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A. Workers and Household

The economy consists of a continuum of households. In turn, each household consists of a

continuum of workers. Workers have no access to credit or insurance markets other than

through their arrangements with the household. In part, we view the household construct

as a stand-in for the market and non-market arrangements that actual workers use to in-

sure against idiosyncratic labor market experiences. In part, we are following Andolfatto

(1996) and Merz (1995), in using the household construct as a technical device to prevent

the appearance of di¢cult-to-model wealth dispersion among workers. Households have suf-

ficiently many members, i.e. workers, that there is no idiosyncratic household-level labor

market uncertainty.

A.1. Preferences and Search Technology

A worker can either work, or not. At the start of the period, each worker draws a privately

observed idiosyncratic shock, l, from a stochastic process with support on the unit interval,

[0, 1] . We assume the stochastic process for l exhibits dependence over time, but that its

cross sectional distribution is constant across dates and uniform. A workers’s realized value

of l determines its utility cost of working:

& (1 + σL) l
σL . (A.1)

The parameters, & and σL ≥ 0 are common to all workers. In (A.1) we have structured
the utility cost of employment so that σL a§ects its variance in the cross section and not its

mean.46

After drawing l, a worker decides whether or not to participate in the labor force. The

46To see this, note:

Z 1

0

(1 + σL) l
σLdl = 1,

Z 1

0

[(1 + σL) l
σL − 1]2 dl =

σ2L
1 + 2σL

.
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probability that a worker which participates in the labor market actually finds work is

p (el,t; η̃t) , where el,t ≥ 0 is a privately observed level of e§ort expended by the worker. We
find it convenient to adopt the following piecewise linear functional form for p (el,t; η̃t) . Let

p̃ (el,t; η̃t) = ηt + ael,t (A.2)

where a > 0. The sign of a implies that the marginal product of e§ort is non-negative.

Further,

η̃t = η +M (m̄t/m̄t−1) (A.3)

where η < 0. We discuss the negative sign on η below. The functionM (m̄t/m̄t−1) reflects

the impact of aggregate economic conditions — in particular the change of the aggregate labor

force m̄t/m̄t−1 — on the worker’s probability to find work. We will discuss details about the

functionM in subsection B.6 and estimate its key parameter in the empirical model.

We assume:

p (el,t; η̃t) =

8
><

>:

1 p̃ (el,t; η̃t) > 1

p̃ (el,t; η̃t) 0 ≤ p̃ (el,t; η̃t) ≤ 1
0 p̃ (el,t; η̃t) < 0

. (A.4)

We adopt this simple representation in order to preserve analytic tractability.

A worker whose work aversion is l and which participates in the labor market and exerts

e§ort el enjoys the following utility:

p (el,t; η̃t)

ex post utility of worker that joins labor force and finds a jobz }| {[
ln (cwt − bCt−1)− & (1 + σL) l

σL −
1

2
e2l,t

]
(A.5)

+(1− p (el,t; η̃t))

ex post utility of worker that joins labor force and fails to find a jobz }| {[
ln (cnwt − bCt−1)−

1

2
e2l,t

]
.

Here, e2l,t/2 is the utility cost associated with e§ort. In (A.5), c
w
t and c

nw
t denote the con-

sumption of employed and non-employed workers, respectively. These are outside the control

of a worker and are determined in equilibrium given the arrangements which we describe

below. In addition, η̃t is also outside the control of a worker. Our notation reflects that in

our environment, a worker’s consumption can only be dependent on its current employment

status as this is the only worker characteristic that is publicly observed. For example, we do

not allow worker consumption allocations to depend upon the history of worker reports of l.

We make the latter assumption to preserve tractability. It would be interesting to investigate

whether the results are sensitive to our assumption about the absence of history.47 The term
47We suspect that if the history of past reports were publicly known, then the di§erence between discounted

utility when household types and labor e§ort are public or private would narrow (see, e.g., Atkeson and Lucas

(1995)).
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bCt−1 reflects habit persistence in consumption at the household level which the worker takes

as given. We assume that 0 ≤ b < 1.
In case the worker chooses non-participation in the labor market, its utility is simply:

ln (cnwt − bCt−1) . (A.6)

A non-participating worker does not experience any disutility from work or from exerting

e§ort to find a job.

We now characterize the e§ort and labor force participation decisions of the worker.

Because workers’ work aversion type and e§ort choice are private information, their e§ort

and labor force decisions are privately optimal conditional on cnwt and cwt . In particular, the

worker decides its level of e§ort and labor force participation by comparing the magnitude of

(A.6) with the maximized value of (A.5). In the case of indi§erence, we assume the worker

chooses non-participation.

A.2. Characterizing Worker Behavior

As described above, the worker takes the replacement ratio rt ≡ cnwt /cwt < 1 as given. The
workers’s utility of participating in the labor market, minus the utility, ln (cnwt − bCt−1) , of
non-participation is given by:

max
el,t≥0

f (el,t) , f (el,t) ≡ p (el,t; η̃t)
[
ln

(
cwt − bCt−1
cnwt − bCt−1

)
− & (1 + σL) l

σL

]
−
1

2
e2l,t.

Denote

r̃t =
cnwt − bCt−1
cwt − bCt−1

,

and note the distinction between this expression and the replacement ratio, rt. In either case,

the household treats this variable as given. Then, the di§erence in utility can be expressed

as follows:

max
el,t≥0

f (el,t) , f (el,t) ≡ p (el,t; η̃t) [ln (1/r̃t)− & (1 + σL) l
σL ]−

1

2
e2l,t. (A.7)

We suppose that if more than one value of el,t solves (A.7), then the worker chooses the

smaller of the two. The worker chooses non-participation if the maximized value of (A.7) is

smaller than, or equal to, zero. It chooses to participate in the labor force if the maximized

value of f in (A.7) is strictly positive.
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A.2.1. Optimal E§ort

It is convenient to consider a version of (A.7) in which the sign restriction on el,t ≥ 0 is

ignored and p (el,t; η̃t) in (A.7) is replaced with the linear function, p̃ (el,t; η̃t) (see (A.2)):
48

max
el,t

f̃ (el,t; η̃t, r̃t) , f̃ (el,t; η̃t, r̃t) ≡ p̃ (el,t; η̃t) [ln (1/r̃t)− & (1 + σL) l
σL ]−

1

2
e2l,t. (A.8)

The function, f̃ , is quadratic with negative second derivative, and so the unique value of el,t
that solves the above problem is the one that sets the derivative of f̃ to zero:

ẽl,t = a [ln (1/r̃t)− & (1 + σL) l
σL ] . (A.9)

Substituting this expression into (A.8), we obtain:

f̃ (ẽl,t; η̃t) ≡
ẽl,t
2

[
2

a
η̃t + ẽl,t

]
, (A.10)

where ẽl,t is the particular function of l given in (A.9). We want to express ẽl,t as a function

of l. Doing so results in the following restriction:

a ln (1/r̃t) > −
2

a
η̃t > a [ln (1/r̃t)− & (1 + σL)] . (A.11)

The object on the left of (A.11) is ẽ0,t.

Further, keep in mind that 0 < r̃t < 1 so that ẽ0,t > 0 by equation (A.9). The first

inequality ensures that 2
a
η̃t+ ẽl,t > 0, so that l = 0 workers choose to participate in the labor

force, i.e. the square bracket in (A.10) is positive. Inserting ẽ0,t into the last inequality and

re-arranging yields a ln (1/r̃t) > − 2
a
η̃t which is the condition that says that l = 0 workers

exert positive e§ort and choose to participate in the labor force.

The second inequality in (A.11) ensures that the object in square brackets in (A.10)

is negative for l = 1 so that households with the greatest aversion to work choose not to

participate in the labor force.

A.2.2. Optimal Participation

By continuity and monotonicity of ẽl,t, there exists a unique 0 < l < 1 such that the object

in square brackets in (A.10) is zero. That value of l is the labor force participation rate,

which we denote by mt and which solves:

a [ln (1/r̃t)− & (1 + σL)m
σL
t ] = −

2

a
η̃t, (A.12)

48Considering the unconstrained case first will be helpful to understand more easily the constrained case,

i.e. el,t ≥ 0 and 0≤ p (el,t; η̃t) ≤ 1 which we characterize below.
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or,

mt =

[
ln (1/r̃t) +

2
a2
η̃t

& (1 + σL)

] 1
σL

. (A.13)

Note that for all l ≥ mt such that ẽl,t ≥ 0, f̃ (ẽl,t; η̃t, r̃t) ≤ 0 and for all l < mt, f̃ (ẽl,t; η̃t, r̃t) >

0. We summarize these findings in the form of a proposition:

Proposition A.1. Suppose that (A.11) is satisfied and the lth worker’s objective is described
in (A.8), with r̃t taken as given by the worker. Let mt be as defined in (A.13). Then,

0 < mt < 1, workers with 1 ≥ l ≥ mt choose non-participation and workers with l < mt and

ẽl,t ≥ 0 choose participation. For those that choose participation, their e§ort level is given
by (A.9).

The previous proposition was derived under the counterfactual assumption that the workers’s

objective is (A.8). We use the results based on (A.8) to understand the relevant case of

(A.7). One can show that there is a largest value of l, denoted l̊t, such that for all l ≤ l̊t, the
constraint, p (el,t; η̃t) ≤ 1 is binding. In other words, there is a share of workers l̊t that has
p
(
e̊l,t; η̃t

)
= 1. The cuto§, l̊t, solves:

p
(
e̊l,t; η̃t

)
= η̃t + a

2
h
ln (1/r̃t)− & (1 + σL) l̊

σL
t

i
= 1,

or after making use of (A.12) to substitute out ln (1/r̃t):

p
(
e̊l,t; η̃t

)
= η̃t + a

2

[
& (1 + σL)

(
mσL
t − l̊σLt

)
−
2

a2
η̃t

]
= 1,

or

l̊t =

[
mσL
t −

1 + η̃t
& (1 + σL) a2

] 1
σL

. (A.14)

A.3. Household Utility Function

Utility of the household is given by:
Z mt

0

(
p (el,t; η̃t) [ln (c

w
t − bCt−1)− & (1 + σL) l

σL ] + (1− p (el,t; η̃t)) ln (c
nw
t − bCt−1)−

1

2
e2l,t

)
dl

+(1−mt) ln (c
nw
t − bCt−1)

We wish to express this as a function of Ct and ht (recalling that the household takes Ct−1
and η̃t as given) only using the results in the previous section.

Below we will need the restriction that the marginal worker, l = mt, chooses e§ort

according to (A.9). That is, we require that for the marginal worker,

p̃ (em,t; η̃t) = η̃t + aem,t ≤ 1
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Note that by (A.9)

em,t = a [ln (1/r̃t)− & (1 + σL)m
σL ] .

Further, the indi§erence condition for the marginal worker is given by (A.12)

a [ln (1/r̃t)− & (1 + σL)m
σL
t ] = −

2

a
η̃t,

Combining the last three equations gives:

p̃ (em,t; η̃t) = −η̃t

Thus, we adopt the restriction, −η̃t ≤ 1. It is also convenient to have p̃ (em,t; η̃t) ≥ 0. Thus,

0 ≤ −η̃t ≤ 1. (A.15)

Simplifying the expression above for the household utility function,
Z mt

0

(
p (el,t; η̃t) [ln (1/r̃t)− & (1 + σL) l

σL ]−
1

2
e2l,t

)
dl + ln (cnwt − bCt−1)

Rewriting the incentive constraint, (A.13), in a more convenient form:

ln (1/r̃t) = & (1 + σL)m
σL
t −

2

a2
η̃t. (A.16)

It is also useful to have an expression for cnwt − bCt−1. The household resource constraint is
given by:

cwt ht + (1− ht) c
nw
t = Ct, (A.17)

so that

cwt =
Ct

ht + (1− ht) rt
, cnwt =

rtCt
ht + (1− ht) rt

. (A.18)

Using these results, household utility can be written as follows:

B (mt; η̃t) + ln

(
rtCt

ht + (1− ht) rt
− bCt−1

)
, (A.19)

where

B (mt; η̃t) ≡
Z mt

0

(
p (el,t; η̃t)

[
& (1 + σL) (m

σL
t − lσL)−

2

a2
η̃t

]
−
1

2
e2l,t

)
dl (A.20)

is a term capturing the disutility of work and costly job search.
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A.4. Expressing B (mt; η̃t)

We seek to provide an expression for B (mt; η̃t) where the integral is evaluated. Suppose

that p (el,t; η̃t) ≤ 1 is binding for a measure of mt > l ≥ 0, that is, that (A.14) holds. In

particular, we require that em,t in (A.9) lies inside the admissible probability region. We

permit el,t in (A.9) to lie above the admissible probability region for l < mt.

Under our supposition, there exists an l̊ ≥ 0 that solves (A.14). Then, (A.20) can be

written

B
(
mt, l̊t; η̃t

)
= B1

(
mt, l̊t; η̃t

)
+B2

(
mt, l̊t; η̃t

)
,

where

B1

(
mt, l̊t; η̃t

)
≡

Z mt

l̊t

{
p (el,t; η̃t)

[
& (1 + σL) (m

σL
t − lσL)−

2

a2
η̃t

]
−
1

2
e2l,t

}
dl(A.21)

B2

(
mt, l̊t; η̃t

)
≡

Z l̊t

0

{
& (1 + σL) (m

σL
t − lσL)−

2

a2
η̃t −

1

2
e2l,t

}
dl. (A.22)

We desire expressions for el,t. Note that for l ≥ l̊t, the optimal e§ort equation (A.9)

together with the incentive constraint (A.16) yields:

el,t = a

[
& (1 + σL) (m

σL
t − lσL)−

2

a2
η̃t

]
.

