11,849 7,582 11,430 6,263
Earnings (9,007)  (9,393) (12,880)  (12,235)  (8,578)  (12,120)  (7,779)
o Erloved 0.82 0.83 0.78 0.78 0.70 0.78 0.70
¥ pioy’ 0.39)  (0.38) (0.41) (0.41) (0.46) (0.42) (0.46)
& Yearly 17,374 20,866 20,365 19,511 12,588 19,624 11,530
Earnings (16,907)  (20,292) (18,433)  (17,655)  (11,386)  (18,663)  (10,885)

Notes: All NLSYT79 figures weighted by the initial (1979) sampling weights. Numbers in parentheses are standard deviations.
All monetary values in year-2000 dollars. (a) No restrictions; (b) Subjects with at least one elder sibling (all Perry subjects also
meet this criterion); (¢) AFQT scores below the black median; (d) Socio-economic status (SES) index at most 11; (e) Combines
the three restrictions to the left.
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I The Role of the Local Economy in Explaining Gender Differ-
ences in Treatment Outcomes

The local economic history of Washtenaw County'® has peculiarities that may explain the age pattern
of male treatment effects, and thus explain gender differences in a number of program outcomes. In the
1970s, employment in Ypsilanti and Washtenaw increased by 50% — a much higher rate than for the
state (14%) or the country (25%) as a whole (see Table I.1). This rapid growth coincided with a boom in
the local manufacturing sector, which subsequently contracted during later decades, although the service
sector continued to expand (see Figure I.1). The boom was particularly prevalent in the male-friendly
manufacturing sector.'®!'” This economic boom created plentiful jobs during subjects’ late teens, increasing
the opportunity cost of attending school and resulting in a higher dropout rate for boys. In later decades,
as the manufacturing sector shrank, it became more difficult for males to find jobs, while sectors in which
females were mostly employed (such as the service sector) expanded.

These labor market dynamics may partially explain the lack of a positive male program treatment effect
for high school graduation. Further, the exceptionally rapid employment growth in the Ypsilanti area
suggests the possibility that regional economic shocks drive program treatment effects. Therefore, we do
not observe a significant treatment effect on male employment at age 19 or for male educational attainment,
since at the time Perry participants entered the labor market, manufacturing jobs did not require a high
school degree.

While it is not easy to verify this interpretation with any precision, it is consistent with observed patterns
of migration out of economically troubled Michigan. At age 27, treatment males were more likely to migrate
than their control counterparts, although the difference is not statistically significant at conventional levels
(see Table 1.2). This evidence is consistent with a positive effect of Perry on the skills of participants.
Many studies of migration show a positive link between education and migration (Sjaastad, 1962; Vigdor,
2002a,b). The observed differences in migration between treatments and controls support the interpretation
that treatment had some positive effect on skills and motivation, even if we do not observe this directly in
terms of its effect on educational attainment of males. This pattern is also consistent with the pattern that
males had strong treatment effects on earnings outcomes despite insignificant treatment effects on education,
as well as the finding that treatment males had greater noncognitive skills and better achievement test scores

than their control counterparts. (See Heckman, Malofeeva, Pinto, and Savelyev, 2010.)

15Washtenaw County, which contains Ypsilanti and Ann Arbor, is located in the Detroit metropolitan area.

16Goldin and Katz, 2008, discuss the positive relationship between the demand for labor in the manufacturing sector and the
high school dropout rate. Manufacturing jobs did not require skilled workers (high school graduates).

17 At age 19, 12 out of 31 working males reported their jobs as assembly or auto mechanic, while 8 out of 15 working females
reported their jobs as cashier, food service, or dishwasher.
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Figure I.1: Michigan Employment, by Industry
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Table I.1: Historical Employment Trends in Ypsilanti, Michigan

Year Ypsilanti Washtenaw ‘ Michigan ‘ U.S. Total
Emp. A% | Emp. A% Emp. A% Emp. A%
1970 | 12,634 - 105,058 - 3,558,467 - 91,281,600 -
1980 | 19,441 54 | 164,723 57 | 4,039,438 14 | 114,231,200 25
1990 | 19,773 2 213,928 30 | 4,826,388 19 | 139,426,900 22
2000 | 17,716  -10 | 232,175 9 5,664,522 17 | 167,465,300 20
Source: Southeast Michigan Council of Governments (2002).
Table I.2: Migration, by Gender

% Out of Males Females

Michigan Ctl.  Trt. p* Ctl. Trt. p*

at age 27° 128 21.2 174 26.9 8.0 .040

at age 40° 25.0 26.7 .440 13.6 4.2 132

N 39 33 26 25

Notes: (a) p-values are for asymptotic one-sided tests; (b) At the time of age-27 survey; (c¢) 1996-2002.
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