Technical Appendix For Online Publication
“Involuntary Unemployment and the Business Cycle”
by
Lawrence J. Christiano, Mathias Trabandt, Karl Walentin

A. Workers and Household

The economy consists of a continuum of households. In turn, each household consists of a
continuum of workers. Workers have no access to credit or insurance markets other than
through their arrangements with the household. In part, we view the household construct
as a stand-in for the market and non-market arrangements that actual workers use to in-
sure against idiosyncratic labor market experiences. In part, we are following Andolfatto
(1996) and Merz (1995), in using the household construct as a technical device to prevent
the appearance of difficult-to-model wealth dispersion among workers. Households have suf-
ficiently many members, i.e. workers, that there is no idiosyncratic household-level labor

market uncertainty.

A.1. Preferences and Search Technology

A worker can either work, or not. At the start of the period, each worker draws a privately
observed idiosyncratic shock, [, from a stochastic process with support on the unit interval,
[0,1]. We assume the stochastic process for | exhibits dependence over time, but that its
cross sectional distribution is constant across dates and uniform. A workers’s realized value

of | determines its utility cost of working:
s(1+4op)l°". (A.1)

The parameters, ¢ and o7 > 0 are common to all workers. In (A.1) we have structured

the utility cost of employment so that o, affects its variance in the cross section and not its

46
mean.

After drawing [, a worker decides whether or not to participate in the labor force. The

46To see this, note:
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probability that a worker which participates in the labor market actually finds work is
p(ei;7,), where e;; > 0 is a privately observed level of effort expended by the worker. We

find it convenient to adopt the following piecewise linear functional form for p (e;+;7,) . Let

Plewns; ) = 1, + aeyy (A.2)

where @ > 0. The sign of a implies that the marginal product of effort is non-negative.
Further,
My =n+ M (my/my-1) (A.3)

where 1 < 0. We discuss the negative sign on 7 below. The function M (m;/m;—1) reflects
the impact of aggregate economic conditions — in particular the change of the aggregate labor
force my;/m;_1 — on the worker’s probability to find work. We will discuss details about the

function M in subsection B.6 and estimate its key parameter in the empirical model.

We assume:
1 ﬁ(eht;?/t) > 1
p (6l,t37~7t) = D (el,t§ ﬁt) 0<p (€l,t§ 7~7t> <1l. (A'4)
0 D (el,t§ 7~7t> <0

We adopt this simple representation in order to preserve analytic tractability.
A worker whose work aversion is [ and which participates in the labor market and exerts
effort e; enjoys the following utility:

ex post utility of worker that joins labor force and finds a job
7\

i w L1
plewii) (e —0C0) =< (1 + o) 17— et (A5)
ex post utility of worker that joins labor force and fails to find a job
~ T nw 1
(1= persi) (e - oG - gt

Here, €7,/2 is the utility cost associated with effort. In (A.5), ¢’ and ¢} denote the con-
sumption of employed and non-employed workers, respectively. These are outside the control
of a worker and are determined in equilibrium given the arrangements which we describe
below. In addition, 7, is also outside the control of a worker. Our notation reflects that in
our environment, a worker’s consumption can only be dependent on its current employment
status as this is the only worker characteristic that is publicly observed. For example, we do
not allow worker consumption allocations to depend upon the history of worker reports of [.
We make the latter assumption to preserve tractability. It would be interesting to investigate

whether the results are sensitive to our assumption about the absence of history.’” The term

47We suspect that if the history of past reports were publicly known, then the difference between discounted
utility when household types and labor effort are public or private would narrow (see, e.g., Atkeson and Lucas
(1995)).



bC;_1 reflects habit persistence in consumption at the household level which the worker takes
as given. We assume that 0 < b < 1.

In case the worker chooses non-participation in the labor market, its utility is simply:
In (¢ —bCy_1) . (A.6)

A non-participating worker does not experience any disutility from work or from exerting
effort to find a job.

We now characterize the effort and labor force participation decisions of the worker.
Because workers’ work aversion type and effort choice are private information, their effort
and labor force decisions are privately optimal conditional on ¢ and ¢}’. In particular, the
worker decides its level of effort and labor force participation by comparing the magnitude of
(A.6) with the maximized value of (A.5). In the case of indifference, we assume the worker

chooses non-participation.

A.2. Characterizing Worker Behavior

As described above, the worker takes the replacement ratio r, = ¢ /c}” < 1 as given. The
workers’s utility of participating in the labor market, minus the utility, In (¢* — bCy_1), of

non-participation is given by:

. c —bCy_ 1
o £ () S ) = plesi) i (=00 ) —can | - et

e, 20 g —bCy_4
Denote -
Ao G — th,1
y = ————
C;U — th,1 ’

and note the distinction between this expression and the replacement ratio, r;. In either case,
the household treats this variable as given. Then, the difference in utility can be expressed
as follows:

max f (c1,), f (e1) = p(en) I (1/7) =< (L4 o) 7] = 2edy (A)

er,:=>0

We suppose that if more than one value of ¢;; solves (A.7), then the worker chooses the
smaller of the two. The worker chooses non-participation if the maximized value of (A.7) is
smaller than, or equal to, zero. It chooses to participate in the labor force if the maximized

value of f in (A.7) is strictly positive.



A.2.1. Optimal Effort

It is convenient to consider a version of (A.7) in which the sign restriction on ¢;; > 0 is

ignored and p (e;4;7;) in (A.7) is replaced with the linear function, p (e;4;7,) (see (A.2)):*

- L o B B B ; 1
max f (eve; 7 7o) f (eve Ty 7o) = P (e ) [In (/7)) = < (1 + o) 7] = e (A8)
€l,t

The function, f, is quadratic with negative second derivative, and so the unique value of et

that solves the above problem is the one that sets the derivative of f to zero:
ér=oalln(l/f) —c(1+op)l°]. (A.9)

Substituting this expression into (A.8), we obtain:

- et 2.

f e i) = 7t [—m + el,t] ; (A.10)
a

where €;; is the particular function of I given in (A.9). We want to express €, as a function

of [. Doing so results in the following restriction:
2
aln (1/7) > _Eﬁt >alln(l/7) —c(1+0yp)]. (A.11)

The object on the left of (A.11) is éy.

Further, keep in mind that 0 < 7, < 1 so that é,; > 0 by equation (A.9). The first
inequality ensures that %ﬁt +é;. > 0, so that [ = 0 workers choose to participate in the labor
force, i.e. the square bracket in (A.10) is positive. Inserting é; into the last inequality and
re-arranging yields aln (1/7) > —27), which is the condition that says that [ = 0 workers
exert positive effort and choose to participate in the labor force.

The second inequality in (A.11) ensures that the object in square brackets in (A.10)
is negative for [ = 1 so that households with the greatest aversion to work choose not to

participate in the labor force.

A.2.2. Optimal Participation

By continuity and monotonicity of €;;, there exists a unique 0 < { < 1 such that the object
in square brackets in (A.10) is zero. That value of [ is the labor force participation rate,

which we denote by m,; and which solves:

alln(1/7) — < (1 +op)mi*]| = —gﬁt, (A.12)

48Considering the unconstrained case first will be helpful to understand more easily the constrained case,

ie. e+ >0and 0<p(e;7,) <1 which we characterize below.
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or,

o {m(lm) + a%m} i (A13)

S (1 -+ O'L)
Note that for all [ > m, such that &, > 0, f(él,t; N, 7¢) < 0 and for all [ < my, f(él,t; Ny, Te) >

0. We summarize these findings in the form of a proposition:

Proposition A.1. Suppose that (A.11) is satisfied and the ['* worker’s objective is described
in (A.8), with 7, taken as given by the worker. Let m; be as defined in (A.13). Then,
0 < my < 1, workers with 1 > | > m; choose non-participation and workers with [ < m; and

€1+ > 0 choose participation. For those that choose participation, their effort level is given

by (A.9).

The previous proposition was derived under the counterfactual assumption that the workers’s
objective is (A.8). We use the results based on (A.8) to understand the relevant case of
(A.7). One can show that there is a largest value of [, denoted lot, such that for all [ < lot, the
constraint, p(e;4;7,) < 1 is binding. In other words, there is a share of workers lot that has
P (eit; ﬁt> = 1. The cutoff, lot, solves:

p(eran) =i+ In(1/7) = s 1+ 00)i*| = 1,

or after making use of (A.12) to substitute out In (1/7):
bl = 2 gy, OUL 2 ~
p<el°,t§77t> =7, +a® |c(1+o0z) (mt — ) — 5| = 1
or

o i, 1%
A "

A.3. Household Utility Function

Utility of the household is given by:
" > w o ~ nw 1
/ (p (ere; M) [In (¢ = 0Cy—1) — < (L+ o) 178 + (1 = p(ers; 7)) In (¢ — bCy ) — §6l2,t) dl
0
+ (1 = my) In (¢} — bCy_1)

We wish to express this as a function of C; and h; (recalling that the household takes C;_;
and 7, as given) only using the results in the previous section.
Below we will need the restriction that the marginal worker, | = m;, chooses effort

according to (A.9). That is, we require that for the marginal worker,
D (em,t; 7~7t) =1+ aey; <1
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Note that by (A.9)

emt =a[ln(1/7) —<¢ (14 o) m*].
Further, the indifference condition for the marginal worker is given by (A.12)

alln(1/7) < (14 o1) mf*") = — i,

Combining the last three equations gives:

ﬁ(em,t; 7~7t> ==,

Thus, we adopt the restriction, —7, < 1. It is also convenient to have p (e, ¢;7;) > 0. Thus,

0< -7, <1.

Simplifying the expression above for the household utility function,

e = iod g 1 nw
/ (p (ert; M) In (1/7) — s (L4 0p) 78] — 5@%) dl +1n (¢} — bCy_y)
0

Rewriting the incentive constraint, (A.13), in a more convenient form:

. o2
In (1/7e) = ¢ (1 +or)me* — —i.

(A.15)

(A.16)

It is also useful to have an expression for ¢ — bC;_;. The household resource constraint is

given by:
Ciuht + (1 - ht) C?w = Ct,
so that
w Ct nw rtCt
c = , v = )
t ht—l—(l—ht)rt t ht+(1_ht)7nt

Using these results, household utility can be written as follows:

- rCy
B : | —bCy_
(mta 7715) +1n (ht + (1 _ ht) T, Ct 1> )

where
N ~ oL oL 2 1,
B (my;n,) = p(el,t;nt) s(I+op)(m* —=17") — ?7715 - §€l,t dl
0

is a term capturing the disutility of work and costly job search.

(A.17)

(A.18)

(A.19)

(A.20)



A.4. Expressing B (my; ;)

We seek to provide an expression for B (my;7),) where the integral is evaluated. Suppose
that p(e;s;7,) < 1 is binding for a measure of m; > [ > 0, that is, that (A.14) holds. In
particular, we require that e,,; in (A.9) lies inside the admissible probability region. We
permit ¢;; in (A.9) to lie above the admissible probability region for I < m.