Note that for l ≤ l̊t,
p̃ (el,t; η̃t) = η̃t + ael,t = 1

Solving for el,t yields:

el,t =
1− η̃t
a

Summarizing the previous results for optimal e§ort:

el,t =

(
1−η̃t
a

l ≤ l̊t
a
[
& (1 + σL) (m

σL − lσL)− 2
a2
η̃t
]
l ≥ l̊t

. (A.23)

Note that the el,t function defined in (A.23) is continuous. That is,

a

[
& (1 + σL)

(
mσL − l̊σL

)
−
2

a2
η̃t

]
=
1− η̃t
a

for l̊t given in (A.14).

We now develop an expression for B1
(
mt, l̊t; η̃t

)
in (A.21). Substituting for p (el,t; η̃t)
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and optimal e§ort, the integrand is:
[
η̃t + a

2

[
& (1 + σL) (m

σL − lσL)−
2

a2
η̃t

]]

×
[
& (1 + σL) (m

σL
t − lσL)−

2

a2
η̃t

]

−
1

2
a2
[
& (1 + σL) (m

σL − lσL)−
2

a2
η̃t

]2

= η̃t

[
& (1 + σL) (m

σL
t − lσL)−

2

a2
η̃t

]

+
1

2
a2
[
& (1 + σL) (m

σL − lσL)−
2

a2
η̃t

]2

Then,

= η̃t

[
& (1 + σL) (m

σL
t − lσL)−

2

a2
η̃t

]
+
1

2
a2
[
& (1 + σL) (m

σL
t − lσL)−

2

a2
η̃t

]2

= η̃t& (1 + σL) (m
σL
t − lσL)−

2

a2
η̃2t

+
1

2
a2&2 (1 + σL)

2 (mσL
t − lσL)2 − 2η̃t& (1 + σL) (m

σL
t − lσL) +

1

2
a2
(
2

a2
η̃t

)2

= −&η̃t (1 + σL) (m
σL
t − lσL) +

1

2
a2&2 (1 + σL)

2 (m2σL
t − 2mσL

t l
σL + l2σL

)

We must integrate the previous expression over l = l̊t to mt. For this, the following results

are useful:
Z mt

l̊t

(mσL
t − lσL) dl = mσL

t l|
mt

l̊t
−
lσL+1

σL + 1
|mt

l̊t

=
(
mt − l̊t

)
mσL
t −

mσL+1
t − l̊σL+1t

σL + 1Z mt

l̊t

(
m2σL
t − 2mσL

t l
σL + l2σL

)
dl = m2σL

t

(
mt − l̊t

)
− 2mσL

t

mσL+1
t − l̊σL+1t

σL + 1

+
m2σL+1
t − l̊2σL+1t

2σL + 1
.
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Then,

B1

(
mt, l̊t; η̃t

)
≡

Z mt

l̊t

[
−&η̃t (1 + σL) (m

σL
t − lσL) +

1

2
a2&2 (1 + σL)

2 (m2σL
t − 2mσL

t l
σL + l2σL

)]
dl

= −&η̃t (1 + σL)

"(
mt − l̊t

)
mσL
t −

mσL+1
t − l̊σL+1t

σL + 1

#

+
1

2
a2&2 (1 + σL)

2

"

m2σL
t

(
mt − l̊t

)
− 2mσL

t

mσL+1
t − l̊σL+1t

σL + 1
+
m2σL+1
t − l̊2σL+1t

2σL + 1

#

= −&η̃t
h
σLm

σL+1
t − (σL + 1) l̊tmσL

t + l̊σL+1t

i

+
1

2
a2&2 (1 + σL)

2

"

m2σL+1
t

(
σL − 1
σL + 1

+
1

2σL + 1

)
−m2σL

t l̊t +
2mσL

t l̊
σL+1
t

σL + 1
−
l̊2σL+1t

2σL + 1

#

or, after further simplification, we have:

B1

(
mt, l̊t; η̃t

)
= −&η̃t

h
σLm

σL+1
t − (1 + σL) l̊tmσL

t + l̊σL+1t

i
(A.24)

+
1

2
a2&2 (1 + σL)

2

"
2σ2Lm

2σL+1
t

(σL + 1) (2σL + 1)
−m2σL

t l̊t +
2mσL

t l̊
σL+1
t

σL + 1
−
l̊2σL+1t

2σL + 1

#

.

This completes our discussion of B1
(
mt, l̊t; η̃t

)
in (A.21).

Next, we evaluate B2
(
mt, l̊t; η̃t

)
in (A.22):

B2

(
mt, l̊t; η̃t

)
≡

Z l̊t

0

{
& (1 + σL) (m

σL
t − lσL)−

2

a2
η̃t −

1

2
e2l,t

}
dl

=

Z l̊t

0

(

& (1 + σL) (m
σL
t − lσL)−

2

a2
η̃t −

1

2

[
1− η̃t
a

]2)

dl

by (A.23). Then,

B2

(
mt, l̊t; η̃t

)
= & (1 + σL)

 

mσL
t l̊t −

l̊σL+1t

1 + σL

!

−
2η̃t
a2
l̊t −

1

2

[
1− η̃t
a

]2
l̊t (A.25)

We conclude that, after adding (A.24) and (A.25),

B
(
mt, l̊t; η̃t

)
= B1

(
mt, l̊t; η̃t

)
+B2

(
mt, l̊t; η̃t

)

= −&η̃tσLm
σL+1
t − &η̃t

(
l̊σL+1t − (1 + σL) l̊tmσL

t

)

+
1

2
a2&2 (1 + σL)

2 2σ2Lm
2σL+1
t

(σL + 1) (2σL + 1)

+
1

2
a2&2 (1 + σL)

2

 

−̊ltm2σL
t +

l̊σL+1t

σL + 1
2mσL

t −
l̊2σL+1t

2σL + 1

!

+& (1 + σL) l̊t

"

mσL
t −

l̊σLt
1 + σL

−
2η̃t
a2
−
1

2

[
1− η̃t
a

]2#
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or,

B
(
mt, l̊t; η̃t

)
= −&η̃tσLm

σL+1
t +

a2&2 (1 + σL) σ
2
L

2σL + 1
m2σL+1
t (A.26)

+̊lt

2

6
4

1
2
a2&2 (1 + σL)

2
(
−m2σL

t +
l̊
σL
t

σL+1
2mσL

t − l̊
2σL
t

2σL+1

)

+& (1 + σL)

[
mσL
t − l̊

σL
t

1+σL
− 2η̃t

a2
− 1

2

(
1−η̃t
a

)2]
− &η̃t

(
l̊σLt − (1 + σL)mσL

t

)

3

7
5

We seek to simplify B
(
mt, l̊t; η̃t

)
. The following expressions for (A.14) will be useful:

l̊σLt = mσL
t −

1 + η̃t
& (1 + σL) a2

Or

l̊t =

[
mσL
t −

1 + η̃t
& (1 + σL) a2

] 1
σL

Or

l̊2σLt =

[
mσL
t −

1 + η̃t
& (1 + σL) a2

]2

= m2σL
t − 2mσL

t

1 + η̃t
& (1 + σL) a2

+

(
1 + η̃t

& (1 + σL) a2

)2

Substituting for l̊σLt and l̊2σLt , equation (A.26) can be rewritten as follows:

B
(
mt, l̊t; η̃t

)
= −&σLη̃tm

σL+1
t +

a2&2 (1 + σL) σ
2
L

2σL + 1
m2σL+1
t

+̊lt

2

4
2&σ2L
2σL+1

(1 + η̃t)m
σL
t − a2&2σ2L

σL+1
2σL+1

m2σL
t

− 1
2a2
(&−3σL+4&σL+5&σ2L+2&σ3L−1)

2σ2L+3σL+1
(1 + η̃t)

2

3

5

Or:

B
(
mt, l̊t; η̃t

)
= α1η̃tm

σL+1
t + α2m

2σL+1
t + α3 (1 + η̃t)m

σL
t l̊t − α2m

2σL
t l̊t + α4 (1 + η̃t)

2 l̊t(A.27)

=
(
α1η̃tmt + α2

(
mt − l̊t

)
mσL
t + α3 (1 + η̃t) l̊t

)
mσL
t + α4 (1 + η̃t)

2 l̊t

where

α1 = −&σL

α2 = a2&2σ2L
(1 + σL)

2σL + 1

α3 =
2&σ2L
2σL + 1

α4 = −
1

2a2
(& − 3σL + 4&σL + 5&σ2L + 2&σ3L − 1)

2σ2L + 3σL + 1

10



and

l̊t =

[
mσL
t −

1 + η̃t
& (1 + σL) a2

] 1
σL

and

η̃t = η + !1 (ūt − !2ūt−1)

A.5. Expressing ln
(

rtCt
ht+(1−ht)rt

− bCt−1
)

We now simplify the ln term in (A.19). To do so, we first establish a relationship between

the replacement ratio,

rt = c
nw
t /c

w
t

and

r̃t =
cnwt − bCt−1
cwt − bCt−1

.

The latter equation can be written as:

rtc
w
t − bCt−1 = r̃t (c

w
t − bCt−1)

Recall that the budget constraint of the household is:

cwt =
Ct

ht + (1− ht) rt
Substituting out cwt in the previous equation:

rt
Ct

ht + (1− ht) rt
− bCt−1 = r̃t

(
Ct

ht + (1− ht) rt
− bCt−1

)

Solving for rt:

rt =
(Ct − htbCt−1) r̃t + htbCt−1

Ct − (1− ht) bCt−1 + (1− ht) bCt−1r̃t
. (A.28)

So, substituting into the ln term in (A.19):

ln

 
Ct

ht
rt
+ 1− ht

− bCt−1

!

= ln

0

B
@

Ct
ht

(Ct−htbCt−1)r̃t+htbCt−1
Ct−(1−ht)bCt−1+(1−ht)bCt−1r̃t

+ 1− ht
− bCt−1

1

C
A

= ln

 
Ct

Ct(ht+r̃t−htr̃t)
Ctr̃t+bhtCt−1−bhtr̃tCt−1

− bCt−1

!

= ln

(
r̃t
Ct − bCt−1
ht + r̃t − htr̃t

)

= ln (Ct − bCt−1) + ln
r̃t

ht + r̃t − htr̃t

= ln (Ct − bCt−1)− ln
(
ht

(
1

r̃t
− 1
)
+ 1

)

11



A.6. Expressing Household Utility Function

Pulling together all terms (A.19), the indirect household utility function can be written as

follows:

U(Ct, ht,mt;Ct−1, η̃t; r̃t) = ln (Ct − bCt−1)− ln
(
ht

(
1

r̃t
− 1
)
+ 1

)
+B

(
mt, l̊t; η̃t

)
, (A.29)

where B
(
mt, l̊t; η̃t

)
is defined in (A.27). It remains to provide expressions relating r̃t and

mt to ht.

From (A.16),
1

r̃t
= e&(1+σL)m

σL
t − 2

a2
η̃t . (A.30)

We now have a representation of r̃t in terms of mt. We still require a representation of

mt in terms of ht.

A.7. h-m Relationship

We now derive the relationship between mt and ht :

ht =

Z mt

0

p (el,t; η̃t) dl =

Z l̊t

0

1dl +

Z mt

l̊t

p̃ (el,t; η̃t) dl

= l̊t +

Z mt

l̊t

0

BBB
@
η̃t +

=ael,t, for l≥̊ltz }| {

a2
[
& (1 + σL) (m

σL − lσL)−
2

a2
η̃t

]
1

CCC
A
dl

= l̊t + η̃t

(
mt − l̊t

)
+ a2& (1 + σL)

"(
mt − l̊t

)
mσL
t −

mσL+1
t − l̊σL+1t

σL + 1

#

− 2η̃t
(
mt − l̊t

)

= l̊t − η̃t

(
mt − l̊t

)
+ a2& (1 + σL)

(
mt − l̊t

)
mσL
t − a2&

(
mσL+1
t − l̊σL+1t

)

= −η̃tmt + a
2&σLm

σL+1
t + l̊t

"

1 + η̃t + a
2& (1 + σL)

 

−mσL
t +

l̊σLt
1 + σL

!#

.

According to (A.14),

1 + η̃t = a
2& (1 + σL)

(
mσL
t − l̊σLt

)

Using this to substitute out for 1 + η̃t in the previous expression and re-arranging yields:

ht = −η̃tmt + a
2&σL

(
mσL+1
t − l̊σL+1t

)
(A.31)

where l̊t is given in (A.14).
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A.8. Summary of Household Utility

We summarize the preceding results in the form of a proposition:

Proposition A.2. Under assumption (A.15), the household utility function is given by
(A.29), where B

(
mt, l̊t; η̃t

)
is given in (A.26), l̊t is given by (A.14), r̃t is given by (A.16),

mt is the function of ht defined by the inverse of (A.31), and η̃t is given by (A.3). For

convenience, we list these equations here:

U(Ct, ht,mt, l̊t;Ct−1, η̃t, r̃t) = ln (Ct − bCt−1)− ln
(
ht

(
1

r̃t
− 1
)
+ 1

)
+B

(
mt, l̊t; η̃t

)
(A.32)

B
(
mt, l̊t; η̃t

)
= α1η̃tm

σL+1
t + α2m

2σL+1
t + α3 (1 + η̃t)m

σL
t l̊t − α2m

2σL
t l̊t + α4 (1 + η̃t)

2 l̊t

l̊σLt = mσL
t −

1 + η̃t
& (1 + σL) a2

ln (1/r̃t) = & (1 + σL)m
σL
t −

2

a2
η̃t

ht = −η̃tmt + a
2&σL

(
mσL+1
t − l̊σL+1t

)

η̃t = η +M(m̄t/m̄t−1)

A notable feature of (A.29) is that consumption enters the household’s utility function in

the same way that it enters the individual worker’s utility function. Moreover, consumption

and employment are separable in utility.

