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Additional Appendix, Part 1

This appendix contains results omitted from the submitted paper to save space. It includes:

1. Tables with additional simulation results (in a separate document called Additional Appendix, part 2)
2. Tables with additional asymptotic comparisons for GMM
AN
3. Construction of positive semidefinite S
4. Approximation error in computing asymptotic variances of optimal estimator
5. Details on procedures used in simulations
6. Formal statement of asymptotic results

7. Some worked out examples

8. Some details on maximum likelihood calculations
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2. Tables with additional asymptotic comparisons

The first of the three sets of entries we present includes those in Table 1:

o 0 v vi GMM1 GMM4 GMM12
0.500 0.000 0.500 0.100  1.0007e+00  1.0000e+00 1.0000e+00
0.500 0.000 0.500 0.300 1.0085e+00 1.0000e+00 1.0000e+00
0.500 0.000 0.600 0.100 1.0007e+00  1.0000e+00 1.0000e+00
0.500 0.000 0.600 0.300 1.0090e+00  1.0000e+00 1.0000e+00
0.500 0.000 0.700 0.100  1.0006e+00  1.0000e+00 1.0000e+00
0.500 0.000 0.700 0.300 1.0084e+00  1.0000e+00 1.0000e+00
0.500 0.000 0.800 0.100  1.0004e+00  1.0000e+00 1.0000e+00
0.500 0.000 0.800 0.300 1.0068e+00 1.0001e+00 1.0000e+00
0.500 0.000 0.900 0.100  1.0002e+00  1.0000e+00 1.0000e+00
0.500 0.000 0.900 0.300 1.0045e+00 1.0001e+00 1.0000e+00
0.900 0.000 0.500 0.100 1.0015e+00  1.0000e+00 1.0000e+00
0.900 0.000 0.500 0.300 1.0207e+00  1.0003e+00 1.0000e+00
0.900 0.000 0.600 0.100  1.0021e+00  1.0001e+00 1.0000e+00
0.900 0.000 0.600 0.300 1.0328e+00 1.0013e+00 1.0000e+00
0.900 0.000 0.700 0.100  1.0029e+00  1.0002e+00  1.0000e+00
0.900 0.000 0.700 0.300 1.0519e+00 1.0057e+00 1.0000e+00
0.900 0.000 0.800 0.100  1.0036e+00 1.0006e+00 1.0000e+00
0.900 0.000 0.800 0.300 1.0877e+00  1.0228e+00  1.0003e+00
0.900 0.000 0.900 0.100 1.0038e+00 1.0012e+00 1.0001e+00
0.900 0.000 0.900 0.300 1.2308e+00 1.1396e+00 1.0353e+00
0.500 0.500 0.500 0.100 1.3864e+00  1.0044e+00 1.0000e+00
0.500 0.500 0.500 0.300 1.5430e+00 1.0060e+00 1.0000e+00
0.500 0.500 0.600 0.100 1.3869e+00 1.0046e+00 1.0000e+00
0.500 0.500 0.600 0.300 1.5513e+00  1.0071e+00 1.0000e+00
0.500 0.500 0.700 0.100 1.3837e+00  1.0048e+00 1.0000e+00
0.500 0.500 0.700 0.300 1.5467e+00 1.0087e+00 1.0000e+00
0.500 0.500 0.800 0.100 1.3761e+00  1.0049e+00  1.0000e+00
0.500 0.500 0.800 0.300 1.5268e+00 1.0102e+00 1.0000e+00
0.500 0.500 0.900 0.100 1.3633e+00 1.0048e+00 1.0000e+00
0.500 0.500 0.900 0.300 1.4899e+00 1.0109e+00  1.0000e+00
0.900 0.500 0.500 0.100  1.2009e+00  1.0024e+00  1.0000e+00
0.900 0.500 0.500 0.300 1.3502e+00  1.0045e+00 1.0000e+00
0.900 0.500 0.600 0.100 1.2058e+00  1.0029e+00 1.0000e+00
0.900 0.500 0.600 0.300 1.3900e+00 1.008le+00 1.0000e+00
0.900 0.500 0.700 0.100  1.2099e+00 1.0037e+00  1.0000e+00
0.900 0.500 0.700 0.300 1.4431e+00 1.0177e+00  1.0000e+00
0.900 0.500 0.800 0.100 1.2115e+00  1.0050e+00 1.0000e+00
0.900 0.500 0.800 0.300 1.5263e+00  1.0462e+00 1.0004e+00
0.900 0.500 0.900 0.100 1.2068e+00 1.0066e+00 1.0001e+00
0.900 0.500 0.900 0.300 1.8070e+00  1.2130e+00  1.0464e+00
0.500 0.700 0.500 0.100 1.9682e+00 1.0587e+00 1.0002e+00
0.500 0.700 0.500 0.300 2.2499e+00 1.0688e+00 1.0002e+00
0.500 0.700 0.600 0.100  1.9727e+00 1.0600e+00  1.0002e+00
0.500 0.700 0.600 0.300 2.2838e+00 1.0758e+00  1.0002e+00
0.500 0.700 0.700 0.100 1.9710e+00 1.0615e+00 1.0002e+00
0.500 0.700 0.700 0.300 2.3021e+00 1.0856e+00 1.0003e+00
0.500 0.700 0.800 0.100 1.9604e+00 1.0626e+00 1.0002e+00
0.500 0.700 0.800 0.300 2.2949e+00  1.0970e+00 1.0003e+00
0.500 0.700 0.900 0.100  1.9373e+00  1.0623e+00 1.0002e+00
0.500 0.700 0.900 0.300 2.2486e+00 1.1055e+00 1.0007e+00
0.900 0.700 0.500 0.100 1.8223e+00  1.0487e+00 1.0001e+00
0.900 0.700 0.500 0.300 2.2860e+00 1.0659e+00 1.0002e+00
0.900 0.700 0.600 0.100  1.8322e+00 1.0508e+00 1.0001e+00
0.900 0.700 0.600 0.300 2.3813e+00  1.0794e+00  1.0002e+00
0.900 0.700 0.700 0.100 1.8418e+00 1.0545e+00  1.0002e+00
0.900 0.700 0.700 0.300 2.5221e+00 1.1087e+00 1.0003e+00
0.900 0.700 0.800 0.100 1.8471e+00 1.0600e+00 1.0002e+00
0.900 0.700 0.800 0.300 2.7621e+00  1.1790e+00  1.0015e+00
0.900 0.700 0.900 0.100  1.8364e+00 1.0660e+00 1.0006e+00
0.900 0.700 0.900 0.300 3.5979e+00 1.5081e+00 1.0762e+00
0.500 0.900 0.500 0.100  3.1150e+00  1.3531e+00 1.0398e+00
0.500 0.900 0.500 0.300 3.4094e+00 1.3501e+00 1.0376e+00
0.500 0.900 0.600 0.100  3.1281e+00  1.3572e+00  1.0400e+00
0.500 0.900 0.600 0.300 3.4704e+00  1.3654e+00 1.0381e+00
0.500 0.900 0.700 0.100  3.1390e+00 1.3635e+00 1.0406e+00
0.500 0.900 0.700 0.300 3.5454e+00  1.3942e+00  1.0403e+00
0.500 0.900 0.800 0.100 3.1438e+00 1.3717e+00  1.0419e+00
0.500 0.900 0.800 0.300  3.6454e+00  1.4451e+00  1.0479e+00
0.500 0.900 0.900 0.100  3.1326e+00 1.3789e+00  1.0442e+00
0.500 0.900 0.900 0.300 3.8806e+00 1.5681e+00 1.0961e+00
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GMM1