Under our supposition, there exists an [ > 0 that solves (A.14). Then, (A.20) can be

written

B <mtalot;ﬁt) = B <mtalot§7~7t> + By (mtalot;ﬁt> )

where
7.~ — " = oL oL 2 1 2
By (mt, lt; m) =/ plens i) |[s(M+or) (mi" —=17") — ale| € dl(A.21)
7~ lct ar, ar, 2 ~ 1 2
B, <mt, lt; nt> = i s(14+o0r) (mi* —17%) — 2~ 5e dl. (A.22)

We desire expressions for e;;. Note that for [ > lot, the optimal effort equation (A.9)
together with the incentive constraint (A.16) yields:

- - 2
ey =a {g(1+aL) (myt — 1) — Ent} .

Note that for [ < lot,
pens; ;) =y +ae =1

Solving for e;; yields:

Summarizing the previous results for optimal effort:

1=, 1<,
e = a 5 B (A.23)
als(l+op)(moe =1ty — 2] 1>1,

Note that the e;; function defined in (A.23) is continuous. That is,

2

. ) 1—7
a [§ (1+o0yp) <m"L — l"L) — ﬁnt} = e

a

for I, given in (A.14).
We now develop an expression for B, <mt, Ii: ﬁt> in (A.21). Substituting for p(e;+; ;)



and optimal effort, the integrand is:
~ 2 1 or, lO’L 2 ~
M+a” |s(l+or)(m” — )—gm

2
st o) (= ) = 2
1 2 _1?
—§a2 [C (14 o) (M7t =1°7) — ?nt]

. o 01 2
= s e - ) - 2

1 2 or or 2~ 2
+§a s(14 o) (M =1 )_Em

n o o 2~ 1 o o 2~ 2
= T {§(1+0L) (mg* —1 L)—Eﬁt] +§a2 {§(1+0L) (my* —1 L>_E77t]

= o o 2
= s (L4 0) (mf= —17") —gn?

1 i . 1,72 \°

5% (L on)” (mf = 17)° = 20, (1 + 00) (m* = 17) + 50’ <_77)
1

= =< (L+oL) (mi* =17") + §a2<2 (1+01)" (mi™ = 2m7H17 + 1*7%)

We must integrate the previous expression over [ = lot to m,. For this, the following results

are useful:
e lO’L+1
mot — 10y dl = moEl™ — o
/ft ( t ) t It or, + 1'%k
) mO'L+1 . lD0'L+1
— <mt - lt) mgL - ! -
gr, + 1
me o mo—L+1 - ZOUL+1

/ (mf” o 2thLl0L + l20L) dl = meL <mt - lt> - 2m?L ! :
i or+1

2 1 72 1
thL-‘r _ ltUL+

20L—|—1



Then,

o me 1
B (mt; L f;t) = / {—gfyt (14 01) (my* —178) + §a2g2 (1+ O'L)2 (m?”L —2mIEIor + l20L):| dl
i

. mO'L+1 . Z)O'L—l-l
— 1+ ( o l) oL t t
§77t ( UL) my t mt or + 1
1 - ) i ) i m;rL-s-l . lOfL—H m?aL—l—l B l"t2crL+1
Laag (=) =2
+2ag (14+o0L)" |my my — 1 m; p—— Sy—

= —f, [aLm;’L“ — (o 4+ 1) mI* + i;’L“]

Ljor+1 120 +1
ly ly

1 2 92 2 2 +1 UL_l 1 2 ° ng
_ 1 oL _ O'Ll _
e (L on)” fmy s B T ) e I

or, after further simplification, we have:

B, <mt,lot;7~7t> = —¢7), |:O'ngL+1 —(1+o0yp) lotme + lof”l} (A.24)
1 ) ) QU%m?aLH oo Qm?LlofLH l"tzaLH
Za%2 (1 — 2t - .
T o) T oo r ) ™ o AT w51

This completes our discussion of By (mt, lot; ﬁt) in (A.21).
Next, we evaluate By (mt, Zot;ﬁt> in (A.22):

i
°o . ¢ o o 2~ 1
BQ(mt,lt;nt> = / {§(1+0L)(th—lL)—Ent_gel%t}dl
0

L o 2 1[1-#,]
= /O' {g(l‘i‘O'L)(th—lL)—?nt—é[ a :| dl
by (A.23). Then,

. N 2n, . 1[1—7,1%:
By (mt,lt;fyt>:§(1+aL) <m;’th— ! )—ﬂz —{Tﬂ i (A.25)

1+ o0y
We conclude that, after adding (A.24) and (A.25),

B <mtyit;ﬁt) = B (mt,itQﬁt> + By (mt,it;ﬁt)

= —inorm{ ! =g, (7 = (U on) limf”)

L5, 2 QU%m?ULH
+-a“¢“(1l+o
R0 (o) (o1 +1) (20, +1)
1 2 2 2 7 2 logL+1 l?ULJrl
— 1 _l OL 2 o, _ "t
Foar (L o)™ | —lm™® 4 Z g 2mit = 5

to(L+op)l, [mg ot -




or,

e - a’* (1+ o) 5
B (mt,lt;nt) = —qioL th+1+ 2(UL+i) Lm? L+l (A.26)
i o l°2a'L
; 1 a** (1+0y) (—m2 M — 2;L+1>
+ly

- <\ 2 °
+e(1+01) {m?—li—n—%—%(%) ] — ¢, (z;’L —(1+aL)mgL)

We seek to simplify B (mt, li: ﬁt> . The following expressions for (A.14) will be useful:

o 1 n
lfL:me——+77t 5
s(1+oL)a
Or )
; 1+7, |7
l, = |m{t — ———
! [ ¢ g(l—i—JL)aQ]
Or
. 2
7 = [m?L——1+nt }
§(1+0L)a2
1+17 147 2
207, or, t t
= m; F—2m +
¢ " o(1+0)a <€(1+0L)a2>

Substituting for [7% and [2°*, equation (A.26) can be rewritten as follows:

2.2 2
e ~ 1, @ (4 0L) 0] 90,4
B (mt, ltﬂh) = —corfmi"T + myg "
20’L + 1
2507 ~Noop 2.2 2 optl, 20p
A (1+17,) mi* —a* UL20L+1m
t 1 (§—30L+4<0L+5§0L+2WL 1
T 2a2 202 +307+1 ( +77t)

Or:

2oLt 4y (1+n,) mngot - Oézm?nlot +ag(l+ @2%7)

B <mt7lot;7~7t) = alﬁtmt L4 Qo
- <a17~7tmt + as (mt - lOt) mg* + as (1 +17,) lot) mi" + aq (1+17,)° 1,

where

ap = —C0L
ay = aor 1oL
20L+1
- 2502
20’L—|—1
0 — 1 (¢ =30y +450; + 5507 + 2507 — 1)
2a? 20% + 30, +1

10



and

1
o 14+, or
ly=m* — ———
t [t <u+@m4
and
My = 1+ wy (U — wally—1)
A.5. Expressing In (#ﬁu)n — th,1>

We now simplify the [n term in (A.19). To do so, we first establish a relationship between
the replacement ratio,
re =" /ey

and

C?w — th,1
Ty = T L~
The latter equation can be written as:

T’tC;U - bC't_l = ft (C;w - bOt_l)

Recall that the budget constraint of the household is:
N ht+<]— —ht)Tt
Substituting out ¢}’ in the previous equation:
Cy
Tt
ht =+ (]. — ht) Tt

w
G

_ (@
—bCs_1 = —bC,_
Ci1 Tt (ht—i—(l—ht)rt Cy 1)

Solving for ry:

_ (Cy — hibCy 1) Ty + hibCy 4
Ci— (1= hy) bCyq + (1 — hy) bCy 47y
So, substituting into the In term in (A.19):

Ct Ct
In|{ +——F——F —0C_ =1 —bCy_
n(%‘i‘l—ht tl) n ht +1—h, t—1

(Ct—hbCy_1)7+hebCy_q
Ct—(1—ht)bCy_1+(1—hy)bCy 174

— In Ci —MLJ

Tt

(A.28)

Cy(hi+7r—hiTt)
Cte+bhi Cy—1 —bhy T Cy 1

—]nG—ﬁlﬂiL)
- Yhe £ 7, — hefy
Tt

= In(C,-bC,_{)+1In ——M8M8M ——
n(Cy 1) nht+7°t—ht7‘t

= In (Ct — th,l) —In (ht (% — 1) + 1)
t
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A.6. Expressing Household Utility Function

Pulling together all terms (A.19), the indirect household utility function can be written as
follows:
1 .
U(Ct, ht, T Ct—l; f]t, ft> =1In (Ct - th—l) —1In (ht (f_ - 1> + 1) + B (mt, lt, ’fN]t) N (A29)
t
where B <mt, it; f]t) is defined in (A.27). It remains to provide expressions relating 7; and

my to ht.

From (A.16),
1

— = 6g(1+crL)mf
Tt

L

—a (A.30)

We now have a representation of 7, in terms of m;. We still require a representation of

m, in terms of h;.

A.7. h-m Relationship

We now derive the relationship between m; and h; :

mi lDt my
he = / p(evsiiy) dl = / Ll + / Blessiy) dl
0 0 It

=aey ¢, for lziz
N\

~

. me P
= +[ i, + a? [g(l +op)(m7E —1°1) — ?ﬁt} dl
It

UL+1 _ lOO'L+1
t

o o m B o
(mt—lt)th_ t 0L+1 ] —2?7t (mt—lt>

— lot — 1, (mt — lt> + a%¢ (14+o0p) (mt — lt) mi* — a’c (m?“rl — lofLH)

= I +7, (mt—it) +a%(1+0yp)

.
I-

1+7,+a*(1+o0yL) <—m§“ + 1_|t_UL)

~ 2 +1 7
= —fym+a‘sorm{tT + 1,

According to (A.14),
1, = % (14 0y) (mf* — i7"

Using this to substitute out for 1 4 7, in the previous expression and re-arranging yields:
he = —ijymy + a*o, (m;'L“ - lof“l> (A.31)

where [, is given in (A.14).
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A.8. Summary of Household Utility

We summarize the preceding results in the form of a proposition:

Proposition A.2. Under assumption (A.15), the household utility function is given by
(A.29), where B (mt, lot;fyt> is given in (A.26), I, is given by (A.14), 7, is given by (A.16),
my is the function of h, defined by the inverse of (A.31), and 7, is given by (A.3). For

convenience, we list these equations here:

B 1 N
U(Ct, ht, my, lt, Ct—l, 7~7t7 ft) = In (Ct — th—l) —In (ht <f_ — 1) + ].) + B (mt, lt7 f]t) (A32)
t
B (mt, Ii; ﬁt) = aifm{" T 4+ aom T + as (14 7,) m?Llot — Oé2m?ULlot +ay (14 "~7t)2 I
7o o 1+ ﬁt
oL — L _
! M §(1 —|—UL) a?
_ - 2
In(1/7) = <(1+oL)m" —ﬁm
hy = —nhm+a*sor (mf“l — lof“l>

o= n+ M(@m/m )

A notable feature of (A.29) is that consumption enters the household’s utility function in
the same way that it enters the individual worker’s utility function. Moreover, consumption

and employment are separable in utility.
Use the h — m and [, relationships to obtain:
e e B

mJt = i (A.33)

a’soy, my

There is a unique value of m;, m; > 0, that satisfies (A.33). To see this, note that the
left side of (A.33) begins at zero and increases without bound as m increases. The right
side starts at plus infinity (thus, greater than the left size) with m; = 0 and (assuming the
behavior of I, does not disrupt this conclusion) declines monotonically to a finite number
as my increases (thus, the right side is eventually below the left side). By continuity and
monotonicity, there is a unique value of m, that satisfies the equality in (A.33).