Use the h−m and l̊t relationships to obtain:

mσL
t =

ht
mt
+ η̃t

a2&σL
+
l̊σL+1t

mt

. (A.33)

There is a unique value of mt, mt ≥ 0, that satisfies (A.33). To see this, note that the

left side of (A.33) begins at zero and increases without bound as m increases. The right

side starts at plus infinity (thus, greater than the left size) with mt = 0 and (assuming the

behavior of l̊t does not disrupt this conclusion) declines monotonically to a finite number

as mt increases (thus, the right side is eventually below the left side). By continuity and

monotonicity, there is a unique value of mt that satisfies the equality in (A.33).

Then, substitute for l̊t to obtain the following h-m relationship:

ht = −η̃tmt + a
2&σL

 

mσL+1
t −

[
mσL
t −

1 + η̃t
& (1 + σL) a2

]σL+1
σL

!

≡ Q (mt; η̃t)

mt = Q−1 (ht; η̃t) ,

or

mt = Q
−1 (ht; η̃t) ,

13



where Q−1 is the inverse function of Q, defined by:

ht = Q
(
Q−1 (ht; η̃t) ; η̃t

)
.

Using mt = Q
−1 (ht; η̃t) and also substituting out l̊t, we can write (A.32) as:

u(Ct, ht;Ct−1, η̃t) = ln (Ct − bCt−1)− z(ht; η̃t) (A.34)

z(ht; η̃t) = ln
(
ht

h
e&(1+σL)[Q

−1(ht;η̃t)]
σL− 2

a2
η̃t − 1

i
+ 1
)

−α1η̃t
[
Q−1 (ht; η̃t)

]σL+1 − α2
[
Q−1 (ht; η̃t)

]2σL+1

−
h
α3 (1 + η̃t)

[
Q−1 (ht; η̃t)

]σL − α2
[
Q−1 (ht; η̃t)

]2σL + α4 (1 + η̃t)
2
i
×

[[
Q−1 (ht; η̃t)

]σL −
1 + η̃t

& (1 + σL) a2

] 1
σL

η̃t = η +M(m̄t/m̄t−1)

A.9. Derivatives of Household Utility

We need derivatives of household utility to calculate various elasticities.

A.9.1. Labor Supply Elasticity

We now derive the elasticity of labor supply associated with the household utility function,

(A.29). Let w denote the wage and the first order condition associated with the choice of h

is:

ucw + uh = 0,

or,

w =
−uh
uc
.

We di§erentiate this and set duc = 0, which implies dc = 0 in our case of separability. Totally

di§erentiating the first order condition and imposing the above restriction,

ucdw + uhhdh = 0,

or,
dh
h
dw
w

=
uh
uhhh

.

A.9.2. MATLAB Symbolic Di§erentiation

We now describe a procedure based on symbolic arithmetic in MATLAB for calculating uhh,

uh and uhη̃. We need those expressions in the log-linearized wage Phillips curve as well as

14



for the steady state computations including the steady state labor supply elasticity.

Suppose an object, f (x, y) , has been defined as a function of the particular arguments, x

and y. Suppose that there is another function, g(z, f). The latter is actually a shorthand for

G (z, x, y) = g (z, f (x, y)) . Thus, if g is di§erentiated with respect to, say, x, then MATLAB

delivers dG/dx :
dg

dx
= Gx (z, x, y) = g2 (z, f (x, y)) fx (x, y) .

Recall that

h ≡ Q (m; η̃)

m = Q−1 (h; η̃)

where Q−1 is the inverse function of Q, defined by:

h = Q

0

@Q−1 (h; η̃)| {z }
m

; η̃

1

A

Note that by di§erentiating both sides of the latter equation with respect to h we obtain:

1 = QmQ
−1
h

Or:

Q−1h =
1

Qm

To get the second derivative of the inverse function, Q−1 with respect to h we di§erentiate

the previous expression once more:

Q−1hh = −
1

Q2m
QmmQ

−1
h

Or

Q−1hh = −
Qmm
Q3m

The utility function we are interested in, u, is related to U as follows:

u (Ct, ht;Ct−1, η̃t) = U
(
Ct, ht, Q

−1
t ;Ct−1, η̃t

)
. (A.35)

Or more compactly after dropping time subscripts and variables taken as exogenous by the

household:

u (C, h) = U
(
C, h,Q−1

)
.

Notice that l̊ has been substituted out in the utility function resulting in the utility function

being a function of C, h and m only.
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We require the first and second derivatives of u with respect to h :

uh (C, h) = Uh
(
C, h,Q−1

)
+ Um

(
C, h,Q−1

)
Q−1h

= Uh
(
C, h,Q−1

)
+
Um (C, h,Q

−1)

Qm
.

Or more compactly

uh = Uh +
Um
Qm

.

The second derivative with respect to h is:

uhh (C, h) = Uhh
(
C, h,Q−1

)
+ Uhm

(
C, h,Q−1

)
Q−1h + Umh

(
C, h,Q−1

)
Q−1h

+Umm
(
C, h,Q−1

) (
Q−1h

)2
+ Um

(
C, h,Q−1

)
Q−1hh .

After substituting,

uhh (C, h) = Uhh
(
C, h,Q−1

)
+ 2

Uhm (C, h,Q
−1)

Qm

+
Umm (C, h,Q

−1)

(Qm)
2 −

Um (C, h,Q
−1)Qmm

Q3m

Or more compactly

uhh = Uhh + 2
Uhm
Qm

+
Umm
Q2m

−
UmQmm
Q3m

.

Later on, we also require the cross-derivative of uh with respect to η̃. Recall that:

uh (C, h; η̃) = Uh
(
C, h,Q−1 (h; η̃) ; η̃

)
+
Um (C, h,Q

−1 (h; η̃) ; η̃)

Qm (Q−1 (h; η̃) ; η̃)

Di§erentiating with respect to η̃ gives:

uhη̃ (C, h; η̃) = Uhη̃
(
C, h,Q−1 (h; η̃) ; η̃

)
+ Uhm

(
C, h,Q−1 (h; η̃) ; η̃

)
Q−1η̃ (h; η̃)

+
1

Qm (Q−1 (h; η̃) ; η̃)

[
Umη̃

(
C, h,Q−1 (h; η̃) ; η̃

)
+ Umm

(
C, h,Q−1 (h; η̃) ; η̃

)
Q−1η̃ (h; η̃)

]

−
Um (C, h,Q

−1 (h; η̃) ; η̃)

Qm (Q−1 (h; η̃) ; η̃)
2

[
Qmη̃

(
Q−1 (h; η̃) ; η̃

)
+QmmQ

−1
η̃ (h; η̃)

]

We require an expression for Q−1η̃ (h; η̃) . Recall that

h = Q

0

@Q−1 (h; η̃)| {z }
m

; η̃

1

A

Di§erentiating with respect to η̃ yields:

0 = Qη̃ +QmQ
−1
η̃
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Rewriting gives:

Q−1η̃ = −
Qη̃

Qm

Substituting into the expression for uhη̃ (C, h; η̃) yields:

uhη̃ (C, h; η̃) = Uhη̃
(
C, h,Q−1 (h; η̃) ; η̃

)
− Uhm

(
C, h,Q−1 (h; η̃) ; η̃

) Qη̃

Qm

+
Umη̃ (C, h,Q

−1 (h; η̃) ; η̃)− Umm (C, h,Q−1 (h; η̃) ; η̃)
Qη̃
Qm

Qm (Q−1 (h; η̃) ; η̃)

−
Um (C, h,Q

−1 (h; η̃) ; η̃)

Qm (Q−1 (h; η̃) ; η̃)
2

[
Qmη̃

(
Q−1 (h; η̃) ; η̃

)
−Qmm

Qη̃

Qm

]

Or more compactly:

uhη̃ = Uhη̃ − Uhm
Qη̃

Qm
+ Umη̃

1

Qm
− Umm

Qη̃

Q2m
− Um

Qmη̃
Q2m

+ Um
QmmQη̃

Q3m
.

B. Integrating Unemployment into a Medium-Sized DSGE Model

We now incorporate our unemployment modelling in a version of the medium-sized DSGE

model in CEE or Smets and Wouters (2003, 2007). Below, we describe how to introduce

our model of involuntary unemployment into this model. Towards the end of the section

we derive the standard model (EHL as interpreted by Galí (2011)) as a special case of our

model.

B.1. Final and Intermediate Goods

A final good is produced by a competitive, representative firm using a continuum of inputs

as follows:

Yt =

[Z 1

0

Y
1
λf

i,t di

]λf
, 1 ≤ λf <1. (B.1)

The ith intermediate good is produced by a monopolist with the following production

function:

Yi,t = (ztHi,t)
1−αKα

i,t − φt, (B.2)

whereKi,t denotes capital services used for production by the ith intermediate good producer.

Also, ln zt is a technology shock whose first di§erence has a positive mean. φt denotes a fixed

production cost. The economy has two sources of growth: the positive drift in ln (zt) and

a positive drift in ln (Ψt) , where Ψt is the state of an investment-specific technology shock

discussed below. The object, z+t , in (B.2) is defined as follows:

z+t = Ψ
α

1−α
t zt.
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Along a non-stochastic steady state growth path, Yt/z+t and Yi,t/z
+
t converge to constants.

The two shocks, zt and Ψt, are specified to be unit root processes in order to be consistent

with the assumptions we use in our VAR analysis to identify the dynamic response of the

economy to neutral and capital-embodied technology shocks. The two shocks have the

following time series representations:

lnµz,t = lnµz + σµz"µz ,t/100, E
(
"µz ,t

)2
= 1 (B.3)

lnµΨ,t = (1− ρµΨ) lnµΨ + ρµΨ lnµΨ,t−1 + σµΨ"µΨ,t/100, E
(
"µΨ,t

)2
= 1. (B.4)

where µz,t =
zt
zt−1

and µΨ,t =
Ψt
Ψt−1

.Our assumption that the level of neutral technology follows

a random walk matches closely the finding in Smets and Wouters (2007) who estimate ln zt
to be highly autocorrelated. The direct empirical analysis of Prescott (1986) also supports

the notion that ln zt is a random walk.

In (B.2), Hi,t denotes homogeneous labor services hired by the ith intermediate good pro-

ducer. Intermediate good firms must borrow the wage bill in advance of production, so that

one unit of labor costs is given by WtRt where Rt denotes the gross nominal rate of interest.

Intermediate good firms are subject to Calvo price-setting frictions. With probability ξp the

intermediate good firm cannot reoptimize its price, in which case it is assumed to set its

price according to the following rule:

Pi,t = π̄Pi,t−1, (B.5)

where π̄ is the steady state inflation rate. With probability 1 − ξp the intermediate good

firm can reoptimize its price. Apart from the fixed cost, the ith intermediate good producer’s

profits are:

Et

1X

j=0

βjυt+j{Pi,t+jYi,t+j − st+jPt+jYi,t+j},

where st denotes the marginal cost of production, denominated in units of the homogeneous

good. st is a function only of the costs of capital and labor, and is described in section

B.11.1. In the firm’s discounted profits, βjυt+j is the multiplier on the households’s nominal

period t+ j budget constraint. The equilibrium conditions associated with this optimization

problem are reported in section B.11.1.

We suppose that the homogeneous labor hired by intermediate good producers is itself

‘produced’ by competitive labor contractors. Labor contractors produce homogeneous labor

by aggregating di§erent types of specialized labor, j 2 (0, 1) , as follows:

Ht =

[Z 1

0

(ht,j)
1
λw dj

]λw
, 1 ≤ λw <1. (B.6)

Labor contractors take the wage rate of Ht and ht,j as given and equal to Wt and Wt,j,
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respectively. Profit maximization by labor contractors leads to the following first order

necessary condition:

Wj,t = Wt

(
Ht
ht,j

)λw−1
λw

. (B.7)

Equation (B.7) is the demand curve for the jth type of labor.

B.2. Worker and Household Preferences

We integrate the model of unemployment in the previous section into the Erceg, Henderson

and Levin (2000) (EHL) model of sticky wages used in the standard DSGE model. Each

type, j 2 [0, 1] , of labor is assumed to be supplied by a particular household. The jth

household resembles the single representative household in the previous section, with one

exception. The exception is that the unit measure of workers in the jth household is only

able to supply the jth type of labor service. Each worker in the jth household has the utility

cost of working, (A.1), and the technology for job finding, (A.4). The preference and job

finding technology parameters are the same across households.