.8806e+00
.9907e+00
.2621e+00
.0084e+00
.5692e+00
.0377e+00
.1515e+00
.0832e+00
.0550e+01
.1319e+00
.0983e+01
.5313e+00
.7512e+00
.5417e+00
.7898e+00
.5530e+00
.8465e+00
.5639e+00
.9411e+00
.5701e+00
.2748e+00
.0453e+01
.4453e+01
.0450e+01
.4805e+01
.0462e+01
.5527e+01
.0510e+01
.7463e+01
.0647e+01
.6363e+01
.1028e+00
.0709e+00
.1046e+00
.0759e+00
.1070e+00
.0815e+00
.1099e+00
.0879e+00
.1134e+00
.0951e+00
.0136e+00
.0134e+00
.0138e+00
.0227e+00
.0145e+00
.0387e+00
.0158e+00
.0703e+00
.0176e+00
.1991e+00
.2390e+00
.1550e+00
.2478e+00
.1750e+00
.2571e+00
.1967e+00
.2669e+00
.2204e+00
.2767e+00
.2495e+00
.0299e+00
.0218e+00
.0312e+00
.0327e+00
.0330e+00
.0501e+00
.0354e+00
.0826e+00
.0387e+00
.2103e+00
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GMM4

.5681e+00
.8148e+00
.9855e+00
.8256e+00
.0579e+00
.8431e+00
.1982e+00
.8723e+00
.5427e+00
.9168e+00
.1149e+00
.5062e+00
.4743e+00
.5093e+00
.4827e+00
.5158e+00
.5052e+00
.5264e+00
.5534e+00
.5408e+00
.7130e+00
.8519e+00
.1823e+00
.8683e+00
.2994e+00
.8935e+00
.5107e+00
.9372e+00
.0197e+00
.0224e+00
.5720e+00
.0014e+00
.0016e+00
.0015e+00
.0018e+00
.0015e+00
.0020e+00
.0015e+00
.0021e+00
.0015e+00
.0021e+00
.0003e+00
.0007e+00
.0004e+00
.0020e+00
.0007e+00
.0065e+00
.0011e+00
.0227e+00
.0017e+00
.1304e+00
.0438e+00
.0312e+00
.0457e+00
.0359e+00
.0478e+00
.0415e+00
.0498e+00
.0483e+00
.0515e+00
.0589e+00
.0065e+00
.0042e+00
.0070e+00
.0065e+00
.0078e+00
.0123e+00
.0087e+00
.0300e+00
.0098e+00
.1376e+00
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GMM12