Then, substitute for lot to obtain the following h-m relationship:

op+1

147, oL

s(I+o0z) aQ}

hy = —nym; + GQCUL <m?+l - [mgL - ) =qQ (mt;ﬁt)
my = Q_l (ht§77t)7

or
my = Q_l (th 7~7t> )

13



where Q! is the inverse function of ), defined by:
hy =Q (Qil (he; 1) §7~7t) .
Using m; = Q! (hy; 7,) and also substituting out lot, we can write (A.32) as:

w(Cy, hy; Cor, 1) = In(Cy — bCh1) — 2(ha3 1) (A.34)
(i) = In (b [eonleT 0] ] 4 )
—oni [Q7 ()] = 0 [Q7 (s )]
— las (1) [Q7 (k)] ™ — a2 [

[[Q-l (hes77,)) " = ﬁ} g

t

= N

(hes )] 27 + aa (14 7,)° | %

M, = n+ M@ /m 1)

A.9. Derivatives of Household Utility

We need derivatives of household utility to calculate various elasticities.

A.9.1. Labor Supply Elasticity

We now derive the elasticity of labor supply associated with the household utility function,
(A.29). Let w denote the wage and the first order condition associated with the choice of h
is:

UeW + up = 0,

or,

w = .
Ue

We differentiate this and set du, = 0, which implies dc = 0 in our case of separability. Totally

differentiating the first order condition and imposing the above restriction,

ucdw + Uhhdh = 0,

or,
dh
o U
dw ’
o Uhhh

A.9.2. MATLAB Symbolic Differentiation

We now describe a procedure based on symbolic arithmetic in MATLAB for calculating upp,,

up, and upz. We need those expressions in the log-linearized wage Phillips curve as well as
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for the steady state computations including the steady state labor supply elasticity.

Suppose an object, f (z,y), has been defined as a function of the particular arguments, x
and y. Suppose that there is another function, g(z, f). The latter is actually a shorthand for
G (z,x,y) =g (2, f (z,y)). Thus, if g is differentiated with respect to, say, x, then MATLAB
delivers dG/dx :

d
ﬁ =G (z,2,y) = g2 (2, f (7,9)) fo (2,9) .
Recall that
h = Q(m;n)
m = Q! (h; 1)

where Q! is the inverse function of @, defined by:
h=Q Q" (hn);7
—_——

Note that by differentiating both sides of the latter equation with respect to h we obtain:

1= Qm@}?l
Or: .
Q' = 0.

To get the second derivative of the inverse function, Q—! with respect to h we differentiate

the previous expression once more:

L1

Q h = _Q_?aninjl
Or 0
G =g,

The utility function we are interested in, u, is related to U as follows:
u (Ct, hy; Ct—l»ﬁt) =U (Cu hy, Qt_1§ Ot—lyﬁt) . (A-35)

Or more compactly after dropping time subscripts and variables taken as exogenous by the
household:
u(C,h)=U (C’, h,Q‘l) .

Notice that { has been substituted out in the utility function resulting in the utility function

being a function of C', h and m only.
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We require the first and second derivatives of u with respect to h :

up (C,h) = Uy (Coh, Q") + Uy (Ch,Q7) Q1

Up (C,h, Q71
= U, (C,h,Q ") + ( 0 ¢ ).
Or more compactly
Un
up = Uh + —.
@m

The second derivative with respect to h is:

upn (C,h) = Upn (Coh,Q7Y) + Up (C 1, Q1) Q1 + U (C 1, Q1) Q1
+Uim (1, Q™) (@) + U (Co1,Q7") Q.
After substituting,

wn (C.) = Ui (C Q)+ 2P (G Q™)

+Umm(cahaQ_1) Un (C,h, Q7") Qum

(Qm)* @&
Or more compactly
Uhm Umm UQOm
Uph — Uhh + 2 Qm + Q?n - an .

Later on, we also require the cross-derivative of u;, with respect to 7). Recall that:

Up (C,h, Q7 (R;7) 5 77)
Qum (Q71 (h; 1) ;1)

up (C,h; 1) = Uy (Coh, Q1 (R ) 577) +
Differentiating with respect to 7 gives:
i (C,h; ) = Uy (C 0, Q71 (h3 1) 51) + U (C,h, Q1 (h37)57) Q5 (B )
g i o (G () i) + U (C2.Q7 (s
- U"C;f(’ SQ(}L (:) ;’2);7” Qoo (@1 (7)) + Q@5 (b3 7)]

We require an expression for @ Y(h; 7). Recall that

h=@Q (Ql (h; 7); 77)
—_——

Differentiating with respect to 7 yields:
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Rewriting gives:

Q5

Q@m
Substituting into the expression for w; (C, h; %) yields:

Q' =-

Ui (Coh; ) = Upi (Cohy Q7 (hs77)571) — Upn (Cy R, Q71 (3 1) 377) =

Umﬁ (Cv h’v Q_l (h’u 7 7~7
+

_Um<Cah7Q_1 (hﬂﬁ 777 - -1 h
Qu@ syt 4@ D) = Qe

Or more compactly:

Qn U ~L—U Qn U an—i-U Qmm@ﬁ

Qu QR Qn Ok

Unhy = Uhn Uhm——

B. Integrating Unemployment into a Medium-Sized DSGE Model

We now incorporate our unemployment modelling in a version of the medium-sized DSGE
model in CEE or Smets and Wouters (2003, 2007). Below, we describe how to introduce
our model of involuntary unemployment into this model. Towards the end of the section
we derive the standard model (EHL as interpreted by Gali (2011)) as a special case of our

model.

B.1. Final and Intermediate Goods

A final good is produced by a competitive, representative firm using a continuum of inputs

as follows:

1oL Af
Y, = [/ Y;Jf dz‘] , 1< Ap < o0. (B.1)
0

The *" intermediate good is produced by a monopolist with the following production

function:

Yie = (2Hy)' " K2 — ¢, (B.2)

where K ; denotes capital services used for production by the i*" intermediate good producer.
Also, In z is a technology shock whose first difference has a positive mean. ¢, denotes a fixed
production cost. The economy has two sources of growth: the positive drift in In (z,) and
a positive drift in In (¥;), where U, is the state of an investment-specific technology shock

discussed below. The object, 2,7, in (B.2) is defined as follows:
z = \I/tl%“ 24
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Along a non-stochastic steady state growth path, Y;/z" and Y;,/z;" converge to constants.
The two shocks, z; and V;, are specified to be unit root processes in order to be consistent
with the assumptions we use in our VAR analysis to identify the dynamic response of the
economy to neutral and capital-embodied technology shocks. The two shocks have the

following time series representations:

In :uz,t = In Mo + O-,uzg,uz,t/loov E (g,uz,t)2 =1 (B3)
2
Inpg, = (1-— pw) In pg + Pry Injg, |+ O 11g gt/ 100, E (5w¢) =1. (B.4)

o and pg, = % Our assumption that the level of neutral technology follows

a random walk matches closely the finding in Smets and Wouters (2007) who estimate In z;

where p1, , =

to be highly autocorrelated. The direct empirical analysis of Prescott (1986) also supports
the notion that In z, is a random walk.

In (B.2), H;,; denotes homogeneous labor services hired by the i*" intermediate good pro-
ducer. Intermediate good firms must borrow the wage bill in advance of production, so that
one unit of labor costs is given by W;R; where R, denotes the gross nominal rate of interest.
Intermediate good firms are subject to Calvo price-setting frictions. With probability £, the
intermediate good firm cannot reoptimize its price, in which case it is assumed to set its

price according to the following rule:
Py =7P 1, (B.5)

where 7 is the steady state inflation rate. With probability 1 — £, the intermediate good
firm can reoptimize its price. Apart from the fixed cost, the i*" intermediate good producer’s
profits are:

o0

Ey Z /ijt+j{P7;,t+j}/;,t+j = Seri Pt Yieri}

j=0
where s, denotes the marginal cost of production, denominated in units of the homogeneous
good. s; is a function only of the costs of capital and labor, and is described in section
B.11.1. In the firm’s discounted profits, 3 Vg4 is the multiplier on the households’s nominal
period ¢+ j budget constraint. The equilibrium conditions associated with this optimization
problem are reported in section B.11.1.

We suppose that the homogeneous labor hired by intermediate good producers is itself

‘produced’ by competitive labor contractors. Labor contractors produce homogeneous labor

by aggregating different types of specialized labor, j € (0,1), as follows:

1 Aw
H, = U (hyj) ™ d]} L 1< )\, < oo (B.6)
0

Labor contractors take the wage rate of H, and h;; as given and equal to W; and W, ;,
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respectively. Profit maximization by labor contractors leads to the following first order

necessary condition:
Aw—
H;, \ v
Wie =W, <h—t> . (B.7)
t7j

1

Equation (B.7) is the demand curve for the j type of labor.

B.2. Worker and Household Preferences

We integrate the model of unemployment in the previous section into the Erceg, Henderson
and Levin (2000) (EHL) model of sticky wages used in the standard DSGE model. Each
type, j € [0,1], of labor is assumed to be supplied by a particular household. The ;'
household resembles the single representative household in the previous section, with one
exception. The exception is that the unit measure of workers in the j* household is only
able to supply the j™* type of labor service. Each worker in the j** household has the utility
cost of working, (A.1), and the technology for job finding, (A.4). The preference and job
finding technology parameters are the same across households.

Let ¢}y and c¥, denote the consumption levels allocated by the 5" household to non-
employed and employed workers within the household. Although households all enjoy the
same level of consumption, Y, for reasons described momentarily each household experiences
a different level of employment, h;;. Because employment across households is different,
each type 7 household chooses a different way to balance the trade-off between the need for
consumption insurance and the need to provide work incentives. For the j* type of household
with high A, the premium of consumption for employed workers to non-employed workers

must be high. Accordingly, the incentive constraint is given by (A.16) which we repeat here

c¥ —bC’,l p 2,,
NEEL A T

Ay —bCiy a?

for convenience:

where m;,; solves the analog of (A.31):

hjw = —Tymj. + a*coy (m‘;fl - l;’f“) (B.8)
and |47
78 =gt — M (B.9)

W (1+o0p)a?
Consider the j* household that enjoys a level of household consumption and employment,
C, and hj,, respectively. Note that given (A.34), the j*" household’s discounted utility is
given by:

Eo» B [In(Cy — bCyy) — 2(hjsi 7,)] (B-10)

t=0
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Note that the utility function is additively separable, like the utility functions assumed
for the workers. Additive separability is convenient because perfect consumption insurance

at the level of households implies that consumption is not indexed by labor type, j.