Let cnwj,t and c
w
j,t denote the consumption levels allocated by the j

th household to non-

employed and employed workers within the household. Although households all enjoy the

same level of consumption, Ct, for reasons described momentarily each household experiences

a di§erent level of employment, hj,t. Because employment across households is di§erent,

each type j household chooses a di§erent way to balance the trade-o§ between the need for

consumption insurance and the need to provide work incentives. For the jth type of household

with high hj,t, the premium of consumption for employed workers to non-employed workers

must be high. Accordingly, the incentive constraint is given by (A.16) which we repeat here

for convenience:

ln

(
cwj,t − bCt−1
cnwj,t − bCt−1

)
= & (1 + σL)m

σL
j,t −

2

a2
η̃t

where mj,t solves the analog of (A.31):

hj,t = −η̃tmj,t + a
2&σL

(
mσL+1
j,t − l̊σL+1j,t

)
(B.8)

and

l̊σLj,t = m
σL
j,t −

1 + η̃t
& (1 + σL) a2

. (B.9)

Consider the jth household that enjoys a level of household consumption and employment,

Ct and hj,t, respectively. Note that given (A.34), the jth household’s discounted utility is

given by:

E0

1X

t=0

βt [ln (Ct − bCt−1)− z(hj,t; η̃t)] . (B.10)
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Note that the utility function is additively separable, like the utility functions assumed

for the workers. Additive separability is convenient because perfect consumption insurance

at the level of households implies that consumption is not indexed by labor type, j.

B.3. Household Problem

The jth household is the monopoly supplier of the jth type of labor service. The household

understands that when it arranges work incentives for its workers so that employment is

hj,t, then Wj,t takes on the value implied by the demand for its type of labor, (B.7). The

household therefore faces the standard monopoly problem of selecting Wj,t to optimize the

welfare, (B.10), of its workers. It does so, subject to the requirement that it satisfy the

demand for labor, (B.7), in each period. We follow EHL in supposing that the household

experiences Calvo-style frictions in its choice of Wj,t. In particular, with probability 1 − ξw
the jth household has the opportunity to reoptimize its wage rate. With the complementary

probability, the household must set its wage rate according to the following rule:

Wj,t = π̃w,tWj,t−1 (B.11)

π̃w,t = (πt−1)
κw (π̄)(1−κw) µz+ , (B.12)

where κw 2 (0, 1) . Note that in a non-stochastic steady state, non-optimizing households
raise their real wage at the rate of growth of the economy. Because optimizing households

also do this in steady state, it follows that in the steady state, the wage of each type of

household is the same.

In principle, the presence of wage setting frictions implies that households have idiosyn-

cratic levels of wealth and, hence, consumption. However, we follow EHL in supposing that

each household has access to perfect consumption insurance. At the level of the household,

there is no private information about consumption or employment. The private information

and associated incentive problems all exist among the workers inside a household. Because

of the additive separability of the household utility function, perfect consumption insurance

at the level of households implies equal consumption across households. We have used this

property of the equilibrium to simplify our notation and not include a subscript, j, on the

jth households’s consumption. Of course, we hasten to add that although consumption is

equated across households, it is not constant across households and workers.

The jth household’s period t budget constraint is as follows:

Pt

(
Ct +

1

Ψt
It

)
+Bt+1 ≤ Wt,jht,j +X

k
t K̄t +Rt−1Bt + at,j. (B.13)

Here, Bt+1 denotes the quantity of risk-free bonds purchased by the household, Rt−1 denotes

the gross nominal interest rate on bonds purchased in period t − 1 which pay o§ in period
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t, and at,j denotes the payments and receipts associated with the insurance on the timing of

wage reoptimization. Also, Pt denotes the aggregate price level and It denotes the quantity

of investment goods purchased for augmenting the beginning-of-period t+1 stock of physical

capital, K̄t+1. The price of investment goods is Pt/Ψt, where Ψt is the unit root process with

positive drift specified in (B.4). This is our way of capturing the trend decline in the relative

price of investment goods.49

The household owns the economy’s physical stock of capital, K̄t, sets the utilization

rate of capital and rents the services of capital in a competitive market. The household

accumulates capital using the following technology:

K̄t+1 = (1− δ) K̄t +

(
1− S

(
It
It−1

))
It. (B.14)

Here, S is a convex function, with S and S 0 equal to zero on a steady state growth path.

The function, S, is defined in section B.6. The function has one free parameter, its second

derivative in the neighborhood of steady state, which we denote simply by S 00.

For each unit of K̄t+1 acquired in period t, the household receives Xk
t+1 in net cash

payments in period t+ 1,

Xk
t+1 = u

k
t+1Pt+1r

k
t+1 −

Pt+1
Ψt+1

a(ukt+1). (B.15)

where ukt denotes the rate of utilization of capital. The first term in (B.15) is the gross

nominal period t + 1 rental income from a unit of K̄t+1. The household supply of capital

services in period t+ 1 is:

Kt+1 = u
k
t+1K̄t+1.

It is the services of capital that intermediate good producers rent and use in their production

functions, (B.2). The second term to the right of the equality in (B.15) represents the cost

of capital utilization, a(ukt+1)Pt+1/Ψt+1. See section B.6 for the functional form of the capital

utilization cost function. This function is constructed so the steady state value of utilization

is unity, and u (1) = u0 (1) = 0. The function has one free parameter, which we denote by

σa. Here, σa = a00 (1) /a0 and corresponds to the curvature of u in steady state.

The household’s problem is to select sequences,
{
Ct, It, u

k
t ,Wj,t, Bt+1, K̄t+1

}
, to max-

imize (B.10) subject to (B.7), (B.11), (B.12), (B.13), (B.14), (B.15) and the mechanism

determining when wages can be reoptimized. The equilibrium conditions associated with

this maximization problem are standard, and appear in section B.11.2.
49We suppose that there is an underlying technology for converting final goods, Yt, one-to-one into Ct and

one to Ψt into investment goods. These technologies are operated by competitive firms which equate price

to marginal cost. The marginal cost of Ct with this technology is Pt and the marginal cost of It is Pt/Ψt.We

avoid a full description of this environment so as to not clutter the presentation, and simply impose these

properties of equilibrium on the household budget constraint.
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B.4. Aggregate Resource Constraint, Monetary Policy and Equilibrium

Goods market clearing dictates that the homogeneous output good is allocated among al-

ternative uses as follows:

Yt = Gt + Ct + Ĩt. (B.16)

Here, Ct denotes household consumption, Gt denotes exogenous government consumption

and Ĩt is a homogenous investment good which is defined as follows:

Ĩt =
1

Ψt

(
It + a

(
ukt
)
K̄t

)
. (B.17)

As discussed above, the investment goods, It, are used by the households to add to the

physical stock of capital, K̄t, according to (B.14). The remaining investment goods are

used to cover maintenance costs, a
(
ukt
)
K̄t, arising from capital utilization, ukt . Finally,

Ψt in (B.17) denotes the unit root investment specific technology shock with positive drift

discussed after (B.2).

We suppose that monetary policy follows a Taylor rule of the following form:

ln

(
Rt
R

)
= ρR ln

(
Rt−1
R

)
+ (1− ρR)

[
rπ ln

(πt
π

)
+ ry ln

(
gdpt
gdp

)]
+
σR"R,t
400

, (B.18)

where "R,t is an iid monetary policy shock. As in CEE and ACEL, we assume that period t

realizations of "R are not included in the period t information set of households and firms.

Further, gdpt denotes scaled real GDP which is defined as:

gdpt =
Gt + Ct + It/Ψt

z+t
, (B.19)

and gdp denotes the nonstochastic steady state value of gdpt.

To guarantee balanced growth in the nonstochastic steady state, we require that each

element in [φt, Gt] grows at the same rate as z
+
t in steady state. To this end, we adopt the

following specification:

[φt, Gt]
0 = [φ, G]0Ωt. (B.20)

Here, Ωt is defined as follows:

Ωt =
(
z+t−1

)θ
(Ωt−1)

1−θ , (B.21)

where 0 < θ ≤ 1 is a parameter to be estimated. With this specification, Ωt/z+t converges to
a constant in nonstochastic steady state.When θ is close to zero, Ωt is virtually unresponsive

in the short-run to an innovation in either of the two technology shocks, a feature that we

find attractive on a priori grounds. Given the specification of the exogenous processes in

the model, Yt/z+t , Ct/z
+
t and It/(Ψtz

+
t ) converge to constants in nonstochastic steady state.

We assume that lump-sum transfers balance the government budget.

An equilibrium is a stochastic process for the prices and quantities having the property

that the household and firm problems are satisfied, and goods and labor markets clear.
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B.5. Scaling of Variables

We adopt the following scaling of variables. The neutral shock to technology is zt and its

growth rate is µz,t :
zt
zt−1

= µz,t.

The variable, Ψt, is an embodied shock to technology and it is convenient to define the

following combination of embodied and neutral technology:

z+t ≡ Ψ
α

1−α
t zt,

µz+,t ≡ µ
α

1−α
Ψ,t µz,t. (B.22)

Capital, K̄t, and investment, It, are scaled by z+t Ψt. Consumption goods Ct, and the real

wage, Wt/Pt are scaled by z+t . Also, υt is the multiplier on the nominal household budget

constraint in the Lagrangian version of the household problem. That is, υt is the marginal

utility of one unit of currency. The marginal utility of a unit of consumption is υtPt. The

latter must be multiplied by z+t to induce stationarity. Thus, our scaled variables are:

kt+1 =
Kt+1

z+t Ψt
, k̄t+1 =

K̄t+1

z+t Ψt
, it =

It
z+t Ψt

, ct =
Ct
z+t
, w̄t =

Wt

z+t Pt

 t = υtPtz
+
t , ỹt =

Yt
z+t
, p̃t =

P̃t
Pt
, wt =

W̃t

Wt

.

The technology di§usion process (B.21) can be written in scaled form as follows:

Ωt =
(
z+t−1

)θ
(Ωt−1)

1−θ

Ωt
z+t

=

(
z+t−1
z+t

)θ (
Ωt−1
z+t

)1−θ

nt =
n1−θt−1

µz+,t

Government consumption is scaled as follows:

Gt
z+t
=
Gt
Ωt

Ωt
z+t
= G× nt

We define the scaled date t price of new installed physical capital for the start of period

t+ 1 as pk0,t and we define the scaled real rental rate of capital as r̄kt :

pk0,t = ΨtPk0,t, r̄
k
t = Ψtr

k
t .

where Pk0,t is in units of the homogeneous good. We define the following inflation rates:

πt =
Pt
Pt−1

, πit =
P it
P it−1

.

Here, Pt is the price of the homogeneous output good and P it is the price of the domestic

final investment good.
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B.6. Functional Forms

We adopt the following functional form for the capacity utilization cost function a :

a(uKt ) = σaσb(u
K
t )

2/2 + σb (1− σa) u
K
t + σb (σa/2− 1) , (B.23)

where σa and σb are the parameters of this function. For a given value of σa we select σb so

that the steady state value of uKt is unity. The object, σa, is a parameter to be estimated.

We assume that the investment adjustment cost function takes the following form:

S (It/It−1) =
1

2

n
exp

hp
S 00 (It/It−1 − µz+µΨ)

i
+ exp

h
−
p
S 00 (It/It−1 − µz+µΨ)

i
− 2
o
.

(B.24)

Here, µz+ and µΨ denote the unconditional growth rates of z
+
t and Ψt. The value of It/It−1

in nonstochastic steady state is (µz+ × µΨ). In addition, S 00 denotes the second derivative
of S (·), evaluated at steady state. The object, S 00, is a parameter to be estimated. It is
straightforward to verify that S (µz+µΨ) = S

0 (µz+µΨ) = 0.

Finally, we assume the following functional form for the impact of aggregate economic

conditions on the worker’s probability to find a job:

M (m̄t/m̄t−1) = 100! (m̄t/m̄t−1 − 1) .

In the estimation we adopt a standard normal prior for !. That is, we are agnostic

about the sign of !. A posteriori it turns out that the data want ! < 0. Recall that η̃t =

η +M(m̄t/m̄t−1) and p(el,t; η̃t) = η̃t + ael,t. That is, ! < 0 implies that an inflow of workers

into the labor force reduces the probability of a worker to find a job. Importantly, it is the

rate of change of the labor force that triggers the probability of a worker to fall. Intuitively,

one might think about this as a bottleneck-type access to the labor market. When the labor

force grows rapidly, many workers get ‘stuck’ in the process to find work. According to

our specification, it is not the level of the labor force but its rate of change that a§ects the

probability of a worker to find a job. Finally, note thatM does not a§ect the steady state

of our model.

Why does the data prefer ! < 0? Consider the h-m relationship:

ht = −η̃tmt + a
2&σL

(
mσL+1
t − l̊σL+1t

)
.

The presence of ! < 0 generates a procyclical wedge on the right hand side of the h-m

relationship. Recall that η is negative. In a boom, the labor force grows so that with ! < 0,

η̃t becomes more negative. As a result, −η̃t in the h-m relationship increases which generates
the procyclical wedge. The data want this procyclical wedge as the model tends to otherwise

overstate quantitatively the raise in the labor force after e.g. a monetary policy shock. In
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other words, the procyclical wedge allows the model to generate a smaller expansion in the

labor force dictated by the data. In addition, the dependence ofM (m̄t/m̄t−1) on the lagged

aggregate labor force also allows the model to generate the protracted and very delayed

hump in the labor force after a monetary policy shock.