.0961e+00
.0905e+00
.1005e+00
.0909e+00
.1036e+00
.0919e+00
.1109e+00
.0948e+00
.1420e+00
.1053e+00
.7430e+00
.1039e+00
.0921e+00
.1037e+00
.0903e+00
.1042e+00
.0903e+00
.1063e+00
.0974e+00
.1119e+00
.1686e+00
.3738e+00
.4006e+00
.3749e+00
.4084e+00
.3768e+00
.4248e+00
.3829e+00
.4868e+00
.4076e+00
.6159e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0002e+00
.0000e+00
.0325e+00
.0049e+00
.0032e+00
.0051e+00
.0037e+00
.0054e+00
.0044e+00
.0057e+00
.0057e+00
.0061e+00
.0106e+00
.0007e+00
.0003e+00
.0007e+00
.0004e+00
.0008e+00
.0005e+00
.0009e+00
.0010e+00
.0010e+00
.0336e+00
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The second set of entries allows non-normal eta:

unconditional
0] (S} Y vl excess KN GMM1 GMM4 GMM12
kurtosis
0.500 -0.900 0.500 0.100 7.000 5.941 1.1550e+00 1.0312e+00 1.0032e+00
0.500 -0.900 0.900 0.100 7.000 3.897 1.2624e+00 1.0527e+00 1.0068e+00
0.500 -0.500 0.500 0.100 7.000 5.941 1.0709e+00 1.0016e+00 1.0000e+00
0.500 -0.500 0.900 0.100 7.000 3.897 1.1053e+00 1.0017e+00 1.0000e+00
0.500 0.000 0.500 0.100 7.000 5.941 1.0085e+00 1.0000e+00 1.0000e+00
0.500 0.000 0.900 0.100 7.000 3.897 1.0012e+00 1.0000e+00 1.0000e+00
0.500 0.500 0.500 0.100 7.000 5.941 1.5430e+00 1.0060e+00 1.0000e+00
0.500 0.500 0.900 0.100 7.000 3.897 1.4089e+00 1.0065e+00 1.0000e+00
0.500 0.900 0.500 0.100 7.000 5.941 3.4094e+00 1.3501e+00 1.0376e+00
0.500 0.900 0.900 0.100 7.000 3.897 3.3407e+00 1.4221e+00 1.0517e+00
0.500 0.950 0.500 0.100 7.000 5.941 3.7512e+00 1.4743e+00 1.0921e+00
0.500 0.950 0.900 0.100 7.000 3.897 3.7596e+00 1.5760e+00 1.1184e+00
0.900 -0.900 0.500 0.100 7.000 5.941 1.0218e+00 1.0042e+00 1.0003e+00
0.900 -0.900 0.900 0.100 7.000 3.897 1.0466e+00 1.0195e+00 1.0017e+00
0.900 -0.500 0.500 0.100 7.000 5.941 1.0134e+00 1.0007e+00 1.0000e+00
0.900 -0.500 0.900 0.100 7.000 3.897 1.0294e+00 1.0112e+00 1.0006e+00
0.900 0.000 0.500 0.100 7.000 5.941 1.0207e+00 1.0003e+00 1.0000e+00
0.900 0.000 0.900 0.100 7.000 3.897 1.0285e+00 1.0112e+00 1.0007e+00
0.900 0.500 0.500 0.100 7.000 5.941 1.3502e+00 1.0045e+00 1.0000e+00
0.900 0.500 0.900 0.100 7.000 3.897 1.3149e+00 1.0260e+00 1.0010e+00
0.900 0.900 0.500 0.100 7.000 5.941 8.2621e+00 1.9855e+00 1.1005e+00
0.900 0.900 0.900 0.100 7.000 3.897 8.0517e+00 2.2904e+00 1.1543e+00
0.900 0.950 0.500 0.100 7.000 5.941 1.4453e+01 3.1823e+00 1.4006e+00
0.900 0.950 0.900 0.100 7.000 3.897 1.3902e+01 3.6701e+00 1.5155e+00
0.500 -0.900 0.500 0.100 1.167 1.000 1.2195e+00 1.0409e+00 1.0045e+00
0.500 -0.900 0.900 0.100 1.750 1.000 1.2721e+00 1.0518e+00 1.0063e+00
0.500 -0.500 0.500 0.100 1.167 1.000 1.0957e+00 1.0015e+00 1.0000e+00
0.500 -0.500 0.900 0.100 1.750 1.000 1.1109e+00 1.0016e+00 1.0000e+00
0.500 0.000 0.500 0.100 1.167 1.000 1.0015e+00 1.0000e+00 1.0000e+00
0.500 0.000 0.900 0.100 1.750 1.000 1.0004e+00 1.0000e+00 1.0000e+00
0.500 0.500 0.500 0.100 1.167 1.000 1.4128e+00 1.0046e+00 1.0000e+00
0.500 0.500 0.900 0.100 1.750 1.000 1.3764e+00 1.0053e+00 1.0000e+00
0.500 0.900 0.500 0.100 1.167 1.000 3.1669e+00 1.3521e+00 1.0394e+00
0.500 0.900 0.900 0.100 1.750 1.000 3.1896e+00 1.3901e+00 1.0459e+00
0.500 0.950 0.500 0.100 1.167 1.000 3.5692e+00 1.4993e+00 1.1015e+00
0.500 0.950 0.900 0.100 1.750 1.000 3.6222e+00 1.5498e+00 1.1133e+00
0.900 -0.900 0.500 0.100 1.167 1.000 1.0248e+00 1.0058e+00 1.0006e+00
0.900 -0.900 0.900 0.100 1.750 1.000 1.0381e+00 1.0114e+00 1.0011e+00
0.900 -0.500 0.500 0.100 1.167 1.000 1.0111e+00 1.0004e+00 1.0000e+00
0.900 -0.500 0.900 0.100 1.750 1.000 1.0183e+00 1.0033e+00 1.0001e+00
0.900 0.000 0.500 0.100 1.167 1.000 1.0032e+00 1.0000e+00 1.0000e+00
0.900 0.000 0.900 0.100 1.750 1.000 1.0082e+00 1.0028e+00 1.0001e+00
0.900 0.500 0.500 0.100 1.167 1.000 1.2240e+00 1.0027e+00 1.0000e+00
0.900 0.500 0.900 0.100 1.750 1.000 1.2331e+00 1.0103e+00 1.0002e+00
0.900 0.900 0.500 0.100 1.167 1.000 6.3606e+00 1.8438e+00 1.0923e+00
0.900 0.900 0.900 0.100 1.750 1.000 6.5910e+00 2.0041e+00 1.1160e+00
0.900 0.950 0.500 0.100 1.167 1.000 1.1109e+01 2.9082e+00 1.3787e+00
0.900 0.950 0.900 0.100 1.750 1.000 1.1429e+01 3.1754e+00 1.4321e+00