B.3. Household Problem

The j* household is the monopoly supplier of the j™* type of labor service. The household
understands that when it arranges work incentives for its workers so that employment is
h;+, then W;, takes on the value implied by the demand for its type of labor, (B.7). The
household therefore faces the standard monopoly problem of selecting W), to optimize the
welfare, (B.10), of its workers. It does so, subject to the requirement that it satisfy the
demand for labor, (B.7), in each period. We follow EHL in supposing that the household
experiences Calvo-style frictions in its choice of W;;. In particular, with probability 1 — ¢,

the j** household has the opportunity to reoptimize its wage rate. With the complementary

probability, the household must set its wage rate according to the following rule:

Wi = FutWii (B.11)
Fup = (me)™ (@) e, (B.12)

where k,, € (0,1). Note that in a non-stochastic steady state, non-optimizing households
raise their real wage at the rate of growth of the economy. Because optimizing households
also do this in steady state, it follows that in the steady state, the wage of each type of
household is the same.

In principle, the presence of wage setting frictions implies that households have idiosyn-
cratic levels of wealth and, hence, consumption. However, we follow EHL in supposing that
each household has access to perfect consumption insurance. At the level of the household,
there is no private information about consumption or employment. The private information
and associated incentive problems all exist among the workers inside a household. Because
of the additive separability of the household utility function, perfect consumption insurance
at the level of households implies equal consumption across households. We have used this
property of the equilibrium to simplify our notation and not include a subscript, j, on the
4" households’s consumption. Of course, we hasten to add that although consumption is
equated across households, it is not constant across households and workers.

The j** household’s period ¢t budget constraint is as follows:

1 _
P, (Ct + 51’5) + By < Wy jhe; + Xt"“Klt + Ri1B; + ay . (B.13)
t

Here, B;;; denotes the quantity of risk-free bonds purchased by the household, R;_; denotes

the gross nominal interest rate on bonds purchased in period t — 1 which pay off in period
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t, and a; ; denotes the payments and receipts associated with the insurance on the timing of
wage reoptimization. Also, P, denotes the aggregate price level and I, denotes the quantity
of investment goods purchased for augmenting the beginning-of-period ¢+ 1 stock of physical
capital, K;, . The price of investment goods is P,/V¥;, where ¥, is the unit root process with
positive drift specified in (B.4). This is our way of capturing the trend decline in the relative
price of investment goods.*’

The household owns the economy’s physical stock of capital, K;, sets the utilization
rate of capital and rents the services of capital in a competitive market. The household
accumulates capital using the following technology:

Ko = (1-0) K, + (1 _3 (%)) I (B.14)
Here, S is a convex function, with S and S’ equal to zero on a steady state growth path.
The function, S, is defined in section B.6. The function has one free parameter, its second
derivative in the neighborhood of steady state, which we denote simply by S”.

For each unit of K;;; acquired in period ¢, the household receives X/, in net cash
payments in period ¢ + 1,

P

th+1 = uf+1Pt+1Tf+1 - ma(ufﬂ)- (B.15)

where uf denotes the rate of utilization of capital. The first term in (B.15) is the gross
nominal period ¢ + 1 rental income from a unit of K;.;. The household supply of capital
services in period t + 1 is:

-
Ky = w1 Kipa.

It is the services of capital that intermediate good producers rent and use in their production
functions, (B.2). The second term to the right of the equality in (B.15) represents the cost
of capital utilization, a(uf ;) Py1/Ps41. See section B.6 for the functional form of the capital
utilization cost function. This function is constructed so the steady state value of utilization
is unity, and u (1) = «’ (1) = 0. The function has one free parameter, which we denote by
04. Here, 0, = a” (1) /a’ and corresponds to the curvature of v in steady state.

The household’s problem is to select sequences, {Ct,ft,uf, Wi, BtH,I_QH}, to max-
imize (B.10) subject to (B.7), (B.11), (B.12), (B.13), (B.14), (B.15) and the mechanism
determining when wages can be reoptimized. The equilibrium conditions associated with

this maximization problem are standard, and appear in section B.11.2.

49We suppose that there is an underlying technology for converting final goods, Y;, one-to-one into C; and
one to ¥, into investment goods. These technologies are operated by competitive firms which equate price
to marginal cost. The marginal cost of C; with this technology is P, and the marginal cost of I; is P;/¥;. We
avoid a full description of this environment so as to not clutter the presentation, and simply impose these

properties of equilibrium on the household budget constraint.
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B.4. Aggregate Resource Constraint, Monetary Policy and Equilibrium

Goods market clearing dictates that the homogeneous output good is allocated among al-
ternative uses as follows:

Here, C; denotes household consumption, GG; denotes exogenous government consumption
and I, is a homogenous investment good which is defined as follows:

. 1 _

=g (I + a (uf) Ky) - (B.17)

t

As discussed above, the investment goods, I;, are used by the households to add to the
physical stock of capital, K;, according to (B.14). The remaining investment goods are
used to cover maintenance costs, a (uf) K;, arising from capital utilization, u¥. Finally,
U, in (B.17) denotes the unit root investment specific technology shock with positive drift
discussed after (B.2).

We suppose that monetary policy follows a Taylor rule of the following form:

R, . R U gdp, ORER
In (E) —pRln( 7 ) +(1—pg) [Tﬂln <?> —i—?“yln(gdp —i—m, (B.18)

where g, is an iid monetary policy shock. As in CEE and ACEL, we assume that period ¢

realizations of i are not included in the period ¢ information set of households and firms.
Further, gdp; denotes scaled real GDP which is defined as:

I,/
gdp; = Gt+0t++ A (B.19)

2t

and gdp denotes the nonstochastic steady state value of gdp;.

To guarantee balanced growth in the nonstochastic steady state, we require that each
element in [¢,, G] grows at the same rate as z;" in steady state. To this end, we adopt the
following specification:

[0, G4 = [¢, G] . (B.20)

Here, €, is defined as follows:
Q= ()" ()", (B.21)

where 0 < § < 1 is a parameter to be estimated. With this specification, Q;/z;" converges to
a constant in nonstochastic steady state. When @ is close to zero, €, is virtually unresponsive
in the short-run to an innovation in either of the two technology shocks, a feature that we
find attractive on a priori grounds. Given the specification of the exogenous processes in
the model, Y;/z,", C;/z" and I;/(¥;2;") converge to constants in nonstochastic steady state.
We assume that lump-sum transfers balance the government budget.
An equilibrium is a stochastic process for the prices and quantities having the property

that the household and firm problems are satisfied, and goods and labor markets clear.
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B.5. Scaling of Variables

We adopt the following scaling of variables. The neutral shock to technology is z; and its

growth rate is p, , :
I Zt B
21 - :uz,t'
The variable, ¥,, is an embodied shock to technology and it is convenient to define the
following combination of embodied and neutral technology:
zr = Ul oz

Mz*,t = :u\ﬁ:uz t (B22)
Capital, K;, and investment, I,, are scaled by z;¥,. Consumption goods C;, and the real
wage, Wy /P, are scaled by zt . Also, vy is the multiplier on the nominal household budget
constraint in the Lagrangian version of the household problem. That is, v; is the marginal
utility of one unit of currency. The marginal utility of a unit of consumption is v;F,. The

latter must be multiplied by z;” to induce stationarity. Thus, our scaled variables are:

i _ K g ::-Rﬁ+1 P I . _ G 0 — Wi
i z v, i Z v, ! 2, ! z ! 2 Py
Y, b Wi
= v Pzt g , LW = —
(eh 12y s Yt = z;r Dt = Pt t W,
The technology diffusion process (B.21) can be written in scaled form as follows:
Q = () &lt 1)
—0
8 () (2
% el
Y
ng =
:U’z+,t
Government consumption is scaled as follows:
Gy G Q
G_G_ oo,
n Qt Zt

We define the scaled date ¢ price of new installed physical capital for the start of period

t + 1 as pp; and we define the scaled real rental rate of capital as 7} :
Pkt = v Pk't, 7“t \Ijtrt

where Py, is in units of the homogeneous good. We define the following inflation rates:

L R
ﬂ-t:_ m, =

) t i
P Py

Here, P; is the price of the homogeneous output good and P is the price of the domestic

final investment good.
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B.6. Functional Forms

We adopt the following functional form for the capacity utilization cost function a :
a(ul*) = 0,0, (ul)?/2 4+ 0 (1 — 04) ul* + 0y (04/2 — 1), (B.23)

where o, and o, are the parameters of this function. For a given value of o, we select o}, so
that the steady state value of uX is unity. The object, o,, is a parameter to be estimated.

We assume that the investment adjustment cost function takes the following form:

§ 1/ 1ix) = 5 {oxp [VE (BT = prsmg)] + exp [V (1/Tocs = poina)] — 2}
(B.24)
Here, y,+ and 4 denote the unconditional growth rates of z;” and ¥;. The value of I;/I; 4
in nonstochastic steady state is (u,+ X pg). In addition, S” denotes the second derivative
of S(-), evaluated at steady state. The object, S”, is a parameter to be estimated. It is
straightforward to verify that S (p,+pg) = S (f,+ptg) = 0.
Finally, we assume the following functional form for the impact of aggregate economic

conditions on the worker’s probability to find a job:
M (M /1) = 100w (my/my_1 — 1).

In the estimation we adopt a standard normal prior for w. That is, we are agnostic
about the sign of w. A posteriori it turns out that the data want w < 0. Recall that 7, =
n+ M(m/mi—1) and p(eys;7,) = 7, + aeyy. That is, w < 0 implies that an inflow of workers
into the labor force reduces the probability of a worker to find a job. Importantly, it is the
rate of change of the labor force that triggers the probability of a worker to fall. Intuitively,
one might think about this as a bottleneck-type access to the labor market. When the labor
force grows rapidly, many workers get ‘stuck’ in the process to find work. According to
our specification, it is not the level of the labor force but its rate of change that affects the
probability of a worker to find a job. Finally, note that M does not affect the steady state
of our model.

Why does the data prefer w < 07 Consider the h-m relationship:

hy = —f,m; + a*soy, (mf{LJrl - lofLH> :

The presence of w < 0 generates a procyclical wedge on the right hand side of the h-m
relationship. Recall that 7 is negative. In a boom, the labor force grows so that with w < 0,
7, becomes more negative. As a result, —7, in the h-m relationship increases which generates
the procyclical wedge. The data want this procyclical wedge as the model tends to otherwise

overstate quantitatively the raise in the labor force after e.g. a monetary policy shock. In
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other words, the procyclical wedge allows the model to generate a smaller expansion in the
labor force dictated by the data. In addition, the dependence of M (1m;/m;_1) on the lagged
aggregate labor force also allows the model to generate the protracted and very delayed
hump in the labor force after a monetary policy shock.

We hasten to emphasize that while the inflow of workers into the labor force in a boom
decreases the individual worker’s probability of finding work, in a boom workers also increase
their effort. Our estimated model shows that on net, the probability to find work goes up in
a boom, i.e. the individual work effort channel dominates the aggregate labor force channel
in the determination of the probability of finding a job for the worker.