We hasten to emphasize that while the inflow of workers into the labor force in a boom

decreases the individual worker’s probability of finding work, in a boom workers also increase

their e§ort. Our estimated model shows that on net, the probability to find work goes up in

a boom, i.e. the individual work e§ort channel dominates the aggregate labor force channel

in the determination of the probability of finding a job for the worker.

Making p(el,t; η̃t) dependent on aggregate conditions in addition to individual worker

e§ort is attractive to us on a priori grounds. While the dependence of η̃t on the change in

the labor force may appear ad-hoc, it shares in spirit the many features that are adopted in

medium-sized NK DSGE models to slow down the responses of variables such as investment

adjustment cost, capacity adjustment cost, habit formation etc. We leave providing a possible

microfoundation forM (m̄t/m̄t−1) to future research.

We have also experimented with alternative specifications forM. For example, we have

estimated the model under the assumption thatM (m̄t; m̄) = 100! (m̄t/m̄− 1) . This spec-
ification also allows the model to match the VAR response of the labor force quantitatively

well. The specification, however, cannot generate the very delayed hump in the labor force

after a monetary policy shock as suggested by the VAR evidence.

Finally, note that up to a first order approximation of the model, making η, a or & a func-

tion of the procyclical wedge is observationally equivalent. In experiments we also verified

that the primary quantitative impact of η̃t in the model occurs in the h-m relationship. That

is, the quantitative impact of η̃t in equation (B.9) that determines l̊ or the wage Phillips

curve is quite small.

B.7. Aggregate Hours Worked

We will estimate the log-linearized model. Our assumptions imply that the steady state is

undistorted by wage frictions, i.e. we have

ĥt = Ĥt.

where ĥt denotes household hours and Ĥt denotes aggregate homogenous hours (both in log

deviations from steady state). Although this is a well known result (see, e.g., Yun (1996)),

we derive it here for completeness. Recall,

ht ≡
Z 1

0

hj,tdj.
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Invert the demand for labor, (B.7), to obtain an expression in terms of hj,t. Substitute this

into the expression for ht to obtain:

ht = Ht

Z 1

0

ẘ
λw

1−λw
j,t dj, (B.25)

where

ẘj,t ≡
Wj,t

Wt

.

Here, Wt denotes the aggregate wage rate, which one obtains by substituting (B.6) into

(B.7):

Wt =

[Z 1

0

W
1

1−λw
j,t dj

]1−λw
.

Because all households are identical in steady state (see the discussion after (B.11)), ẘj = 1

for all j. Totally di§erentiating (B.25),

ĥt = Ĥt +

Z 1

0

b̊wj,tdj.

Thus, to determine the percent deviation of aggregate employment from steady state, we

require the integral of the percent deviations of type j wages from the aggregate wage, over

all j. We now show that this integral is, to first order, equal to zero.

Express the integral in (B.25) as follows:

ht = ẘ
λw

1−λw
t Ht,

say, where

ẘt ≡
[Z 1

0

ẘ
λw

1−λw
j,t dj

] 1−λw
λw

. (B.26)

Pursuing logic that is standard in the Calvo price/wage setting literature we obtain:

Wt =

[
(1− ξw)

(
W̃t

) 1
1−λw

+ ξw (π̃w,tWt−1)
1

1−λw

]1−λw
(B.27)

ẘt =

"

(1− ξw)w
λw

1−λw
t + ξw

(
π̃w,t
πw,t

ẘt−1

) λw
1−λw

# 1−λw
λw

, (B.28)

where:

wt ≡
W̃t

Wt

, πw,t ≡
Wt

Wt−1
,

and W̃t denotes the wage set by the 1−ξw households that have the opportunity to reoptimize
in the current period. Because all households are identical in steady state

w = ẘ =
π̃w
πw

= 1, (B.29)
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where π̃w,t is defined in (B.11) and πw,t denotes wage inflation:

πw,t ≡
Wt

Wt−1
.

Dividing (B.27) by Wt and solving,

wt =

2

6
4
1− ξw

(
π̃w,t
πw,t

) 1
1−λw

1− ξw

3

7
5

1−λw

. (B.30)

Di§erentiating (B.28) and (B.30) in steady state:

b̊wt = (1− ξw) ŵt + ξw

(
b̃πw,t − π̂w,t + b̊wt−1

)
(B.31)

ŵt = −
ξw

1− ξw

(
b̃πw,t − π̂w,t

)

Using the latter to substitute out for ŵt in (B.31):

b̊wt = ξw
b̊wt−1.

Thus, to first order the wage distortions evolve according to a stable first order di§erence

equation, unperturbed by shocks. For this reason, we set

b̊wt = 0, (B.32)

for all t.

Totally di§erentiating (B.26) and using (B.29), (B.32):

Z 1

0

b̊wj,tdj = 0.

That is, to first order, the integral of the percent deviations of individual wages from the

aggregate is zero.

B.8. Aggregate Labor Force and Unemployment in Our Model

We now derive our model’s implications for unemployment and the labor market. At the

level of the jth household, unemployment and the labor force are defined in the same way

as in the previous section, except that the endogenous variables now have a j subscript (the

parameters and shocks are the same across households). Thus, the jth households’s labor

force, mj,t, and total employment, hj,t, are related by (B.8) and (B.9) which we repeat here
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for convenience:

hj,t = −η̃tmj,t + a
2&σL

(
mσL+1
j,t − l̊σL+1j,t

)

l̊σLj,t = mσL
j,t −

1 + η̃t
& (1 + σL) a2

η̃t = η +M(m̄t/m̄t−1)

Log-linearizing gives:

hĥj,t = −η̃m
(
b̃ηt + m̂j,t

)
+ (σL + 1) a

2&σL

(
mσL+1m̂j,t − l̊σL+1

b̊
lj,t

)
(B.33)

σL̊l
σLc̊lj,t = σLm

σLm̂j,t −
η̃

& (1 + σL) a2
b̃ηt

Variables without subscript denote steady state values in the jth household. Because we

have made assumptions which guarantee that each household is identical in steady state, we

drop the j subscripts from all steady state labor market variables (see the discussion after

(B.11)).

Aggregate household hours and the labor force are defined as follows:

ht ≡
Z 1

0

hj,tdj, m̄t = mt ≡
Z 1

0

mj,tdj, l̊t ≡
Z 1

0

l̊j,tdj.

Totally di§erentiating,

ĥt =

Z 1

0

ĥj,tdj, m̂t ≡
Z 1

0

m̂j,tdj,
b̊
lt ≡

Z 1

0

c̊
lj,tdj.

Using the fact that, to first order, type j wage deviations from the aggregate wage cancel,

we obtain:

ĥt = Ĥt. (B.34)

See section B.7 for a derivation. That is, to a first order approximation, the percent devia-

tion of aggregate household hours from steady state coincides with the percent deviation of

aggregate homogeneous hours from steady state. Integrating (B.33) over all j :

hĥt = −η̃m
(
b̃ηt + m̂t

)
+ (σL + 1) a

2&σL

(
mσL+1m̂t − l̊σL+1

b̊
lt

)

σL̊l
σL b̊lt = σLm

σLm̂t −
η̃

& (1 + σL) a2
b̃ηt.

Which after substituting b̊lt and simplifications can be written as:

hĥt =
(
−η̃m+ (σL + 1) a2&σL

(
m− l̊

)
mσL

)

| {z }
>0

m̂t−η̃
h
m− l̊

i

| {z }
>0

b̃ηt.
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where b̃ηt =
η̃t−η̃
η̃
. Aggregate unemployment is defined as follows:

ut ≡
mt − ht
mt

so that

dut =
h

m

(
m̂t − ĥt

)
.

Here, dut denotes the deviation of unemployment from its steady state value, not the percent

deviation.

B.9. The Standard Model

We derive the utility function used in the standard model as a special case of the household

utility function in our involuntary unemployment model. In part, we do this to ensure con-

sistency across models. In part, we do this as a way of emphasizing that we interpret the

labor input in the utility function in the standard model as corresponding to the number

of people working, not, say, the hours worked of a representative person. With our inter-

pretation, the curvature of the labor disutility function corresponds to the (consumption

compensated) elasticity with which people enter or leave the labor force in response to a

change in the wage rate. In particular, this curvature does not correspond to the elasticity

with which the typical person adjusts the quantity of hours worked in response to a wage

change. Empirically, the latter elasticity is estimated to be small and it is fixed at zero in

the model.

Another advantage of deriving the standard model from ours is that it puts us in posi-

tion to exploit an insight by Galí (2010). In particular, Galí (2010) shows that the standard

model already has a theory of unemployment implicit in it. The monopoly power assumed

by EHL has the consequence that wages are on average higher than what they would be

under competition. The number of workers for which the wage is greater than the cost of

work exceeds the number of people employed. Galí suggests defining this excess of work-

ers as ‘unemployed’. The implied unemployment rate and labor force represent a natural

benchmark to compare with our model.

Notably, deriving an unemployment rate and labor force in the standard model does not

introduce any new parameters. Moreover, there is no change in the equilibrium conditions

that determine non-labor market variables. Galí’s insight in e§ect simply adds a block

recursive system of two equations to the standard DSGE model which determine the size of

the labor force and unemployment. Although the unemployment rate derived in this way

does not satisfy all the criteria for unemployment that we described in the introduction, it

nevertheless provides a natural benchmark for comparison with our model. An extensive

comparison of the economics of our approach to unemployment versus the approach implicit
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in the standard model appears in the appendix of the paper.

We suppose that the household has full information about its workers and that workers

which join the labor force automatically receive a job without having to exert any e§ort. As

in the previous subsections, we suppose that corresponding to each type j of labor, there is

a unit measure of workers which gather together into a household. At the beginning of each

period, each worker draws a random variable, l, from a uniform distribution with support,

[0, 1] . The random variable, l, determines a workers’s aversion to work according to (A.1).

Workers with l ≤ ht,j work and workers with ht,j ≤ l ≤ 1 take leisure. The type j household
allocation problem is to maximize the utility of its workers with respect to consumption for

non-employed workers, cnwt,j , and consumption of employed workers, c
w
t,j, subject to (A.17),

and the given values of ht,j and Ct. In Lagrangian form, the problem is:

u (Ct − bCt−1, hj,t) = max
cwt,j ,c

nw
t,j

Z ht,j

0

[
ln
(
cwt,j − bCt−1

)
− & (1 + σL) l

σL
]
dl

+

Z 1

ht,j

ln
(
cnwt,j − bCt−1

)
dl + λj,t

[
Ct − ht,jcwt,j − (1− ht,j) c

nw
t,j

]
.

Here, λj,t > 0 denotes the multiplier on the resource constraint. The first order conditions

imply cwt,j = c
nw
t,j = Ct. Imposing this result and evaluating the integral, we find:

u (Ct − bCt−1, hj,t) = ln (Ct − bCt−1)− &h1+σLt,j . (B.35)

The problem of the household is identical to what it is in section B.3, with the sole exception

that the utility function, (A.34), is replaced by (B.35).

A type j worker that draws work aversion index l is defined to be unemployed if the

following two conditions are satisfied:

(a) l > hj,t, (b) υtWj,t > & (1 + σL) l
σL . (B.36)

Here, υt denotes the multiplier on the budget constraint, (B.13), in the Lagrangian repre-

sentation of the household optimization problem. Expression (a) in (B.36) simply says that

to be unemployed, the worker must not be employed. Expression (b) in (B.36) determines

whether a non-employed worker is unemployed or not in the labor force. The object on the

left of the inequality in (b) is the value assigned by the household to the wage, Wj,t. The

object on the right of (b) is the fixed cost of going to work for the lth worker. Galí (2010)

suggests defining workers with l satisfying (B.36) as unemployed. This approach to unem-

ployment does not satisfy properties (i) and (iii) in the introduction. The approach does

not meet the o¢cial definition of unemployment because no one is exercising e§ort to find

a job. In addition, the existence of perfect consumption insurance implies that unemployed

workers enjoy higher utility than employed workers.
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We use (B.36) to define the labor force,mt, in the standard model. Withmt and aggregate

employment, ht, we obtain the unemployment rate as follows

ut =
mt − ht
mt

,

or, after linearization about steady state:

dut =
h

m

(
m̂t − ĥt

)
.

Here, h < m because of the presence of monopoly power. The object, ĥt may be obtained

from (B.34) and the solution to the standard model. We now discuss the computation of the

aggregate labor force, mt. We have

mt ≡
Z 1

0

mj,tdj,

where mj,t is the labor force associated with the jth type of labor and is defined by enforcing

(b) in (B.36) at equality. After linearization,

m̂t ≡
Z 1

0

m̂j,tdj.

We compute m̂j,t by linearizing the equation that defines m̂j,t. After scaling that equation,

we obtain

 tw̄tẘj,t = & (1 + σL)m
σL
j,t , (B.37)

where

 t ≡ υtPtz
+
t , w̄t ≡

Wt

z+t Pt
, ẘj,t ≡

Wj,t

Wt

.

Log-linearizing (B.37) about steady state and integrating the result over all j 2 (0, 1) :

 ̂t + b̄wt +
Z 1

0

b̊wj,tdj = σLm̂t.

From the result in section B.7, the integral in the above expression is zero, so that:

m̂t =
 ̂t + b̄wt
σL

.