The thiyd set of entries allows u(t) to impound two shocks: #,=¢,,,- O, +2,,,-dv,,., v, ~ 1i.d. (0,0), »,independent
of ¢. 0, chosen so that half the variance of #, was due to each signal.

v

o 0 v vi -4 GMM1 GMM4 GMM12
0.900 0.950 0.900 0.100 2.000 1.0031e+00 1.0000e+00 1.0000e+00
0.900 0.950 0.900 0.100 1.111  1.0011e+00  1.0000e+00 1.0000e+00
0.900 0.950 0.900 0.100 1.000 1.0011e+00 1.0000e+00 1.0000e+00
0.900 0.950 0.900 0.100 0.900 1.0011e+00 1.0000e+00 1.0000e+00
0.900 0.950 0.900 0.100 0.500 1.0031e+00  1.0000e+00 1.0000e+00
0.900 0.950 0.900 0.100 -0.500 1.4666e+00 1.0197e+00 1.0000e+00
0.900 0.950 0.900 0.100 -0.900 7.0517e+00 2.1574e+00 1.1707e+00
0.900 0.950 0.900 0.100 -0.950  9.9322e+00 2.8845e+00 1.3860e+00
0.900 0.950 0.900 0.100 -1.000 1.204le+01  3.4372e+00 1.5763e+00
0.900 0.950 0.900 0.100 -1.053  9.9322e+00  2.8845e+00 1.3860e+00
0.900 0.950 0.900 0.100 -1.111  7.0517e+00  2.1574e+00 1.1707e+00
0.900 0.950 0.900 0.100 -2.000 1.4666e+00 1.0197e+00 1.0000e+00
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3. Construction of positive semidefinite S may be insured by the following algorithm, applicable in the

symmetric case in which Buu,,e e = Bue e /' = 0 fori#j. Assume the regression disturbance may

-1t
be written
— ' ' 1 —
e = Cgr1 Crag + Cq Crrq T Feey Fuy =0 oy

N
where the ¢/'s are (rX1) and the uy's are scalars. After a parametric model is fit to z, yielding e, a

A A AN A A A
regression of u, on e ..., and e, delivers ¢/'s, a fitted value u;, and a residual u,,. We can use these

AN A

A
sample quantities to construct p.s.d. S. (To keep notation uncluttered, we use e rather than e'.)
As in the DGP used in the third set of asymptotic calculations described above, let u,, be
conditionally homoskedastic and mean independent of e, ; for j>0. Then S=§,+S,, §; =

i Be(tj)uue®)'. A sufficient condition for S to be p.s.d. is that each §; is p.s.d.. It may help to

it-j it
A

A
note that if u, is conditionally homoskedastic, one can set u,,=0, §;=0 and u,= u,.

A A

In each S;, the first row and column is zero except for Si(1,1) = X Euu

The (TrXTr)

it-j*

submatrix that remains is band diagonal, with blocks on the diagonal = Eet_iet_j'uz- blocks on the

1t

immediate off-diagonal = Ee, ¢, 00y, -, and, finally, blocks = Ee, e 'uu;,. Fori=1,2, estimate

Eu?

1t

Euuy g, -, Bujuy, so that the estimates are consistent with u; following an MA(q) process.

Possible techniques for doing so include fitting an MA(q), or using sample autocovariances after
checking that they obey the necessary inequalities (see, e.g., Box and Jenkins (1976, p71) for the
inequalities when q=2). Then the implied estimate of gi(l,l) will be positive for i=1,2. In S,,
Eee'uyu,,; = Bee'Euyu,,,, and gz will be p.s.d. if one constructs the (TrXTr) submatrix using T‘lﬁgtgt'
for Ee,e, and the estimates of Eu3, Bu,u,,, ..., Eu,u,,,, that were just mentioned.