Making p(e;s;7,) dependent on aggregate conditions in addition to individual worker
effort is attractive to us on a priori grounds. While the dependence of 7, on the change in
the labor force may appear ad-hoc, it shares in spirit the many features that are adopted in
medium-sized NK DSGE models to slow down the responses of variables such as investment
adjustment cost, capacity adjustment cost, habit formation etc. We leave providing a possible
microfoundation for M (m;/m:_1) to future research.

We have also experimented with alternative specifications for M. For example, we have
estimated the model under the assumption that M (my; m) = 100w (m;/m — 1) . This spec-
ification also allows the model to match the VAR response of the labor force quantitatively
well. The specification, however, cannot generate the very delayed hump in the labor force
after a monetary policy shock as suggested by the VAR evidence.

Finally, note that up to a first order approximation of the model, making 7, a or ¢ a func-
tion of the procyclical wedge is observationally equivalent. In experiments we also verified
that the primary quantitative impact of 7, in the model occurs in the h-m relationship. That
is, the quantitative impact of 7, in equation (B.9) that determines | or the wage Phillips

curve is quite small.

B.7. Aggregate Hours Worked

We will estimate the log-linearized model. Our assumptions imply that the steady state is

undistorted by wage frictions, i.e. we have
Bt - I:It.

where h; denotes household hours and H; denotes aggregate homogenous hours (both in log
deviations from steady state). Although this is a well known result (see, e.g., Yun (1996)),

we derive it here for completeness. Recall,

1
ht = / hj,tdj
0
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Invert the demand for labor, (B.7), to obtain an expression in terms of h;,. Substitute this

into the expression for h; to obtain:

1 Aw
h; = Ht/ 12’);7;“ dj, (B.25)
0
where
5. = Wit
j:t - Wt ‘

Here, W, denotes the aggregate wage rate, which one obtains by substituting (B.6) into

(B.7):
e[ 054]

Because all households are identical in steady state (see the discussion after (B.11)), w; =1
for all j. Totally differentiating (B.25),

—Aw

1
ht — Ht +/ Uolj,td]
0

Thus, to determine the percent deviation of aggregate employment from steady state, we
require the integral of the percent deviations of type j wages from the aggregate wage, over
all j. We now show that this integral is, to first order, equal to zero.

Express the integral in (B.25) as follows:

Aw
ht - 1z}t17>\w Hta

say, where
1-Aw

. oﬁg”w *w
Wy = dj . (B.26)
0

Pursuing logic that is standard in the Calvo price/wage setting literature we obtain:

We = [(1-¢,) (Wt> e, (m,tth)l—*w} (B.27)
_ g
Aw 7Tw n l—Kjw Aw
w, = |[(1=§,)w ™ +&, (—’th 1> , (B.28)
w,t
where: ~
t — Wt’ w,t = Wtfl’

and W, denotes the wage set by the 1—¢ . households that have the opportunity to reoptimize

in the current period. Because all households are identical in steady state

w=i=-2=1, (B.29)



where 7, ; is defined in (B.11) and 7, ; denotes wage inflation:

Wi
Wi

7Tw7t =

Dividing (B.27) by W, and solving,

3 1 a1y
1 - gw (;"w,t) o
= — B.30
o 1- gw ( )
Differentiating (B.28) and (B.30) in steady state:
B = (1= &) i+ &y (Fug = Fung + 01 ) (B.31)
wy = — fw <%wt_'ﬁ-wt)
1- gw 7 7

Using the latter to substitute out for w; in (B.31):

~

Uoft = fwﬁft—l-

Thus, to first order the wage distortions evolve according to a stable first order difference

equation, unperturbed by shocks. For this reason, we set
Wy =0, (B.32)

for all ¢.
Totally differentiating (B.26) and using (B.29), (B.32):

1
/ UDJj’tdj - 0
0

That is, to first order, the integral of the percent deviations of individual wages from the

aggregate is zero.

B.8. Aggregate Labor Force and Unemployment in Our Model

We now derive our model’s implications for unemployment and the labor market. At the
level of the j** household, unemployment and the labor force are defined in the same way
as in the previous section, except that the endogenous variables now have a j subscript (the
parameters and shocks are the same across households). Thus, the j households’s labor

force, m;,, and total employment, h;,, are related by (B.8) and (B.9) which we repeat here
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for convenience:

~ 1 7 1
hiw = —fymje+a’soy (m;f+ - l?ﬁ )
S o
Jit Jht C (1 + CTL) a?

= n+ M@y /m1)

Log-linearizing gives:

hhj, = —im (i + mj,t> + (o + 1) a%soy, (m”ﬁlmj,t - imlij,t) (B.33)
—_~ 7~7 R

OO'LO' _ OL 4 . - Fr A
ol = orm’timg, §(1+0L)a277t

Variables without subscript denote steady state values in the j* household. Because we
have made assumptions which guarantee that each household is identical in steady state, we
drop the j subscripts from all steady state labor market variables (see the discussion after
(B.11)).

Aggregate household hours and the labor force are defined as follows:

1 1 1
ht = / hj,tdj, mt =my = / mj7tdj, lt = / lj,tdj
0 0 0

Totally differentiating,
R LA 1 > L~
ht = / thdj, mt = / ’fhmtdj, lt = / ljﬂgdj.
0 0 0

Using the fact that, to first order, type j wage deviations from the aggregate wage cancel,
we obtain:

See section B.7 for a derivation. That is, to a first order approximation, the percent devia-
tion of aggregate household hours from steady state coincides with the percent deviation of

aggregate homogeneous hours from steady state. Integrating (B.33) over all j :

hﬁt = —nm <ﬁt + mt) +(op+1) asop (m"“lmt — i””llot)

orlotly = opmTriy — ————i),.
s(1+o0p)a2"

~

Which after substituting [; and simplifications can be written as:

hiLt = <—7~7m + (UL + 1) a2§0L (m - l) m0L>mt—7~7 [m - l}ﬁt

>0 >0
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where 7'/7; = ﬁtﬁ_ﬁ. Aggregate unemployment is defined as follows:
my — hy
U = ————
my

so that
h /. o
dut = — <mt — h/t) .
m
Here, du,; denotes the deviation of unemployment from its steady state value, not the percent

deviation.

B.9. The Standard Model

We derive the utility function used in the standard model as a special case of the household
utility function in our involuntary unemployment model. In part, we do this to ensure con-
sistency across models. In part, we do this as a way of emphasizing that we interpret the
labor input in the utility function in the standard model as corresponding to the number
of people working, not, say, the hours worked of a representative person. With our inter-
pretation, the curvature of the labor disutility function corresponds to the (consumption
compensated) elasticity with which people enter or leave the labor force in response to a
change in the wage rate. In particular, this curvature does not correspond to the elasticity
with which the typical person adjusts the quantity of hours worked in response to a wage
change. Empirically, the latter elasticity is estimated to be small and it is fixed at zero in
the model.

Another advantage of deriving the standard model from ours is that it puts us in posi-
tion to exploit an insight by Gali (2010). In particular, Gali (2010) shows that the standard
model already has a theory of unemployment implicit in it. The monopoly power assumed
by EHL has the consequence that wages are on average higher than what they would be
under competition. The number of workers for which the wage is greater than the cost of
work exceeds the number of people employed. Gali suggests defining this excess of work-
ers as ‘unemployed’. The implied unemployment rate and labor force represent a natural
benchmark to compare with our model.

Notably, deriving an unemployment rate and labor force in the standard model does not
introduce any new parameters. Moreover, there is no change in the equilibrium conditions
that determine non-labor market variables. Gali’s insight in effect simply adds a block
recursive system of two equations to the standard DSGE model which determine the size of
the labor force and unemployment. Although the unemployment rate derived in this way
does not satisfy all the criteria for unemployment that we described in the introduction, it
nevertheless provides a natural benchmark for comparison with our model. An extensive

comparison of the economics of our approach to unemployment versus the approach implicit
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in the standard model appears in the appendix of the paper.

We suppose that the household has full information about its workers and that workers
which join the labor force automatically receive a job without having to exert any effort. As
in the previous subsections, we suppose that corresponding to each type j of labor, there is
a unit measure of workers which gather together into a household. At the beginning of each
period, each worker draws a random variable, [, from a uniform distribution with support,
[0,1]. The random variable, [, determines a workers’s aversion to work according to (A.1).
Workers with [ < h; ; work and workers with h; ; < [ <1 take leisure. The type j household

allocation problem is to maximize the utility of its workers with respect to consumption for

nw

non-employed workers, ¢}y, and consumption of employed workers, c}’;, subject to (A.17),

and the given values of h;; and C;. In Lagrangian form, the problem is:

he
u(Cy — bCi_1, h;y) = max / [ln (c;’fj — bC’t_l) —¢(l+op) ZUL] dl
0

w nw
Ct,5%,j

1

+/ In (cft“]“ — bC’t_l) dl + N+ [Ct — hyjef; — (1= hey) cfﬂ :
hij

Here, A\;; > 0 denotes the multiplier on the resource constraint. The first order conditions

imply ¢}, = ¢'y = C}. Imposing this result and evaluating the integral, we find:

u (Ct — bct_l, hj7t) =In (Ct — bOt—l) — §h1—’-—aL. <B35)

t7.7

The problem of the household is identical to what it is in section B.3, with the sole exception
that the utility function, (A.34), is replaced by (B.35).
A type j worker that draws work aversion index [ is defined to be unemployed if the

following two conditions are satisfied:
(@) I > hjy, (b) Wi >c(1+0p)lF. (B.36)

Here, v; denotes the multiplier on the budget constraint, (B.13), in the Lagrangian repre-
sentation of the household optimization problem. Expression (a) in (B.36) simply says that
to be unemployed, the worker must not be employed. Expression (b) in (B.36) determines
whether a non-employed worker is unemployed or not in the labor force. The object on the
left of the inequality in (b) is the value assigned by the household to the wage, W;,. The
object on the right of (b) is the fixed cost of going to work for the /" worker. Galf (2010)
suggests defining workers with [ satisfying (B.36) as unemployed. This approach to unem-
ployment does not satisfy properties (i) and (iii) in the introduction. The approach does
not meet the official definition of unemployment because no one is exercising effort to find
a job. In addition, the existence of perfect consumption insurance implies that unemployed

workers enjoy higher utility than employed workers.
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We use (B.36) to define the labor force, m;, in the standard model. With m, and aggregate

employment, h;, we obtain the unemployment rate as follows

my — hy
Uy = )
my

or, after linearization about steady state:
h N
dut = — <mt — ht> .
m

Here, h < m because of the presence of monopoly power. The object, hy may be obtained

from (B.34) and the solution to the standard model. We now discuss the computation of the

1
my E/ mj,tdja
0

where m;; is the labor force associated with the j' type of labor and is defined by enforcing
(b) in (B.36) at equality. After linearization,

1
mtE/ M ¢dj.
0

We compute 712, by linearizing the equation that defines 1. After scaling that equation,

aggregate labor force, m;. We have

we obtain
wtwtfbmt =g (1 + O'L) m;%, (B37)
where W W
=0, P2, W = —, Dy = 2L
Yy =vbz, wy p =,

Log-linearizing (B.37) about steady state and integrating the result over all j € (0,1) :

1
WV, + Wy + / W dj = opmy.
0
From the result in section B.7, the integral in the above expression is zero, so that:

Lt wy
my = ———.
or

B.10. Wage Setting by the Household

We consider the problem of a monopolist who represents households that supply the type j
labor service. That monopolist optimizes the utility function of j—type households, (A.34)

in case of our involuntary unemployment model or in (B.35) in case of the standard model,
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subject to Calvo frictions. With probability 1 — &, the monopolist reoptimizes the wage
and with probability £, the monopolist sets the current wage rate according to (B.11). In
each period, type j households supply the quantity of labor dictated by demand, (B.7).
Because the j—type household has perfect consumption insurance, the monopolist can take
the j—type household’s consumption as given. However, the monopolist does assign a weight
to the revenues from j—type labor that corresponds to the value, v;, assigned to income by
the household. Ignoring terms beyond the control of the monopolist the monopolist seeks to

maximize:
(o@)

Ef Zﬁz [—Z (ht+i,j; 7~7t+i) + Ut+th+i,jht+i,j] .
i=0

Here, v; denotes the Lagrange multiplier on the type j household’s time ¢ flow budget
constraint, (B.13). The function, z, is defined in (A.34) for our involuntary unemployment
model or in (B.35) for the standard model (with the understanding that the object 7 does
not exist in the standard model).