B.10. Wage Setting by the Household

We consider the problem of a monopolist who represents households that supply the type j

labor service. That monopolist optimizes the utility function of j−type households, (A.34)
in case of our involuntary unemployment model or in (B.35) in case of the standard model,
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subject to Calvo frictions. With probability 1 − ξw the monopolist reoptimizes the wage

and with probability ξw the monopolist sets the current wage rate according to (B.11). In

each period, type j households supply the quantity of labor dictated by demand, (B.7).

Because the j−type household has perfect consumption insurance, the monopolist can take
the j−type household’s consumption as given. However, the monopolist does assign a weight
to the revenues from j−type labor that corresponds to the value, υt, assigned to income by
the household. Ignoring terms beyond the control of the monopolist the monopolist seeks to

maximize:

Ejt

1X

i=0

βi
[
−z
(
ht+i,j; η̃t+i

)
+ υt+iWt+i,jht+i,j

]
.

Here, υt denotes the Lagrange multiplier on the type j household’s time t flow budget

constraint, (B.13). The function, z, is defined in (A.34) for our involuntary unemployment

model or in (B.35) for the standard model (with the understanding that the object η̃ does

not exist in the standard model).

Consider the monopoly wage setter, j, that has an opportunity to reoptimize the wage

rate. The objective function with ht+i,j substituted out using labor demand, (B.7), and

ignoring terms beyond the control of the monopolist, is as follows:

Et

1X

i=0

(βξw)
i [−z

0

@
 
W̃tπ̃w,t+i · · · π̃w,t+1

Wt+i

! λw
1−λw

Ht+i; η̃t+i

1

A

+υt+iW̃tπ̃w,t+i · · · π̃w,t+1

 
W̃tπ̃w,t+i · · · π̃w,t+1

Wt+i

! λw
1−λw

Ht+i],

where

W̃tπ̃w,t+i · · · π̃w,t+1

is the nominal wage rate of the monopolist which sets wage W̃t in period t and cannot

reoptimize again afterward. We adopt the following scaling convention:

wt =
W̃t

Wt

, w̄t =
Wt

z+t Pt
,  t = υtPtz

+
t .

With this notation, the objective can be written,

Et

1X

i=0

(βξw)
i [−z

 (
wtw̄t
w̄t+i

Xt,i

) λw
1−λw

Ht+i; η̃t+i

!

+  t+iw
1

1−λw
t w̄tXt,i

(
w̄t
w̄t+i

Xt,i

) λw
1−λw

Ht+i],

where:

Xt,i =
π̃w,t+i · · · π̃w,t+1

πt+iπt+i−1 · · · πt+1µz+,t+i · · · µz+,t+1
.
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Di§erentiating with respect to wt,

Et

1X

i=0

(βξw)
i [−zth,t+i

λw
1− λw

w
λw

1−λw
−1

t

(
w̄t
w̄t+i

Xt,i

) λw
1−λw

Ht+i

+
1

1− λw
 t+iw

1
1−λw

−1
t w̄tXt,i

(
w̄t
w̄t+i

Xt,i

) λw
1−λw

Ht+i],

where

zth,t+i ≡ zh

 (
wtw̄t
w̄t+i

Xt,i

) λw
1−λw

Ht+i; η̃t+i

!

.

Here, zth,t+i denotes the marginal utility of labor in period t + i, for a monopolist who last

reoptimized the wage rate in period t. Note that in steady state we get the standard condition

equating the (marked up) marginal rate of substitution to real wage:

λw
zh
 
= w̄.

Dividing and rearranging the above first order condition gives,

Et

1X

i=0

(βξw)
i

(
w̄t
w̄t+i

Xt,i

) λw
1−λw

Ht+i[ t+iwtw̄tXt,i − λwz
t
h,t+i] = 0. (B.38)

The first object in square brackets is the marginal utility real wage in period t + i and the

second is a markup, λw, over the marginal utility cost of working. According to (B.38) the

monopolist attempts to set a weighted average of the term in square brackets to zero. The

structure of ztz,t+i makes it di¢cult to express (B.38) in recursive form. This is because we

have not found a way to express zth,t+1 = Ztz
t+1
h,t+1, for some variable, Zt. The expression,

(B.38), is recursive after linearizing it about steady state. Thus,

ẑth,t+i ≡
dzh

((
wtw̄t
w̄t+i

Xt,i

) λw
1−λw

Ht+i; η̃t+i

)

zh

(
w

λw
1−λwH; η̃

) ,

where a variable without a time subscript denotes non-stochastic steady state. Expanding

this expression:

ẑth,t+i = ση̃b̃ηt+i + αh,1

(
ŵt + b̄wt − b̄wt+i + X̂t,i

)
+ σzĤt+i,

where

αh,1 ≡
λw

1− λw
σz.

For the involuntary unemployment model we have:

σz ≡
zhhH

zh
, ση̃ ≡

zhη̃η̃

zh
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where the partial derivatives of the z function can be obtained from observing that

zh = −uh, zhh = −uhh, zhη̃ = −uhη̃

and the derivatives of the utility function are provided in section A.9.2.

For the standard model, we have:

zh = (1 + σL) &H
σL

zhh = σL (1 + σL) &H
σL−1

So that

σz ≡
zhhH

zh
= σL,ση̃ ≡ 0.

Also,

X̂t,i = b̃πw,t+i + · · ·+ b̃πw,t+1 − π̂t+i − π̂t+i−1 − · · ·− π̂t+1 − µ̂z+,t+i − · · ·− µ̂z+,t+1.

However, note:
b̃πw,t+1 = κwπ̂t.

Then,

X̂t,i = −∆κw π̂t+i −∆κw π̂t+i−1 − · · ·−∆κw π̂t+1 − µ̂z+,t+i − · · ·− µ̂z+,t+1,

where

∆κw ≡ 1− κwL,

where L denotes the lag operator.

Write out (B.38) in detail:

Ht[ twtw̄t − λwz
t
h,t]

+βξw

(
w̄t
w̄t+1

Xt,1

) λw
1−λw

Ht+1[ t+1wtw̄tXt,1 − λwz
t
h,t+1]

+ (βξw)
2

(
w̄t
w̄t+2

Xt,2

) λw
1−λw

Ht+2[ t+2wtw̄tXt,2 − λwz
t
h,t+2] + ... = 0

In expanding this expression, we can simply set the terms outside the square brackets to

their steady state values. The reason is that the term inside the brackets are equal to zero

in steady state. Thus, the expansion of the previous expression about steady state:

H[d ( twtw̄t)− λwd
(
zth,t
)
]

+βξwH[d
(
 t+1wtw̄tXt,1

)
− λwd

(
zth,t+1

)
]

+ (βξw)
2H[d

(
 t+2wtw̄tXt,2

)
− λwd

(
zth,t+2

)
] + ... = 0
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or,

H[ z+w̄
(
 ̂t + ŵt + b̄wt

)
− λwzhẑ

t
h,t]

+βξwH[ z+w̄
(
 ̂t+1 + ŵt + b̄wt + X̂t,1

)
− λwzhẑ

t
h,t+1]

+ (βξw)
2H[ z+w̄

(
 ̂t+2 + ŵt + b̄wt + X̂t,2

)
− λwzhẑ

t
h,t+2] + ... = 0

Note that in steady state,  w̄ = λwzh, so that, after multiplying by 1/ (H w̄) , we obtain:

 ̂t + ŵt + b̄wt − ẑ
t
h,t

+βξw[ ̂t+1 + ŵt + b̄wt + X̂t,1 − ẑth,t+1]

+ (βξw)
2 [ ̂t+2 + ŵt + b̄wt + X̂t,2 − ẑth,t+2] + ... = 0

Substitute out for ẑth,t+i and X̂t,i :

0 =  ̂t + ŵt + b̄wt −
h
ση̃b̃ηt + αh,1ŵt + σzĤt

i

+βξw[ ̂t+1 + ŵt + b̄wt −
(
∆κw π̂t+1 + µ̂z+,t+1

)

−
(
ση̃b̃ηt+1 + αh,1

(
ŵt + b̄wt − b̄wt+1 −

(
∆κw π̂t+1 + µ̂z+,t+1

))
+ σzĤt+1

)
]

+ (βξw)
2 [ ̂t+2 + ŵt + b̄wt −

(
∆κw π̂t+2 + µ̂z+,t+2

)
−
(
∆κw π̂t+1 + µ̂z+,t+1

)

−

 

ση̃b̃ηt+2 + αh,1

 
ŵt + b̄wt − b̄wt+2

−
(
∆κw π̂t+2 + µ̂z+,t+2

)
−
(
∆κw π̂t+1 + µ̂z+,t+1

)

!

+ σzĤt+2

!

] + ...

Collecting terms:

0 =
1X

j=0

(βξw)
j
h
 ̂t+j −

(
ση̃b̃ηt+j + σzĤt+j

)i
+
1− αh,1
1− βξw

ŵt

+
1− αh,1βξw
1− βξw

b̄wt + αh,1

1X

j=1

(βξw)
j b̄wt+j

− (1− αh,1) βξw
[(
∆κw π̂t+1 + µ̂z+,t+1

)]

− (1− αh,1) (βξw)
2 [(∆κw π̂t+2 + µ̂z+,t+2

)
+
(
∆κw π̂t+1 + µ̂z+,t+1

)]

−...

or,

0 =

1X

j=0

(βξw)
j
h
 ̂t+j −

(
ση̃b̃ηt+j + σzĤt+j

)i
+
1− αh,1
1− βξw

ŵt

+
1− αh,1βξw
1− βξw

b̄wt +
1X

j=1

(βξw)
j

[
αh,1 b̄wt+j −

1− αh,1
1− βξw

(
∆κw π̂t+j + µ̂z+,t+j

)]
.
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Note

St = Xt + βξwXt+1 + (βξw)
2Xt+2 + ...

= Xt + βξw

St+1z }| {
[Xt+1 + βξwXt+2 + ...],

so that the log-linearized first order condition can be written:

0 = Ft +
1− αh,1
1− βξw

ŵt +
1− αh,1βξw
1− βξw

b̄w +Gt, (B.39)

where

Ft =
1X

j=0

(βξw)
j
h
 ̂t+j −

(
ση̃b̃ηt+j + σzĤt+j

)i

=  ̂t −
(
ση̃b̃ηt + σzĤt

)
+ βξwFt+1

Gt =
1X

j=1

(βξw)
j

[
αh,1 b̄wt+j −

1− αh,1
1− βξw

(
∆κw π̂t+j + µ̂z+,t+j

)]

= βξwαh,1 b̄wt+1 −
(1− αh,1) βξw
1− βξw

(
∆κw π̂t+1 + µ̂z+,t+1

)
+ βξwGt+1

Note:

(
1− βξwL

−1)Ft ≡ Ft − βξwFt+1 =  ̂t −
(
ση̃b̃ηt + σzĤt

)
(B.40)

(
1− βξwL

−1)Gt ≡ Gt − βξwGt+1 = βξwαh,1 b̄wt+1 −
(1− αh,1) βξw
1− βξw

(
∆κw π̂t+1 + µ̂z+,t+1

)

We now obtain a second restriction on ŵt using the relation between the aggregate wage

rate and the wage rates of individual households:

Wt =

[
(1− ξw)

(
W̃t

) 1
1−λw

+ ξw (π̃w,tWt−1)
1

1−λw

]1−λw
.

Dividing both sides by Wt :

1 = (1− ξw) (wt)
1

1−λw + ξw

(
π̃w,tWt−1

Wt

) 1
1−λw

.

Note,

πw,t ≡
Wt

Wt−1
=

w̄tz
+
t Pt

w̄t−1z
+
t−1Pt−1

=
w̄tµz+,tπt

w̄t−1
,

so that

1 = (1− ξw) (wt)
1

1−λw + ξw

(
w̄t−1π̃w,t
w̄tµz+,tπt

) 1
1−λw

.
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Di§erentiate and make use of w = 1, π̃w = µz+π :

0 = (1− ξw)
1

1− λw
ŵt + ξw

1

1− λw

h
b̄wt−1 + b̃πw,t − b̄wt − µ̂z+,t − π̂t

i
,

or,

ŵt = −
ξw

1− ξw

[
b̄wt−1 − b̄wt − µ̂z+,t −∆κw π̂t

]
.

Use this expression to substitute out for ŵt in (B.39):

1− αh,1
1− βξw

ξw
1− ξw

[
b̄wt−1 − b̄wt − µ̂z+,t −∆κw π̂t

]
= Ft +

1− βξwαh,1
1− βξw

b̄wt +Gt.

Multiply by (1− βξwL
−1) and use (B.40):

1− αh,1
1− βξw

ξw
1− ξw

(
1− βξwL

−1) [b̄wt−1 − b̄wt − µ̂z+,t −∆κw π̂t
]

=  ̂t −
(
ση̃b̃ηt + σzĤt

)
+
(
1− βξwL

−1) 1− βξwαh,1
1− βξw

b̄wt

+βξwαh,1 b̄wt+1 −
(1− αh,1) βξw
1− βξw

(
∆κw π̂t+1 + µ̂z+,t+1

)
,

or,

1− αh,1
1− βξw

ξw
1− ξw

"
b̄wt−1 − βξw b̄wt − b̄wt + βξw b̄wt+1 − µ̂z+,t
+βξwµ̂z+,t+1 −∆κw π̂t + βξw∆κw π̂t+1

#

=  ̂t −
(
ση̃b̃ηt + σzĤt

)
+
1− βξwαh,1
1− βξw

[
b̄wt − βξw b̄wt+1

]

+βξwαh,1 b̄wt+1 −
(1− αh,1) βξw
1− βξw

(
∆κw π̂t+1 + µ̂z+,t+1

)
.