For the (TrXTr) submatrix of S;: One can use the zi's and estimates of a GARCH model for e..
Alternatively, one can estimate §1 as glzT‘lﬂfzpﬁt(@(tht'), where lA{t is a TXT symmetric band diagonal
matrix with an estimate of Etuft+i on the diagonal (j=0,...,T-1), of E\u;,,ju;,;4; on the first off-diagonal
(=0,...,T-2), ..., of Eu; iUy 4544 On the q'th off-diagonal (j=0,...,T-q-1). In the spirit of the procedure in

A

Schwert (1989), one can construct R, as follows. (1)Let abs(e,) denote the rX1 vector obtained by
taking the absolute value of e, element by element. Estimate a VAR(p) in abs(e,), abs(e,) = a, +
a,'abs(e ;) + ... + a/abs(e ) + residual = A;"W; + residual, where a, is (rx1), a, ..., a, are (rXr), A, is

tX(pr+1) and W, is (pr+1)x1. (2)Compute A, for j=1,..., T+1, where AW, is the j-period ahead
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forecast of abs(e,,;) implied by the VAR. (3)Observe that an estimate of Ee,e..;' consistent with
Schwert (1989) is EAi'\X/t\X/t'Ai. Corresponding estimates of conditional moments of u,, are thus:

AN AN AN N N N N N
E 2 . E IA 2 + + E 'A 2, E . E vA vA + +
et ¢ 5 (W, j+1cl) > (W, j+q+1cq+1) > BlyeWejert 5 (W, i+2C1)(CCt 1+2C2)
N

TE '/\ N '/\ N TE '/\ N '/\
E (W, Ai+q+1cq) (W, Aj+q+1cq+1); s Etu1t+]u1t+]+q: E(\X/t Aj+q+1cl) (W, Ai+q+1cq+1)-
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4. Approximation error in computing asymptotic variances of optimal estimator

To compute the asymptotic variance of the optimal estimator, we truncated the infinite sum
E};Og*iet_j at lag j=100, and approximated the optimal variance by that resulting when 101 g*'s and lagged
¢/s were used. Analytical arguments and numerical computations about to be detailed were used to
bound the difference between the asymptotic variance of the estimates using E_j‘-’zog’;et_j and those using
101 g's, for several DGPs. The two variances were invariably within a fraction of a percent of one
another. Thus, in our DGPs, the decline in the elements of ¥~ (in our DGPs, the second column of ¥~
is 02¢) and reversion of the elements of S to their conditionally homoskedastic counterparts (in our
DGPs, Eez,,juzz =Ee’Eu’ + ¢y’ for a suitable constant c) are sufficiently rapid that terms beyond the
hundredth have negligible effect on asymptotic variances. (A clarifying note for those who have read
the asymptotic theory presented in section 6 below: as explained below equation (AA6.5), when we
compute the g's from S” and ¥ of dimension 101, the result should properly be denoted {g;, 4} to
distinguish it from {g;}. Our calculations do take into account the difference between {gj,}and {g;},
as well as the effects of g; for j>100.)

In bounding the approximation error, we do not attempt to establish as tight a bound as
possible, but merely to check whether the error is acceptably small. In presenting our formulas, we use

[P

certain notation not used elsewhere in the paper or Additional Appendix. We define g and “g*U” to

[P >

be the scalar second elements of the (1X2) vectors elsewhere called “g;” and “g;,”. As stated in the

text, we set J=101 in our calculations. Also, 6°=Ee}, A,=Ee’e} . We consider the case when $>0, 0>0

and ¢#0.

When u=e,,,-0¢,,, |0]<1, and z=¢z_,+e, it may be shown that the g?'s satisfy:

. Gz N; . N eifl(d)i_ei)

(AA41) gO - (I)_ e D:; 5 NO - i=1 }\41”
. . N ei*Zi Gz N eifl(d)jﬂ _6j+i)
g — ’go)‘lzizl 7\’i+i+1 + 5-0 i=1 x

. 0
, Do = 1+)‘120i°:1 T

it

Let g; be the gj-seties calculated using (AA4.1), but with infinite sums truncated at K-1 for some K>J:
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~ G? N(‘) -, 9! d) 0 0%
(AA4'2) go (i) 5_ b) NO = Zlf %% - 1+)“ ZIT %7\'”1 )
e+2 Gz ex 1(¢|+1 _ m
A K-1 + K 1 .
Z] 17\‘i+i+1 ¢_e 7\'i+i+1

-1

Let Vi=[0"Z!Z(g;®)]" be the value we compute for the asymptotic variance, V=[0"Z7_(g;d))]
the exact value. Our aim is to compute a numerical upper bound to the absolute value of the

percentage error in our calculation of the asymptotic variance V,
(AA43) [VV/V = (0”20 O] -0 BT d)] | /[0°Z (g )] = B[ZZo(gd)]

| ij;é(g*jjd)j)‘zo;:o(gfd)i) | <
| By NS ) |+ | Zolg ) -(gd)] | + | Ty (g | = B +E,+E,.

—
(=)
—

Since [Z{Z)(g;®)]" and E, may be computed directly, our task is to bound &, and &; by functions that
may be calculated from the parameters of the DGP. Tedious but straightforward algebra may be used

to do so. To present the final result, we define the following notation:

(AA4.4) A" =sup; Eelel, A. = inf ; Eele?,
= [A(1-06)(1-07)] {1 +[(A./2)6°/ (1-67)]},
A= CAO%/[A(1-6%)] - {6/[A.(1-69(d-0)]},
B= ¢/[A.(1-96)(¢-0)],
A = o'{ [09A?/(1-67)] + [2(09)AB/(1-66)] + [¢?B*/(1-9%)] }.
M, = 6*/[A.(1-6%)],
M; = {[0%'¢"/(1-60)] + [6°/(1-67)]} / A.
M, =0?|¢-6[" { My(1+[A'6°/A.(1-69)]) + M,(A'/A.)[b/(1-$6)+6/(1-6%)] },
M, = 6°M,CA" +M,M,A"+0°M;| -0 |,

= 0°M, A/ [A.(1-67).