Consider the monopoly wage setter, j, that has an opportunity to reoptimize the wage
rate. The objective function with Ay, ; substituted out using labor demand, (B.7), and

ignoring terms beyond the control of the monopolist, is as follows:

Mo
o0 Tr o~ ~ 1—X
. Wom e 7t w
7 thw,t41 w,t+1 L~
E; E (ﬁfw) [_Z W Hy g e
— t+i
=0
Ao
Ty ~ ~ 1—X
< - WiTtwiti ** * Tw,i41 ¢
F0 i WiTtw i+ Tt : : Hiyil,
Wit

where

Wtﬂw,tﬂ‘ co w41

is the nominal wage rate of the monopolist which sets wage W, in period ¢t and cannot

reoptimize again afterward. We adopt the following scaling convention:

W, W,
Wy = —, Wy = ——, P, = v Pzt
TR P (U8 tht2y

With this notation, the objective can be written,

- i wyWy =T - e Wy =

By Z (BE,) [—= ( 0 Xt’i) Hivis Ny | + ¢t+iwt1_kw Wy Xy < 0 Xt’i) Hyi),

0 Wi Wi+

where: _ ~
X, = Twit4i = Tw,t+1

)

Tt Ti—1 " Mg 1ot g =" Mgt 141
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Differentiating with respect to wy,

> i )\w 1_)\7“1—1 w 1=Aw
EtZ(Béw) [_Zz,tﬂﬁwt e <_ t‘Xt,i> Hyy

i=0 v

1 1 _ w 1=2w
+—>\¢t+iwt17>\w W X (w_tXt,i> H,i],

A
Wy =5
t Wy s
Zhiri = Zh ( - Xt,z‘) Hyisfyy ) -
Wit

Here, Zz,t +; denotes the marginal utility of labor in period ¢ + 7, for a monopolist who last

where

reoptimized the wage rate in period ¢t. Note that in steady state we get the standard condition

equating the (marked up) marginal rate of substitution to real wage:

Zh _

Ap— = W.
(G

Dividing and rearranging the above first order condition gives,
00 Aw
i Wy T—\w B .
E Y (BE) o X Hyiilth w0 Xy — Aoz gq) = 0. (B.38)
t+i

=0
The first object in square brackets is the marginal utility real wage in period ¢ + ¢ and the
second is a markup, A,, over the marginal utility cost of working. According to (B.38) the
monopolist attempts to set a weighted average of the term in square brackets to zero. The
structure of 2L ,,; makes it difficult to express (B.38) in recursive form. This is because we
have not found a way to express zj, ., = thf:;il, for some variable, Z;. The expression,

(B.38), is recursive after linearizing it about steady state. Thus,

Ay
W W 1= e
dzp, ((,D’iﬂt Xt,i) Hyyy; nt+i)
Aw -
Zn (wl‘*“’ H; 7])

where a variable without a time subscript denotes non-stochastic steady state. Expanding

st _
Rhtti =

?

this expression:

At I~ N ~ ~ o ~
Zhitti = Oillgys T Qna (wt + Wy — Wiy + Xt,i) +o,Hy,

where
Aw
ap1 = 0.
h,1 1 — )\w z
For the involuntary unemployment model we have:
_ zmH _ Znl]
0, = y O = ——
Zh Zh

33



where the partial derivatives of the z function can be obtained from observing that

Zh = —Uh, Zhh = —Uhh, Zhj = —Unj

and the derivatives of the utility function are provided in section A.9.2.

For the standard model, we have:

zn = (14+o0L)cH"

-1
Zhh — O], (1—|—0'L)§HUL
So that
ZhhH
0, = =or,05=0.
Zh
Also,
Xii = Twpri t 0+ Towppr — Topi — Mool — = ° = Tpgd — gt gy — 00— ot 441

However, note:

Twt+1l = KwT¢.
Then,
Xii= =Dy Tipi — Dy Tevicr — =+ — Dy g1 — Hoot ppi = " 00— Hat 415

where
Ag, =1—ky,L,

where L denotes the lag operator.
Write out (B.38) in detail:

Hy[Yp,wyw, — AwZZ,t]

A
wy 1=2w _

+B¢, ( - Xt,l) Hyp1 [V w0 Xy 1 — )\wzz,tJrl]

Wt+1

A

2 Wy 1=2w _ ¢

+ (ﬁ&w) T Xt,g Ht+2 [thwttht,g — szh,tﬁ] + .= 0
42

In expanding this expression, we can simply set the terms outside the square brackets to
their steady state values. The reason is that the term inside the brackets are equal to zero

in steady state. Thus, the expansion of the previous expression about steady state:

HId (Ywpng) — Apd (Z;Lt)]
FBEHIA (000 Xe) — Mo (202)
+(B¢,,)" H[d (Vy 0w Xy 2) = Auwd (2], 445)] + ... =0

34



or,
Hly +w (% + Wy + @t) — MwznZp]
+BE H Y +w <1Lt+1 + by + Wy + Xt,l) — MwznZp 1)
(56, HI o (D1 + thy + B+ Xip) = AoznZh ol = 0
Note that in steady state, 1w = A, zp, so that, after multiplying by 1/ (Hw) , we obtain:
by + by + By — 5L,
+B€., [{btJrl + by + Wy + Xt,l — 227t+1]
+ <5§w)2 w}t+2 + 1y + Wy + Xt,2 — §Z7t+2] +..=0

Substitute out for 2} ,,; and X

0 = qzjt_’_wt"f_@t_|:Uﬁ;~7\t+ah,1wt+0-zﬁt]

FBEuDrrr + e+ By — (D Fora + fis 1)
- (Uiﬁ?\tﬂ +apa (wt + Wy — Wiy1 — (Anwﬁ-t—l—l + ﬂz+7t+1)) + O-zf{t—i—l)]

+(B¢,)? [ﬁ’wz + by + Wy — (A, Tiga + fir o) — (DwyTepr + v 41)

~ Wy + Wy — Wit 3
— | T2 T Qnt . . . R +o.Hyo |]+ ...
( ( — (Anw’ﬁt+2 + Mz+,t+2) - (Afﬁw”tﬂ + “z+7t+1) )

Collecting terms:

o0

0 = > (B) [@Ltﬂ' B (U’ﬁtﬂ' +Jzﬁt+j>] * 1:;621 v
=0
+% Wy + Q1 Z (ﬁfw)J @tﬂ'
w 7=1

- (1 - ah,l) BEw [(Aﬁwﬁtﬂ + ﬂz+,t+1)]
— (1 — an1) (BE,)? [(Ap,Trgn + s gy0) + (DruTers + flor 141) ]

or,

. . _ . L=
= 2 660 [ ey = (o ol )| + T
1-— & L

1 féhﬁlfgw wy + Z (BEw) [Oéh,lu_)t+j T gg,l (A“wﬁtﬂ + ﬂz+’t+j)
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Note

St - Xt + ngXt—l-l + (6510)2 Xt+2 + ...

St+1
7\

= X;+ ngTXt-i-l + BE, Xiio + T,

so that the log-linearized first order condition can be written:

1—ah1A 1—Oéh15§w_

= F — % B.
where
F, = Z(ﬂf )’ [{pt—l—j - (Uﬁ/ﬁt—kj +Uzﬁt+j)}
7=0
= {bt - (Jﬁﬁt + Uzﬁt) + B Fi
s ~ 1 - ah 1 ~ N
Gt == Z (65 ) ah,lwt+j 5&- ( ’{wﬂ-t‘kj + 'u2+,t+j)
=1
~ 1—a R N
= BE,an1Wi1 — % (Aﬁwﬂ-t—l—l + Mz+,t+1> + B8, G
Note:
(1 — ﬂng—l) F, = F,—p¢, Fi1= {pt — (Uﬁ;?\t + UZI-L) (B.40)

(1 - ngL_l) G - ngGt—H = 55w04h,1@t+1 -

1_6€w

(1 B ah,l) ﬁgw

(A Topr + s p41)

We now obtain a second restriction on w; using the relation between the aggregate wage

rate and the wage rates of individual households:

= [0 60 ()7 sy Guamig ]

Dividing both sides by W; :
1
1=(1- 1-Aw
( fw) (wt) + gw ( Wt

Note,
Wy w2t P, Wit 4T

Tw,t = )

= —
Wi1 w1z P Wy—1

so that

1 Ut—1Tw 1%%
1=u—awwww+@(¥$Lﬂ .

Wi+ 4Tt
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Differentiate and make use of w =1, 7, = p 7 :

1 N 1 ~ = o~ A~ A~
0=(1- fw)ﬁwt + Swﬁ [wt—l + Mt — We — o+ ¢ — Wt] )

or,

~

Wy =

1 —wfw [wt—l — Wy — fly+p — Anwﬁt] .
Use this expression to substitute out for w; in (B.39):

1— ap 1 'fw ~ ~ N « 1— ﬁfwah,le
T Be, T=g, L0 T U T e~ Bn] = Bt R o G

Multiply by (1 — 8¢,L™") and use (B.40):

1— - ~
1 S (1 — ﬂwa_l) [wt,l — Wy — [l — Aﬁwﬁt}

1-— 5510 1- fw
. ~ - ~/: A _ 1 1-— 5§w@h,1 ~
= 1, (Unnt + ath> + (1 BE,, L ) T 3 BE. Wy
~ 1-— . R
+B ,0n1 W1 — (ﬁ% (AmﬂTtH + :uz+7t+1) )

or,

Il —ap1 &, Wiy — BE, Wy — Wy + BE,Wey1 — [oo+ 4

1 - ng 1- gw +ﬁ§wﬂz+,t+1 - Anwﬁ't + /ngAﬂwﬁ-t+1
A ~ ~ 1 — wOé ~ ~
= ¢ - <<77”777t + Uth> + L= Bluons (W — BE,Wi41]
1-— ﬁgw
~ l—«o . N
+BE,an1 W1 — —( 1 _hgg P (Amﬂtﬂ =+ Mz+,t+1) :

Note that the wage does not simply enter via nominal wage inflation. To see this, note

Wy — Wi—1 = Tyt — Pt ¢ — Tty

where 7, ; denotes nominal wage inflation. But, it is not simply Wy — Wy_q that enters in this

expression. That is, if we tried to express the above expression in terms of nominal wage

inflation, we would simply add another variable to it, 7,,;, without subtracting any, such as

the real wage, w,. Collecting terms:

0 = EyngWi—1 4+ mWs + 0yWir1 + g1 + 047ty + N5fer + Neflot ¢ + Nrfby+ 11(B.41)

+ngthy + noHy + 77107~7t}7
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where

n = 1:;2: . fwgw, m == (1+B¢,) — %
My = By (770 + (1;?—%504:1) - %1) ; N3 = Nokuw,

Ny = —o(1+ KwBE,) — %mw,

N5 = MoPBEw + % ;

N = —MNos N7 =15 Mg = —1, N9 =0z, 119 = T

Note that (B.41) is the same for the standard model and for our model with involuntary un-
employment except for the presence of o; in our model and the difference in the construction
of o, in both models.