Note that the wage does not simply enter via nominal wage inflation. To see this, note

b̄wt − b̄wt−1 = π̂w,t − µ̂z+,t − π̂t,

where π̂w,t denotes nominal wage inflation. But, it is not simply b̄wt− b̄wt−1 that enters in this
expression. That is, if we tried to express the above expression in terms of nominal wage

inflation, we would simply add another variable to it, π̂w,t, without subtracting any, such as

the real wage, b̄wt. Collecting terms:

0 = Et[η0 b̄wt−1 + η1 b̄wt + η2 b̄wt+1 + η3π̂t−1 + η4π̂t + η5π̂t+1 + η6µ̂z+,t + η7µ̂z+,t+1(B.41)

+η8 ̂t + η9Ĥt + η10b̃ηt],
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where

η0 =
1− αh,1
1− βξw

ξw
1− ξw

, η1 = −η0 (1 + βξw)−
(1− βξwαh,1)

1− βξw
,

η2 = βξw

(
η0 +

(1− βξwαh,1)

1− βξw
− αh,1

)
, η3 = η0κw,

η4 = −η0 (1 + κwβξw)−
(1− αh,1) βξw
1− βξw

κw,

η5 = η0βξw +
(1− αh,1) βξw
1− βξw

,

η6 = −η0, η7 = η5, η8 = −1, η9 = σz, η10 = ση̃.

Note that (B.41) is the same for the standard model and for our model with involuntary un-

employment except for the presence of ση̃ in our model and the di§erence in the construction

of σz in both models.

The wage equation can be thought of, for computational purposes, as a nonlinear equa-

tion, if we treat
b̄wt =

w̄t − w̄
w̄

,

and the other hatted variables in the same way. Likewise:

b̃ηt =
η̃t − η̃

η̃
.

B.11. Remaining Equilibrium Conditions

B.11.1. Firms

We let st denote the firm’s marginal cost, divided by the price of the homogeneous good.

The standard formula, expressing this as a function of the factor inputs, is as follows:

st =

(
rkt Pt
α

)α (
WtR

f
t

1−α

)1−α

Ptz
1−α
t

.

When expressed in terms of scaled variables, this reduces to:

st =

(
r̄kt
α

)α 
w̄tR

f
t

1− α

!1−α
. (B.42)

Productive e¢ciency dictates that st is also equal to the ratio of the real cost of labor to the

marginal product of labor:

st =

(
µΨ,t

)α
w̄tR

f
t

(1− α)
(

ki,t
µz+,t

/Hi,t

)α . (B.43)
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The only real decision taken by intermediate good firms is to optimize price when it is

selected to do so under the Calvo frictions. The first order necessary conditions associated

with price optimization are, after scaling:

Et

"

 tyt +

(
π̃f,t+1
πt+1

) 1
1−λf

βξpF
f
t+1 − F

f
t

#

= 0 (B.44)

Et

2

4λf tytst + βξp

(
π̃f,t+1
πt+1

) λf
1−λf

Kf
t+1 −K

f
t

3

5 = 0, (B.45)

p̊t =

2

66
4
(
1− ξp

)
0

B
@
1− ξp

(
π̃f,t
πt

) 1
1−λf

1− ξp

1

C
A

λf

+ ξp

(
π̃f,t
πt
p̊t−1

) λf
1−λf

3

77
5

1−λf
λf

, (B.46)

2

6
4
1− ξp

(
π̃f,t
πt

) 1
1−λf

1− ξp

3

7
5

(1−λf)

=
Kf
t

F ft
, (B.47)

π̃f,t ≡ (πt−1)
κf (π)1−κf . (B.48)

In terms of scaled variables, the law of motion for the capital stock is as follows:

k̄t+1 =
1− δ

µz+,tµΨ,t
k̄t +Υt

(
1− S̃

(
µz+,tµΨ,tit

it−1

))
it. (B.49)

The aggregate production relation is:

yt = (p̊t)
λf

λf−1

[
ϵt

(
1

µΨ,t

1

µz+,t
k̄tut

)α
H1−α
t − ntφ

]
.

Finally, the resource constraint is:

yt = ntG+ ct + it + a (ut)
k̄t

µ ,tµz+,t
.

B.11.2. Household

We now derive the equilibrium conditions associated with the household, apart from the

wage condition, which was derived in a previous subsection. The Lagrangian representation
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of the household’s problem is:

Ej0

1X

t=0

βt{[ln (Ct − bCt−1)− z (ht,j; η̃t)]

υt

"
Wt,jht,j +X

k
t K̄t +Rt−1Bt

+at,j − Pt
(
Ct +

1
Ψt
It

)
−Bt+1 − PtPk0,t∆t

#

+!t

[
∆t + (1− δ) K̄t +

(
1− S̃

(
It
It−1

))
It − K̄t+1

]
}

The first order condition with respect to Ct is:

1

Ct − bCt−1
− Et

bβ

Ct+1 − bCt
= υtPt,

or, after expressing this in scaled terms and multiplying by z+t :

 t =
1

ct − b ct−1µz+,t

− βbEt
1

ct+1µz+,t+1 − bct
. (B.50)

The first order condition with respect to ∆t is, after rearranging:

PtPk0,t =
!t
υt
. (B.51)

The first order condition with respect to It is:

!t

[
1− S̃

(
It
It−1

)
− S̃ 0

(
It
It−1

)
It
It−1

]
+ Etβ!t+1S̃

0
(
It+1
It

)(
It+1
It

)2
=
Ptυt
Ψt

.

Making use of (B.51), multiplying by Ψtz+t , rearranging and using the scaled variables,

 tpk0,t

[
1− S̃

(
µz+,tµΨ,tit

it−1

)
− S̃ 0

(
µz+,tµΨ,tit

it−1

)
µz+,tµΨ,tit

it−1

]
(B.52)

+β t+1pk0,t+1S̃
0
(
µz+,t+1µΨ,t+1it+1

it

)(
it+1
it

)2
µz+,t+1µΨ,t+1 =  t.

Optimality of the choice of K̄t+1 implies the following first order condition:

!t = βEtυt+1X
k
t+1 + βEt!t+1 (1− δ) = βEtυt+1

[
Xk
t+1 + Pt+1Pk0,t+1 (1− δ)

]
,

using (B.51). Using (B.51) again,

υt = Etβυt+1

[
Xk
t+1 + Pt+1Pk0,t+1 (1− δ)

PtPk0,t

]
= Etβυt+1R

k
t+1, (B.53)

where Rkt+1 denotes the rate of return on capital:

Rkt+1 ≡
Xk
t+1 + Pt+1Pk0,t+1 (1− δ)

PtPk0,t
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Multiply (B.53) by Ptz+t and express the results in scaled terms:

 t = βEt t+1
Rkt+1

πt+1µz+,t+1
. (B.54)

Expressing the rate of return on capital, (B.15), in terms of scaled variables:

Rkt+1 =
πt+1
µΨ,t+1

ut+1r̄
k
t+1 − a(ut+1) + (1− δ)pk0,t+1

pk0,t
. (B.55)

The first order condition associated with capital utilization is:

Ψtr
k
t = a

0 (ut) ,

or, in scaled terms,

r̄kt = a
0 (ut) . (B.56)

The first order condition with respect to Bt+1 is:

υt = βEtυt+1Rt.

Multiply by z+t Pt :

 t = βEt
 t+1

µz+,t+1πt+1
Rt. (B.57)

C. Equilibrium Equations of the Medium-Sized DSGE Model

Here we list the scaled dynamic equilibrium equations of the medium-sized DSGE model

with involuntary unemployment as well as the standard labor market model. We also list

the corresponding steady state equations.
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C.1. Dynamic Equilibrium Equations

Cons. FOC (1) :  t =

(
ct − b

ct−1
µz+,t

)−1
− βbEt

(
ct+1µz+,t+1 − bct

)−1

Bond. FOC (2) :  t = βEt
 t+1

µz+,t+1πt+1
Rt

Invest. FOC (3) :  tpk0,t

[
1− S̃t − S̃ 0t

µz+,tµΨ,tit

it−1

]

+βEt t+1pk0,t+1S̃
0
t+1

(
it+1
it

)2
µz+,t+1µΨ,t+1 =  t

Capital FOC (4) :  t = βEt t+1
Rkt+1

πt+1µz+,t+1

LOM capital (5) : k̄t+1 =
1− δ

µz+,tµΨ,t
k̄t +

(
1− S̃

(
µz+,tµΨ,tit

it−1

))
it

Cost. minim. (6) : 0 = a0
(
ukt
)
ukt k̄t/(µΨ,tµz+,t)− α/(1− α)wt

[
νfRt + 1− νf

]
ẘ
λw/(λw−1)
t ht

Production (7) : yt = (p̊t)
λf

λf−1

[(
1

µΨ,t

1

µz+,t
k̄tu

k
t

)α (
ẘ
λw/(λw−1)
t ht

)1−α
− ntφ

]

Resources (8) : yt = ntG+ ct + it + a
(
ukt
) k̄t
µ ,tµz+,t

Taylor rule (9) : ln

(
Rt
R

)
= ρR ln

(
Rt−1
R

)

+(1− ρR)

[
rπ ln

(πt
π

)
+ ry ln

(
gdpt
gdp

)]
+
σR"R,t
400

Pricing 1 (10) : F ft =  tyt + βξpEt

(
π̃f,t+1
πt+1

) 1
1−λf

F ft+1

Pricing 2 (11) : Kf
t = λf tytst + βξpEt

(
π̃f,t+1
πt+1

) λf
1−λf

Kf
t+1

Pricing 3 (12) :
(
1− ξp

) (
Kf
t /F

f
t

)1/(1−λf)
= 1− ξp

(
π̃f,t
πt

) 1
1−λf

Price disp. (13) : p̊

λf
1−λf
t =

(
1− ξp

)
  

1− ξp

(
π̃f,t
πt

) 1
1−λf

!

/
(
1− ξp

)
!λf

+ ξp

(
π̃f,t
πt
p̊t−1

) λf
1−λf

Real GDP (14) : gdpt = ntG+ ct + it

Unemp. rate (15): ut =
mt − ht
mt

Wage inflation (16) : πw,t = wtµz+,tπt/wt−1
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For the involuntary unemployment model we have the following further equations:

Wage Phillips Curve (17): 0 = Et[η0 b̄wt−1 + η1 b̄wt + η2 b̄wt+1 + η3π̂t−1 + η4π̂t + η5π̂t+1

+η6µ̂z+,t + η7µ̂z+,t+1 + η8 ̂t + η9ĥt +
η10
η̃
(η̃t − η̃)]

Labor force (18): hĥt = −m (η̃t − η̃)− η̃mm̂t + (σL + 1) a
2&σL

(
mσL+1m̂t − l̊σL+1

b̊
lt

)

Workers with p(e)=1 (19): σL̊l
σL b̊lt = σLm

σLm̂t −
1

& (1 + σL) a2
(η̃t − η̃) .

Intercept in p(e) (20): η̃t = η + 100! (mt/mt−1 − 1)

where in the above equations, hatted variables are related to level variables as follows:

b̄wt =
w̄t − w̄
w̄

, π̂t =
πt − π

π
, µ̂z+,t =

µz+,t − µ̂z+
µ̂z+

,  ̂t =
 t −  

 
,

ĥt =
ht − h
h

, m̂t =
mt −m
m

,
b̊
lt =

l̊t − l̊
l̊
.