Then

[1]

(AA4.5) 2 < [ML(1-0)/(1-)] + {M[1-($6)]/(1-66)},

E, < [AQ7/(1-¢7)]"
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As stated above, we set J=101 in the results presented in the paper. Some numerical results for

two values of | and several parameter sets, with 6°=1 and K=500 throughout:

1. $=.9,0=.95,y=.9, y,=.1: J=100, | V;-V | /V < 3x10"; J=300, | V,-V| /V < 3x10",
2. $=.9, 0=.95, y=.9, y,=.3: J=100, | V-V | /V < 1x10% J=300, | V-V | /V < 8x10™.

3. =5, 0=.51,y=.9, y,=.1: J=100 and J=300, | V}-V | /V < 4x10"".
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5. Details on procedures used in the simulations

Each sample was of size M+T,, +2, where the first M observations were presample values
generated so that the actual data were not directly influenced by initial conditions, and observations
M+1 through M+T+2 observations were used in the actual estimation. T, =10,000, and T=250, 500,
1000 or 10,000. Thus the results for T=250, for example, rely on the first 250 observations of the
samples used for T=500, 1000 and 10,000. We proceeded as follows:

1. Generate a M+T . +2)x1 vector of i.i.d. N(0,1) variables. Call these {n,}, t=1,..,M+T+2.

2. Set 07=Ee?, e,=0,1,. (Here and subsequently, 6,>0 is the positive square root of 6}.) For
t=2,...M+T+2, set 0> = w + y,e2, + 7,02, ¢, = 0N, 2z, = Pz _,+e-ce ;.

3. For t=M+1,..M+T, sety, = By+zB; + c,entcie = e ateie.

The vector of n,'s was held fixed across DGPs, though different DGPs of course involved different z,'s
and y,'s.

For convenience in presentation, in the text and in the remainder of this discussion, we
renumber the observations used in estimation as 1, ..., T+2. (rather than M+1,. . M+T+2).

Some details on how we implemented the proposed estimator, 6* = (EllitXt')'l(ET:lityt). We
obtained it as follows.

(a)Estimate [ in (4.1a) (t=1 to T) by least squares. Call the residuals Gt, with sample variance (/;ﬁ and

A A

A AN N A
first autocorrelation p,. The estimate of the first autocovariance of u, was: 6,,=p,0; if | p, | <.4999,

A

0, =sgn(p,)(:499907) if | p, | >.4999.

(b)Estimate ¢,...,d, in (4.22) (t=5 to T) by least squares. Let el denote the residual, with sample
variance o;.

A A A
(c)Estimate (4.2b) with a least squares regression of | el| on a constant and | el |,...,|el,], t=9 to T.
A
The j-period ahead autoregressive forecast of | eJ[+i | was used as described in part 3 of the Additional

A
Appendix to obtain an estimate of Ee‘zzeﬁi. An estimate of the covariance between e‘zzeﬁi, call it A;, was

defined as A; = max(0,[estimate of Eel%el?; - ol.]).

(&
N

(d)Estimate (4.1b) with a regression of u, on e, and e, t=5,...,T-2, obtaining c, and c,.

A

(©)As illustrated in equation (2.5), S=S(b) (101x101) involves estimates of Ee? u? and Eef uu,,,. Note

2 2 20, 2 2 2 2 2 2 2 — 2
that Eeju; = 0.0, + cicov(ey, e + cicov(ey,ery), Beguuy, = 0.0

eYu,l

+ clczcov(efﬂ,ef_j), and that
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these relationships hold even if, as in Table 2B, u, = (c,e,,,+c e+ conditionally homoskedastic MA(1)

AN
term). We constructed S in a fashion robust to the possible presence of such a conditionally

homoskedastic term, by setting S(j,j) = 0407 + A, + cf)ui_l, j=2,..,101, S(j,j+1) = S(+1,j) = o0, +

CGA;, j=2,...,100. We finished constructing S by setting S(1,1)203+20u,1, S(1,))=0>1.

(HConstruct P=¥(b) (101x2) by setting ¥(1,1)=1, ¥(1,2)=sample mean of z, ¥(j,1)=0j>1, ¥(j,2)=0,
times the (j-2) weight in moving average representation implied by the step (b) estimates of ¢y, d,...,P,.
(@ Compute G = (L,gy--sZ1op) = S'F. Write g=(0,g,)" (the first element of each (2x1) g will be zero

by construction).