The wage equation can be thought of, for computational purposes, as a nonlinear equa-
tion, if we treat

Wy =

— )

w
and the other hatted variables in the same way. Likewise:

B.11. Remaining Equilibrium Conditions
B.11.1. Firms

We let s; denote the firm’s marginal cost, divided by the price of the homogeneous good.

The standard formula, expressing this as a function of the factor inputs, is as follows:

ke \ Y (wir{ 1T
« 11—«

-«

St =

When expressed in terms of scaled variables, this reduces to:

AN B I j e
Ty w Ry
== ) B.42
ot < Q ) (1 — a> ( )

Productive efficiency dictates that s; is also equal to the ratio of the real cost of labor to the

marginal product of labor:
(H\I},t) thz{

kit o
(1 B a) (”z‘yht /Hi’t>

(B.43)

St =
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The only real decision taken by intermediate good firms is to optimize price when it is
selected to do so under the Calvo frictions. The first order necessary conditions associated

with price optimization are, after scaling:

Fren T ]
By | ¢y + (M) BEFL —F/| = 0 (B.44)
Ti+1
Af 1
T 1=Af
Ey | Apthnse + B¢, (M) K/, K| =0 (B.45)
Ti+1
I—Af
N = AN Ao | Y
; 1 1_5p<”_f> f ry )T B.46
pe=|(1— §p) ¢, +¢, <7T—tpt—1) ; (B.46)
i ()
B "
AT =, (B.47)
L= é“10 F;
T = (mo)™ (o) (B.48)
In terms of scaled variables, the law of motion for the capital stock is as follows:
- 1-6§ - ~ (1, { ,
k1= ———hk + 7T, (1 -5 (M)) i (B.49)
oot 11y ¢ L1

The aggregate production relation is:

o % 1 L - “ 11—«
Y= P)M " e | — keug | Hy ™% —ngp| .
Mg g o+t

Finally, the resource constraint is:
ky

yr =G+ ¢+ i+ a(uy) ————.
:uw,t:uer,t

B.11.2. Household

We now derive the equilibrium conditions associated with the household, apart from the

wage condition, which was derived in a previous subsection. The Lagrangian representation
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of the household’s problem is:

EgY B (Cr = bCi) = 2 (heyi 71,)]

t=0
Wy + XFK, + Ry By

o +ai; — B (Ot + q,%ft) — Biy1 — PPy Ay
Hwy {At +(1 -6 K, + (1 -5 (%)) I — Km}}
The first order condition with respect to C} is:
L — E; b0 = v P,

Cy —bCya Ci1 — 0Cy
or, after expressing this in scaled terms and multiplying by z;":

L _4E, ! . (B.50)

Ct—1
¢ — b+ c — be
t ot t+1H o+ 41 t

¢t:

The first order condition with respect to A, is, after rearranging:
PPy, = =t (B.51)

(%

The first order condition with respect to I is:

G I G Iy ) I } & <]t+1> (]t+1>2 Pyuy
w1 =8S— | -85|—)—| + ELwi1S = .
t[ <It_1) (It_l T R L I v,

Making use of (B.51), multiplying by ¥,z,", rearranging and using the scaled variables,

- i ~ 1 1
Ui 4 [1 - S (M) _g (“zﬂtﬂql,t t) :U’er,'t:U’\Il,t t] (B.52)
11 11 11
co [ Mot g1 g 1t+1 111
+5¢t+1pk',t+1sl( = 0 s > ( t;; ) Mot g1 o e41 = Py

Optimality of the choice of K, ; implies the following first order condition:
wy = BEwen Xy + BEwi (1= 0) = BEwi [XFy + P Poasa (1-0)],
using (B.51). Using (B.51) again,

th-i-l + Pt+1Pk’,t+1 (1 - 5)
PPy y

v = EiBvu = Etﬂvt—i-lRfJ,_p (B-53)

where Rf,; denotes the rate of return on capital:

Rk — th+1 +Pt+1pk/,t+1 (1 _5)
t+1 — Pth’,t
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Multiply (B.53) by P,z and express the results in scaled terms:

Rk
Yy = BEMH T : (B-54)
Ti+1 o+ 141
Expressing the rate of return on capital, (B.15), in terms of scaled variables:
U1 TF — alu +(1—0)pp
Rf+1 _ Ti41 Ut+1T¢4 ( t+1) ( )pk ,t+1' (B.55)
K 111 Dir 4
The first order condition associated with capital utilization is:
Uk =a (),
or, in scaled terms,
T =a' (u). (B.56)
The first order condition with respect to By, is:
vy = BEwi1 Ry
Multiply by z P, :
G
by = BE,——R,. (B.57)

Foot 41741
C. Equilibrium Equations of the Medium-Sized DSGE Model

Here we list the scaled dynamic equilibrium equations of the medium-sized DSGE model
with involuntary unemployment as well as the standard labor market model. We also list

the corresponding steady state equations.
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C.1. Dynamic Equilibrium Equations

Cons. FOC (1)
Bond. FOC (2)

Invest. FOC (3)

Capital FOC (4)

LOM capital (5)
Cost. minim. (6)

Production (7)
Resources (8)

Taylor rule (9)

Pricing 1 (10)

Pricing 2 (11)

Pricing 3 (12)

Price disp. (13)

Real GDP (14)
Unemp. rate (15):
Wage inflation (16)

-1
Ct— —
77Z}t = (Ct —-b i > - ﬂbEt (Ct—i—l/‘bz“"t—‘,—l - th)

Moo+t
Vi
Moot 41T t+1

L
wtpk:l,t |:1 — St — S;Zt—t:|
t—1

@Dt = 5Et Ry

. 2
~ 1
’ t+1 o
+5Et¢t+1pk',t+15t+1 <_2 > Mot p4 100t 41 = Y,
t

Ry,

+

¢t = BEt¢t+l
7Tt+1:uz+,t+1

_ 15 - IR AN
oo = ———Fy + (1 _g (M)) iy
Moo+ g ¢ lt—1

1

0=4d (uf) Uf]%t/(ﬂqy?t,ufr’t) —a/(1—a)w [Vth 41— Vf} Uo)i\w/()\wfl)ht

° Aif 1 1 - @ R _ 11—«
Yo = (pr) V" [(H_M N ktuf) (w?w/(/\w 1)ht> - n@}
Ut Fztt

ki

yt:ntG—i-ct—i-it—l—a(uf)—
ooy 112+ ¢

In & = ppln i
R) PR R

T gdpy ORER
1— 1 (-) 1 ’
= n) {r mE) n(gdp)] 400
1
T 1-2p
F/ = Yoy + BE,Ey ( f7t+1> FtJfH
Tt+1
Af
F o\ T
th = Aptyyse + BE, By ( f’tﬂ) th+1
Tt41
1
1/(1-xp) # T=x;
- (strrr) <1, ()

gdpt = ntG “+ ¢ + it
my — ht

Ut =
my

Twit = wt,UZJr,tﬂ't/wtfl
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For the involuntary unemployment model we have the following further equations:
Wage Phillips Curve (17): 0 = Ey[nows_1 + N Wy + Nyligs1 + NgTe—1 + Nyt + N4
A N 5 2 n - -
ol + it g+ 50+ hghe + 22 (7, = 7))

Labor force (18):  hhy = —m (7, — ) — iimin, + (o, + 1) a*coy, (m”“mt - lc"LHlot)
0 1

Work ith =1 (19): [7r], = Tmy — ——— (0, — 0).
orkers with p(e)=1 (19) ot = orm Tty (lto) @ )]

Intercept in p(e) (20): n, =1+ 100w (my/ms—q — 1)

where in the above equations, hatted variables are related to level variables as follows:

~ wy — W T — T Pt g — fhpt Yy —
wy = _ y T = s Mottt = S 7% = )
w ™ Mo+ 775
~ ht —h " my—1m o lot — lo
hy = ,My = Ay = ——.
t A my m t i
Further, the coefficients of the wage Phillips curve are defined as:
L —any &y (1 — B&uan1)
N = ’ , =N (1 +B&,) — ————,
0 1_ﬁ£w1_£w ! 0( ) 1_5510
(1 - ﬁfu}ahﬂ)
Ny = ng (770 + 1— ng — Qnp1 ),y T3 = TNohw;
(1 —an1) BE,
= - 1 w - wH
M4 Mo ( + K ﬁé-w) 1 — ﬁgw K
o (1 - ah,l) ng _ _
N5 = 1MoPEw + 1— 3¢, M6 = —Tos N7 = 15
T L
Mg » Ty P o Mo i 2

For the standard model we have the following further equations:
Wage Phillips Curve (17): 0 = Ey[ngWi—1 + mWs + M1 + N1 + Nafte + NsTiesn
ANehbt ¢+ Mrflo+ piq + Mgty + Mo Hy

Labor force (18): orm; = ﬁ}t +

~
o

Workers with p(e)=1 (19): ;=0
Intercept in p(e) (20) : 7, =0

Finally, both models have the following exogenous variables:

Comp. Tech. (21) Inp+,=a/(l—a)lnpg, +Inp,,

Invest. Tech. (22) : Inpg, = (1—p,, ) Inpy +p,, Mg, g+ 0u,64,.:/100
Neutr. Tech. (23) : Inp,, =Inp, + 0, ¢, /100

Tech. diffus. (24) : n,=n}"? /1;}7 .
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In the above two models we have a total of 24 equations in the following 24 variables:

Yy ¢ Ry Ty prog B uf l_ft he yi Py th th Wy Tt U gApy Mot Moy Mg g T 1T Iy 7y

In the above equations, it is useful to define several abbreviated variables that are functions

of the endogenous variables. In particular,

Cap. util. cost. (25) : a(uf) = 0.5040, (uf)2 + 03 (1 — 00) uf + 03 ((04/2) — 1)
Cap. util. deriv. (26) : d'(uF) = gpo.ul + 04 (1 —0,)