Further, the coe¢cients of the wage Phillips curve are defined as:

η0 =
1− αh,1
1− βξw

ξw
1− ξw

, η1 = −η0 (1 + βξw)−
(1− βξwαh,1)

1− βξw
,

η2 = βξw

(
η0 +

(1− βξwαh,1)

1− βξw
− αh,1

)
, η3 = η0κw,

η4 = −η0 (1 + κwβξw)−
(1− αh,1) βξw
1− βξw

κw,

η5 = η0βξw +
(1− αh,1) βξw
1− βξw

,η6 = −η0, η7 = η5,

η8 = −1, η9 = σz =
zhhh

zh
, η10 = ση̃ =

zhη̃η̃

zh

For the standard model we have the following further equations:

Wage Phillips Curve (17): 0 = Et[η0 b̄wt−1 + η1 b̄wt + η2 b̄wt+1 + η3π̂t−1 + η4π̂t + η5π̂t+1

+η6µ̂z+,t + η7µ̂z+,t+1 + η8 ̂t + η9Ĥt]

Labor force (18): σLm̂t =  ̂t + b̄wt

Workers with p(e)=1 (19): b̊
lt = 0

Intercept in p(e) (20) : η̃t = 0

Finally, both models have the following exogenous variables:

Comp. Tech. (21) : lnµz+,t = α/(1− α) lnµΨ,t + lnµz,t

Invest. Tech. (22) : lnµΨ,t = (1− ρµΨ) lnµΨ + ρµΨ lnµΨ,t−1 + σµΨ"µΨ,t/100

Neutr. Tech. (23) : lnµz,t = lnµz + σµz"µz ,t/100

Tech. di§us. (24) : nt = n
1−θ
t−1µ

−1
z+,t
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In the above two models we have a total of 24 equations in the following 24 variables:

 t ct Rt πt pk0,t it u
k
t k̄t ht yt p̊t F

f
t K

f
t w̄t πw,t ut gdpt µz+,t µz,t µΨ,t nt mt l̊t η̃t

In the above equations, it is useful to define several abbreviated variables that are functions

of the endogenous variables. In particular,

Cap. util. cost. (25) : a(ukt ) = 0.5σbσa
(
ukt
)2
+ σb (1− σa) u

k
t + σb ((σa/2)− 1)

Cap. util. deriv. (26) : a0(ukt ) = σbσau
k
t + σb (1− σa)

Invest. adj. cost (27) : S̃t = 0.5 exp
hp
S̃ 00
(
µz+,tµΨ,tit/it−1 − µz+ · µΨ

)i

+0.5 exp
h
−
p
S̃ 00
(
µz+,tµΨ,tit/it−1 − µz+ · µΨ

)i
− 1

Inv. adj. deriv. (28) : S̃ 0t = 0.5
p
S̃ 00 exp

hp
S̃ 00
(
µz+,tµΨ,tit/it−1 − µz+ · µΨ

)i

−0.5
p
S̃ 00 exp

h
−
p
S̃ 00
(
µz+,tµΨ,tit/it−1 − µz+ · µΨ

)i

Capital return (29) : Rkt = πt/(µΨ,tpk0,t−1)
(
ukt a

0 (ukt
)
− a(ukt ) + (1− δk)pk0,t

)

Marginal cost (30) : mct =
(
µΨ,tµz+,t

)α
wt
[
νfRt + 1− νf

] (
ukt k̄t−1/

(
ẘ
λw/(λw−1)
t ht

))−α
/(1− α)

Price indexation (31) : π̃t = πκ
f

t−1π
1−κf

Wage indexation (32) : π̃w,t = πκ
w

t−1π
1−κwµz+

In the baseline specification described in the main text we set κf = 0, κw = 1 and νf = 1.
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C.2. Steady State

IMPOSE uk = 1, solve (29) for σb

(25) : a(1) = 0

(21) : µz = µz+/ (µΨ)
α/(1−α)

(24) : n = µ
− 1
θi

z+

(22) : "µz = 0

(23) : "µΨ = 0

(27) : S̃ = 0

(28) : S̃ 0 = 0

IMPOSE π, “drop” equation (9), i.e. R = R

(2) : R = πµz+/β

(3) : pk0 = 1

(4) : Rk = πµz+/β

(29) : σb = R
kµΨpk0/π − (1− δk)pk0

(26) : a0(1) = σb

(31) : π̃t = πκ
f

t−1π
1−κf

(32) : π̃w,t = πκ
w

t−1π
1−κwµz+
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(10-12) : mc =
1

λ

1− βξ (π̃/π)λ/(1−λ)

1− βξ (π̃/π)1/(1−λ)

"
1− ξ (π̃/π)1/(1−λ)

1− ξ

#1−λ

(13) : p̊ =

"
1− ξ (π̃/π)1/(1−λ)

1− ξ

#1−λ
/

"
1− ξ (π̃/π)λ/(1−λ)

1− ξ

#(1−λ)/λ

(6 & 30) : kh = k̄/(ẘλw/(λw−1)l) =
[
α (µΨµz+)

1−αmc/σb
]1/(1−α)

(16) : πw = µz+π

(14) : ẘ =

 
1− ξw (π̃w/πw)

1/(1−λw)

1− ξw

!1−λw
/

 
1− ξw (π̃w/πw)

λw/(1−λw)

1− ξw

! 1−λw
λw

(30) : w =
(1− α)mc

(µΨµz+)
α [νfR + 1− νf ]

(kh)α

IMPOSE h and solve for & later

IMPOSE zero profits and solve for φ later

(7 & zero profits) : y =
mc

(p̊λ/(1−λ) − 1)mc+ 1
(kh/(µz+µΨ))

α ẘλw/(λw−1)h

: k̄ = kh · ẘλw/(λw−1)h

(7) : φ =
[
(kh/(µz+µΨ))

α ẘλw/(λw−1)h− yp̊λ/(1−λ)
]
/n

(5) : i = [1− (1− δ) /(µz+µΨ)] k̄

Assume G equals share ηg of y

(8) : c = (1− ηg)y − i for some given ηg ! G = ηgy/ng

(1) :  = (c− bc/µz+)
−1 − βb (cµz+ − bc)

−1

(14) : gdp = ngG+ c+ i

(11) : Kf =
λ ·  · y ·mc

1− βξ (π̃/π)λ/(1−λ)

(10) : F f =
 · y

1− βξ (π̃/π)1/(1−λ)
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C.2.1. Standard Model

For the standard model we proceed as follows:

σL =
zhhh

zh
= σtargetz

(17) : zh =
 

λw
w̄ ) & =

(
 

λw
w̄

)
/ ((1 + σL)h

σL)

(18) : m =

(
 w̄

& (1 + σL)

) 1
σL

(15) : u =
m− h
m

C.2.2. Involuntary Unemployment Model

For the involuntary unemployment model we proceed as follows:

IMPOSE m and solve later for η

(15) : u =
m− h
m

We solve for the following objects using a nonlinear solver:

& a l̊ σL

Conditional on & a l̊ σL we can pursue further

(19) : η̃ = & (1 + σL) a
2
(
mσL − l̊σL

)
− 1

(20) : η = η̃

r̃ = e−(F+&(1+σL)m
σL− 2

a2
η̃)

r =
(c− hb/µz+c) r̃ + hb/µz+c

c− (1− h) b/µz+c+ (1− h) b/µz+cr̃

cw =
c

h+ (1− h) r
, cnw = rcw

We adjust & a l̊ σL to make the following four equations hold:

(&) (17) : zh =
 

λw
w̄

(
l̊
)
(18) : h = −η̃m+ a2&σL

(
mσL+1 − l̊σL+1

)

(a) :
zhhh

zh
= σtargetz

(σL) : r = rtarget
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D. Estimation Results When Unemployment Rate and Labor Force

Data are Included in Estimation of Standard Model

Technical Appendix Table A.1 contains the estimated parameters of the standard model with

and without including data for the unemployment rate and the labor force in the estimation.

The posterior mode and parameter distributions are based on a standard MCMC algorithm

with a total of 2.5 million draws based on 10 chains. We use the first 20 percent of draws

for burn-in. The acceptance rates are about 0.25 in each chain. Figures 1 through 4 in

the appendix to the main text show the impulse responses of the estimated standard model

when data for the unemployment rate and the labor force in the estimation evaluated at the

posterior mode shown in Technical Appendix Table A.1.
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Technical Appendix Table A.1: Sensitivity of Estimated Standard Model
Parameter Prior Posterior

Distribution Mode Mode
[bounds] [2.5% 97.5%] [2.5% 97.5%]

Baseline Model with
Model U. & Lab. Force

Price Setting Parameters
Price Stickiness ξp Beta 0.67 0.616 0.776

[0, 1] [0.45 0.83] [0.55 0.71] [0.73 0.81]
Price Markup λf Gamma 1.19 1.230 -

[1.001, 1] [1.01 1.40] [1.10 1.36] -
Monetary Authority Parameters

Taylor Rule: Int. Smoothing ρR Beta 0.76 0.873 0.785
[0, 1] [0.37 0.93] [0.82 0.90] [0.77 0.85]

Taylor Rule: Inflation Coef. rπ Gamma 1.68 1.395 1.015
[1.001, 1] [1.41 2.00] [1.19 1.65] [1.00 1.76]

Taylor Rule: GDP Coef. ry Gamma 0.07 0.077 0.005
[0, 1] [0.02 0.21] [0.03 0.14] [0.00 0.09]

Preference Parameters
Consumption Habit b Beta 0.75 0.761 0.755

[0, 1] [0.64 0.83] [0.72 0.79] [0.74 0.81]
Inverse Labor Supply Elast. σz Gamma 0.26 0.165 18.18

[0, 1] [0.13 0.52] [0.08 0.23] [12.97 25.57]
Technology Parameters

Capital Share α Beta 0.32 0.31 0.270
[0, 1] [0.28 0.37] [0.25 0.33] [0.21 0.28]

Technology di§usion θ Beta 0.50 0.052 0.006
[0, 1] [0.12 0.86] [0.01 0.80] [0.00 0.02]

Capacity Adj. Costs Curv. σa Gamma 0.31 0.462 0.019
[0, 1] [0.09 1.22] [0.21 0.56] [0.00 0.08]

Investment Adj. Costs Curv. S
00

Gamma 7.50 11.56 10.32
[0, 1] [4.56 12.29] [8.46 14.92] [7.72 15.09]

Shocks
Autocorr. Invest. Tech. ρ Beta 0.78 0.703 0.612

[0, 1] [0.53 0.91] [0.54 0.77] [0.53 0.77]
Std.Dev. Neutral Tech. Shock σn Inv. Gamma 0.06 0.211 0.282

[0, 1] [0.04 0.44] [0.18 0.25] [0.26 0.33]
Std.Dev. Invest. Tech. Shock σ Inv. Gamma 0.06 0.125 0.149

[0, 1] [0.04 0.44] [0.09 0.17] [0.10 0.17]
Std.Dev. Monetary Shock σR Inv. Gamma 0.22 0.496 0.597

[0, 1] [0.14 1.49] [0.41 0.60] [0.52 0.71]

E. Estimation Results of Involuntary Unemployment Model with
Constant η̃ (! = 0)

Technical Appendix Table A.2 contains the estimated parameters of the baseline involuntary
unemployment model as well as the involuntary unemployment model when ! is set to
zero, i.e. η̃ is constant. The posterior mode and parameter distributions are based on a
standard MCMC algorithm with a total of 2.5 million draws based on 10 chains. We use
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the first 20 percent of draws for burn-in. The acceptance rates are about 0.25 in each chain.
Technical Appendix Figures 1 through 4 show the impulse responses of the estimated baseline
involuntary unemployment model and the involuntary unemployment model with ! = 0
when both models are evaluated at the posterior mode shown in Technical Appendix Table
A.2.

Technical Appendix Table A.2: Sensitivity of Estimated Involuntary Unemployment Model
Parameter Prior Posterior

Distribution Mode Mode
[bounds] [2.5% 97.5%] [2.5% 97.5%]

Baseline Model
Model with ! = 0

Price Setting Parameters
Price Stickiness ξp Beta 0.67 0.727 0.745

[0, 1] [0.45 0.83] [0.67 0.78] [0.65 0.79]
Price Markup λf Gamma 1.19 1.399 1.491

[1.001, 1] [1.01 1.40] [1.29 1.54] [1.38 1.64]
Monetary Authority Parameters

Taylor Rule: Int. Smoothing ρR Beta 0.76 0.890 0.802
[0, 1] [0.37 0.93] [0.85 0.91] [0.77 0.86]

Taylor Rule: Inflation Coef. rπ Gamma 1.68 1.414 1.338
[1.001, 1] [1.41 2.00] [1.19 1.69] [1.19 1.62]

Taylor Rule: GDP Coef. ry Gamma 0.07 0.113 0.028
[0, 1] [0.02 0.21] [0.05 0.18] [0.01 0.08]

Preference Parameters
Consumption Habit b Beta 0.75 0.776 0.728

[0, 1] [0.64 0.83] [0.74 0.80] [0.68 0.76]
Inverse Labor Supply Elast. σz Gamma 0.26 0.334 0.267

[0, 1] [0.13 0.52] [0.17 0.43] [0.13 0.35]
Replacement Ratio cnw/cw Beta 0.75 0.7973 0.818

[0, 1] [0.69 0.79] [0.76 0.82] [0.78 0.85]
Labor Force Impact on p(e, η̃) ! Normal 0.0 -0.533 -

[-1, 1] [-1.96 1.96] [-0.74 -0.38] -
Technology Parameters

Capital Share α Beta 0.32 0.31 0.289
[0, 1] [0.28 0.37] [0.25 0.33] [0.25 0.32]

Technology di§usion θ Beta 0.50 0.052 0.009
[0, 1] [0.12 0.86] [0.01 0.80] [0.00 0.04]

Capacity Adj. Costs Curv. σa Gamma 0.31 0.462 0.312
[0, 1] [0.09 1.22] [0.21 0.56] [0.16 0.54]

Investment Adj. Costs Curv. S
00

Gamma 7.50 11.56 12.24
[0, 1] [4.56 12.29] [8.46 14.92] [9.37 16.56]
Shocks

Autocorr. Invest. Tech. ρ Beta 0.78 0.704 0.690
[0, 1] [0.53 0.91] [0.59 0.82] [0.57 0.79]

Std.Dev. Neutral Tech. Shock σn Inv. Gamma 0.06 0.194 0.194
[0, 1] [0.04 0.44] [0.17 0.23] [0.16 0.22]

Std.Dev. Invest. Tech. Shock σ Inv. Gamma 0.06 0.115 0.128
[0, 1] [0.04 0.44] [0.08 0.15] [0.09 0.16]

Std.Dev. Monetary Shock σR Inv. Gamma 0.22 0.449 0.535
[0, 1] [0.14 1.49] [0.37 0.53] [0.40 0.63]
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Figure Tech.App.1: Dynamic Responses to a Monetary Policy Shock
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Figure Tech.App.2: Dynamic Responses to a Neutral Technology Shock
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Figure Tech.App.3: Dynamic Responses to an Investment-Specific Technology Shock
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Figure Tech.App.4: Dynamic Responses of Unemployment and Labor Force to Three Shocks
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