(h)Set Z, = p+(0,2tj;})g2iei_i)', t=1,...,T, with eJ{_i = 0 for t-j<0.
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6. Formal statement of asymptotic results
This appendix presents a formal statement of our asymptotic results. We derive our results
under what we feel are reasonable conditions, without attempting to be as general as possible. We note
some limitations and possible extensions in our discussion. Proofs are in an earlier version of this
papet.
Notation: For a matrix A,|A| denotes the largest element of A in absolute value; for x€R" and

a differentiable function f:R"~RP, if/ denotes the (pXn) matrix of first derivatives of f; 1, denotes
Ox

I-norm: for an (nX1) vector x, my; = Xi_ x|, for a (pXn) matrix A, 1Ay is the max column sum, 1A) =
max .., 27_;|2;|; b; is the i'th element of a (mX1) vector b. For precise statement of technical
conditions and results, on occasion we shall need to add superscripts, subscripts and arguments to
matrices that in the paper are left uncluttered. In particular, we add a “*”” superscript and, sometimes, a

“T” subscript to the following quantities defined in section 2 of the paper: ¥ = Ee(H X,

S;=2_ [Ee(tu, e

Assumption 1: (a){e/,u, X'} is strictly stationary and ergodic, with finite fourth moments and absolutely
summable autocovariances. (b)E(e,|e j,e....) = 0. (c)For some integer q>0,
E(u | €,€. 1,605 g 15U g 2o ) = 0. (d)Eee/' is positive definite.
Assumption 2: (a)The class of allowable instruments are ones of the form:
(AAG.1) Z, = ptrige.,
(kx1) (x1)  (Xo)(ex1)

Z]g| <, EZX/ of rank k, lim . E(T""Z[_, Zu,) (T"E1_,Zu)" positive definite.

©

(b)There is an allowable instrument Z =p +X;

_igj¢,  that satisfies
(AAG.2) EZX!'=2L E(Z.uuZ))

for all allowable Z..

Remark 1: In 1(a), the stationarity assumption is for convenience and concreteness; analogous results
could be obtained under mixing conditions. From Assumption 1(b), the (rX1) vector e, is a martingale
difference sequence; it is the innovation in an observable (rX1) series of basic instruments z. This and

subsequent assumptions make no formal reference to z, because no explicit reference is necessary.
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Assumption 1(c) says that the regression disturbance follows an MA(q) process. Note that 1(c) does
not say that the univariate Wold innovation in u, is uncorrelated with e,, an assumption that will be
violated in many applications (Hayashi and Sims (1983)). Assumption 1(d) rules out degeneracies such
as including a linear combination of two instruments as a third instrument.
Remark 2: In conjunction with Assumption 1, Assumption 2(a) guarantees that EZ X' is finite and does
not depend on t and similarly for the limiting variance of T"”Z{_,Zu,. The additional assumption that
EZ X and the limiting variance are of full rank are essentially identification conditions.
Remark 3: Assumption 2(b) states that the space of allowable instruments includes an optimal
instrument: equation (AA6.2) is Hansen's (1985) optimality condition.

Remark 4: It follows that the minimum possible asymptotic variance is
(AAG.3) V' = EZX)'QEXZ) = EZX)' =Q; Q=2 E(Z uuZ)).

The equality EZ X' = Q" comes from setting Z, =7, in (AA6.2). Of course, if Z, is optimal, so is CZ,
for any kXk nonsingular nonstochastic matrix C.
Remark 5: Since allowable Z/'s are linear in a constant and lagged ¢'s, (AA6.2) will hold for all allowable

Z's if it holds when Z, is replaced by arbitrary e,; (j20) or by a constant. After using Z,=p +27_g.e.,,

(AAG.2) is:

(AAG.42) Z, replaced by e, Ee X! = XL Eleu u( pHE_ge ).
(1K) (ex1) (1x1)  (kx1)  (kxr)(rx1)

(AAG.4b) Z, replaced by 1: EX/' = Z{_ E[uu(p+Z5g.e.)]-

(1xk) (1x1) (kx1) (kX1)(rx1)

Additional notation: Stack (AA6.4b) and, for j=0,...,T-1, (AA6.4a) into a set of T+1 matrix

equations. Let G =(i',gp,....g11)". The result may be written as

(AAG.5) Y. = St G + Ry,
(1+Tr)xk (1+Tr)X(1+Tr) (1+Tr)xk (1+Tr)xk
R, = (2?:-qE [u u(E i:TgZCt.n)] , X ?:-qE [(Ei:nget»n) €U, ey 2?:-qE [(Ez:nget-n) €orets Ultd)'-

Let
Zt,T = “T+E’{;lg9j‘ﬂ"et-j> (HT’g;,Tr“agj;»l,T)' = (}jli = Sj;‘lle;
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We model Sy and .. as smooth functions of a mX1 parameter vector “b”, and then solve for the
T T p 5

weights {g}:

(AAG.6) Gy(b) = ST(b)—l P (), Gy(b) E(”T»gO,T""ng»l,T)'

(1+Tr)xk (1+Tr)X(1+Tr) (1+Tr)xk (kx1) (kxr) (kxr)

In (AAG.6) and below, we drop the “*” to allow for the possibility of misspecification. The feasible

A
estimator uses a sequence of estimates {b}, assumed to converge to an (mX1) parameter vector b'.

Write

(AA67) GT = (uTag(),Ts"'ng»l,T)' = ST<b)-11PTG:))s

Z’t,T = “T+Eg;lgi,Tet-j> ﬁ:(ET:1Zt,TXt')_12’£:1Z’t,TYt>

where, again, the double subscripting serves as a reminder that the variables in general depend not only

A

on b butalso T. In (AAG.7), e ; = e(b) is the residual after a parametric model is fitted to z.