Invest. adj. cost (27) : S, =0.5exp [\/ S (Lot otog g0t /i1 — pior uq,)]

+0.5 exp [— VS (s uhtg e /i1 — i - M\p)] —1

Inv. adj. deriv. (28) : S/ =0.5V.5"exp [\/ S (/Lz+7tu\p’tit/it_1 — [t M\I,)]
—0.5V/ 5" exp [— VS (e phb /i1 — i+ qu)]

RE = g i) (b (u) = a(u) + (1 = )

me, — (M\I,,t,uz+7t)a w, [I/th +1— l/f} (uf%t—l/ (wi\w/(kw—l)ht>) /(1 — a)
—

Capital return (29

L . - 7
Price indexation (31 Ty = My 4T

~ _ kY _1-rY
Mt = My T Hopt

(29)
Marginal cost (30)
(31)
Wage indexation (32)

In the baseline specification described in the main text we set x/ =0, k¥ = 1 and v/ = 1.
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C.2. Steady State

IMPOSE w* = 1, solve (29) for o

(25) : a(l)=0
(21) ¢ pe =g/ (pg)
Q4 0=y
(22) : g, =0
(23) : euy =0
(27) S=0
(28) S'=0
IMPOSE 7, “drop” equation (9),ie. R=R
(2) : R=mp.+/B
3) : pw=1
4) © RF=mp./B
(29) : oy = Rrpugpw/m — (1 —6")pp
(26) a(1) = oy
31) : m=n 7
(32) + P = T s
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op=

Tw

11— pg(w/aVOY

© A= B (7 /m) YOV

L= € (r/m)0 Y
[

kh = k/(w/Qe=D]) =

= M 4+T

5
1-A ¢z
|

[ (pgpes )™

1_5111

(1 —a)me

_C—@ﬁme“W

 (pgp) TR+ 1 — 0]
IMPOSE h and solve for ¢ later

IMPOSE zero profits and solve for ¢ later
mc

y:

(PN —

1)me+1

k= kh -/ Qe—Dp
[(kh/ (11,5 pg)) e/ PV — ypM =N

b=

= [1= (1 —=6)/(porpg)l K

1-¢

/W)A/(l—k)

fﬁhW“ﬁlA

"

“mc/oy

(1—a)

7Tw/ﬂw)

] (1-2)/A

)”“’/ (1—511,<~

(kh)*

Assume G equals share 7, of y

° Aw / (Aw

(kh/ (b prg))™

1-=¢

c=(1—mn,)y —i for some given n, — G =mn,y/n,

Y =

(C - bc/:uer)il
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C.2.1. Standard Model

For the standard model we proceed as follows:

op = zhhh — O_tzargct
Zhn
<w>:zw>£w:*:(%w)ﬂu+@m”>

A 1
= ()

(15) @ u=——

C.2.2. Involuntary Unemployment Model

For the involuntary unemployment model we proceed as follows:

IMPOSE m and solve later for n
m—h

15) = —

(15) + u=—ro

We solve for the following objects using a nonlinear solver:
calop

Conditional on ¢ a | o, we can pursue further

(19) : f=c(l+o0p)a® (m"L —lo"L> -1
Ui

(20) =17
F = e F+§(1+0L)m”L—a%~)
r (C B hb/lu’erc) T+ hb/lj“z+c
— (1 =h)b/psc+ (1 —h)b/p+cF
w C
© = h+(1—h)r’c =t

We adjust ¢ a [ o1 to make the following four equations hold:

©07) : m=tw
(lo) (18) : h=—nm+ CL2§O'L (mUL+1 . lc’aLJrl)
h
(CL) : Z];}; _ O_t;argct
(UL) - T,target
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D. Estimation Results When Unemployment Rate and Labor Force
Data are Included in Estimation of Standard Model

Technical Appendix Table A.1 contains the estimated parameters of the standard model with
and without including data for the unemployment rate and the labor force in the estimation.
The posterior mode and parameter distributions are based on a standard MCMC algorithm
with a total of 2.5 million draws based on 10 chains. We use the first 20 percent of draws
for burn-in. The acceptance rates are about 0.25 in each chain. Figures 1 through 4 in
the appendix to the main text show the impulse responses of the estimated standard model
when data for the unemployment rate and the labor force in the estimation evaluated at the

posterior mode shown in Technical Appendix Table A.1.

48



Technical Appendix Table A.1: Sensitivity of Estimated Standard Model

Parameter Prior Posterior
Distribution Mode Mode
[bounds] [2.5% 97.5%)] [2.5% 97.5%)]
Baseline Model with
Model U. & Lab. Force
Price Setting Parameters
Price Stickiness &y Beta 0.67 0.616 0.776
[0, 1] [0.45 0.83] [0.55 0.71] [0.73 0.81]
Price Markup Af amma 1.19 1.230 -
[1.001, o0] [1.01 1.40] [1.10 1.36] -
Monetary Authority Parameters
Taylor Rule: Int. Smoothing  pp Beta 0.76 0.873 0.785
[0, 1] [0.37 0.93] [0.82 0.90] [0.77 0.85]
Taylor Rule: Inflation Coef. T Gamma 1.68 1.395 1.015
[1.001, o0] [1.41 2.00] [1.19 1.65] [1.00 1.76]
Taylor Rule: GDP Coef. Ty Gamma 0.07 0.077 0.005
[0, o0 [0.02 0.21] [0.03 0.14] [0.00 0.09]
Preference Parameters
Consumption Habit b Beta 0.75 0.761 0.755
[0, 1] [0.64 0.83] [0.72 0.79] [0.74 0.81]
Inverse Labor Supply Elast. o, Gamma 0.26 0.165 18.18
[0, o] [0.13 0.52] [0.08 0.23] [12.97 25.57]
Technology Parameters
Capital Share « Beta 0.32 0.31 0.270
0, 1] [0.28 0.37] [0.25 0.33] [0.21 0.28]
Technology diffusion eta 0.50 0.052 0.006
[0, 1] [0.12 0.86] [0.01 0.80] [0.00 0.02]
Capacity Adj. Costs Curv. Oa Gamma 0.31 0.462 0.019
[0, oo] [0.09 1.22] [0.21 0.56] [0.00 0.08]
Investment Adj. Costs Curv. " Gamma 7.50 11.56 10.32
[0, o0] [4.56 12.29]  [8.46 14.92] [7.72 15.09]
Shocks
Autocorr. Invest. Tech. Py Beta 0.78 0.703 0.612
[0, 1] [0.53 0.91] [0.54 0.77] [0.53 0.77]
Std.Dev. Neutral Tech. Shock o, Inv. Gamma 0.06 0.211 0.282
[0, oo] [0.04 0.44] [0.18 0.25] [0.26 0.33]
Std.Dev. Invest. Tech. Shock o, Inv. Gamma 0.06 0.125 0.149
[0, oo] [0.04 0.44] [0.09 0.17] [0.10 0.17]
Std.Dev. Monetary Shock ocr Inv. Gamma 0.22 0.496 0.597
[0, o0] [0.14 1.49] [0.41 0.60] [0.52 0.71]

E. Estimation Results of Involuntary Unemployment Model with
Constant 7 (w = 0)

Technical Appendix Table A.2 contains the estimated parameters of the baseline involuntary
unemployment model as well as the involuntary unemployment model when w is set to
zero, i.e. 7 is constant. The posterior mode and parameter distributions are based on a
standard MCMC algorithm with a total of 2.5 million draws based on 10 chains. We use
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the first 20 percent of draws for burn-in. The acceptance rates are about 0.25 in each chain.
Technical Appendix Figures 1 through 4 show the impulse responses of the estimated baseline
involuntary unemployment model and the involuntary unemployment model with w = 0
when both models are evaluated at the posterior mode shown in Technical Appendix Table

A.2.
Technical Appendix Table A.2: Sensitivity of Estimated Involuntary Unemployment Model
Parameter Prior Posterior
Distribution Mode Mode
[bounds] [2.5% 97.5%] £2.5% 97.5%
Baseline odel
Model with w =0
Price Setting Parameters
Price Stickiness &y Beta 0.67 0.727 0.745
[0, 1] [0.45 0.83] [0.67 0.78] [0.65 0.79]
Price Markup Af Gamma 1.19 1.399 1.491
[1.001, o0] [1.01 1.40] [1.29 1.54]  [1.38 1.64]
Monetary Authority Parameters
Taylor Rule: Int. Smoothing  pp Beta 0.76 0.890 0.802
[0, 1] [0.37 0.93] [0.85 0.91] [0.77 0.86]
Taylor Rule: Inflation Coef. Tr Gamma 1.68 1.414 1.338
[1.001, o] [1.41 2.00] [1.19 1.69] [1.19 1.62]
Taylor Rule: GDP Coef. Ty Gamma 0.07 0.113 0.028
[0, oo [0.02 0.21] [0.05 0.18]  [0.01 0.08]
Preference Parameters
Consumption Habit b Beta 0.75 0.776 0.728
[0, 1] [0.64 0.83] [0.74 0.80] [0.68 0.76]
Inverse Labor Supply Elast. o, Gamma 0.26 0.334 0.267
[0, oo] [0.13 0.52] [0.17 0.43] [0.13 0.35]
Replacement Ratio " Beta 0.75 0.7973 0.818
[0, 1] [0.69 0.79] [0.76 0.82] [0.78 0.85]
Labor Force Impact on p(e, ) w Normal 0.0 -0.533 -
[-00, o] [-1.96 1.96] [-0.74 -0.38] -
Technology Parameters
Capital Share Q Beta 0.32 0.31 0.289
0, 1] [0.28 0.37] [0.25 0.33] [0.25 0.32]
Technology diffusion eta 0.50 0.052 0.009
[0, 1] [0.12 0.86] [0.01 0.80] [0.00 0.04]
Capacity Adj. Costs Curv. Oa amma 0.31 0.462 0.312
[0, o] 0.091.22]  [0.21 0.56]  [0.16 0.54]
Investment Adj. Costs Curv. 5" Gamma, 7.50 11.56 12.24
[0, o0 [4.56 12.29]  [8.46 14.92] [9.37 16.56]
Shocks
Autocorr. Invest. Tech. Py Beta 0.78 0.704 0.690
[0, 1] [0.53 0.91] [0.59 0.82] [0.57 0.79]
Std.Dev. Neutral Tech. Shock o, Inv. Gamma 0.06 0.194 0.194
[0, o0 0.040.44]  [0.170.23]  [0.16 0.22]
Std.Dev. Invest. Tech. Shock oy Inv. Gamma 0.06 0.115 0.128
[0, oo] [0.04 0.44] [0.08 0.15] [0.09 0.16]
Std.Dev. Monetary Shock OR Inv. Gamma 0.22 0.449 0.535
[0, o0] [0.14 1.49] [0.37 0.53]  [0.40 0.63]
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Figure Tech.App.1: Dynamic Responses to a Monetary Policy Shock
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Figure Tech.App.2: Dynamic Responses to a Neutral Technology Shock
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Figure Tech.App.3: Dynamic Responses to an Investment-Specific Technology Shock
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Figure Tech.App.4: Dynamic Responses of Unemployment and Labor Force to Three Shocks
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