Assumption 3: For some bfeR™ and some 8>.25, T°(b-bh) = O,(D).
Assumption 4: There is an open neighborhood N around b and a scalar positive constant c such that:

(2)Sy(b) and ¥ (b) are twice continuously differentiable, and for i,n=1,....m sup . 1= u% St(b)<c,

2

0 0
SUP pLen, T>0 ”m Sr(b)y<c, sup beN, T>0 ¥(b)y<c, sup beN, T>0 ”% ¥ (b),<c, sup beN, T>0
az ! n i
I M IPT<b)H1<C.
(b)det(S(b))>0, sup beN, T>0 iSy(b)y <c, sup beN, T>0 ”ST(b)il'H <c

(c)e(b) is twice continuously differentiable in b, with the fourth moments of e, and its first and second

derivatives uniformly bounded: for i,n=1,....m sup oy =0 E|e(b) | *<c, sup p =0 E | % e(b)|*<c, sup

0’ 4
_— <
beN, £0 E| ob.0b_ e(b)|'<c.

(d)e,(b) is a measurable function of {e[j>0}, as are % e,(b)-E % e,(b) and
82 82 i i
v Ot

e,(b) forin =1,..m.

Remark 6: Assumption 3 says that the sequence {b} converges to bl. The rate of convergence will be

8="% in most applications. Note that we have not assumed that S;=S.(b"), ¥; =¥ (b, or e (b")=e, nor
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even that one can recover e, from an observable series z, with a finite dimensional parameter vector: we
allow misspecification of the process generating the data. Since moments of u, figure into Sy, this will
generally require a {Gt} series constructed using a T® consistent estimator of B.
Remark 7: Assumption 4 suffices to insure that G(b)=S.(b) ¥ (b) is smooth enough to allow us to
apply a mean value argument around b=b'. It is satisfied by standard ARMA and GARCH models,

apart from those with unit moving average roots.

Theorem 1: Suppose that for all T, S(b)=S1, ¥..(bN =P, e, (b)=e. Then under assumptions 1-4,

JT(B-B) ~4 N(0, V), for V' defined in (AA6.3); as well, V' = lim .., (¥1'Sy P

Remark 8: Theorem 1 states that if the specification is correct, the estimator obtains the efficiency
bound. The theorem of course follows as well if S;(b?) and ¥ (b) differ from S; and ¥ by a quantity
that goes to zero at a sufficiently fast rate.

Remark 9: Note that nothing explicit has been said about Ry (defined in (AAG6.5)); the assumptions
made so far are sufficient to guarantee that weights derived from an estimate of S;'¥. are
asymptotically equivalent to those from Sy W;-S1'Ryp.

Remark 10: The natural estimator of V' is (¥,'S;' W)™

Assumption 5: Z,(b) may be written as Z,(b1) = py(b)+27_,g r(b)e,; for (kX1) py and (kXr) {g1}
that satisfy: (a)for all T, X7_ | éi)T(bU | <c< for some finite constant c; (b)there is an allowable
instrument

Zi=pt +27_gle,; with lim ;. pr(b) = pfand lim ;.. E?;}) | giT(bB_gH =0

]

Remark 11: Since we have already defined Z, 1(b") = uTGDU+E?;$gi)T(b1)et_j(b1) (note the upper bound
here is T-1, in the Assumption 5 distributed lag on e, is infinity), Assumption 5 essentially states that
one can write e,(b") as a (possibly) infinite order distributed lag on e,. This holds when the parametric

model for z, is an ARMA model.

Theorem 2: Under assumptions 1-5: (a)/T(B-B) ~, N(0, V), V=(EZIX)'QEXZMN",

Q=%1_ qEZt_iut_iutZJ{'; (b)V-V' is positive semidefinite.
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Remark 12: The natural estimator of EZIX ' is T'lEleit)TXt'. Q may be estimated in a vatiety of
familiar ways (e.g., Andrews (1991), Newey and West (1994), den Haan and Levin (1990)).
Remark 13: It may be shown that if the parametric specification is correct, as in Theorem 1, assumption
5 follows from previous assumptions, with éj’T:giT (g*i)TEO for j>T) and g‘;:g?. So under correct

specification, Theorems 1 and 2 make the same statement.
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7. Some worked out examples

The examples in subsections (a) and (b) are intended in part to make concrete the form of the
instrument, in part to illustrate that the optimal instrument typically puts nonzero weight on all lags.
Subsection (a) detives the population form of the optimal instrument Z, for a univariate AR(1) with a
conditionally heteroskedastic disturbance. This will serve as well to illustrate that our approach has
potential benefits even in the absence of serial correlation. Subsection (b) derives the population form
of the optimal instrument Z, in a conditionally homoskedastic special case of the DGP used in the
simulations. This will serve as well to allow us to illustrate that in conditionally homoskedastic
environments our estimator is asymptotically the same as that of West and Wilcox (1996). Subsection
(c) shows how the DGP used in the simulations is an example of a forecasting application. This is
intended to help motivate that DGP. In all three examples we suppress constant terms throughout.

(a)Univariate AR(1): Suppose we are interested in estimating  in an AR(1) model with an innovation

that is a conditionally heteroskedastic martingale difference sequence:
(AAT7.1) 9, = Byata, |B|<1, Ex=0, Ex=1,
Elu,|u,.y, #,5, ...]=0, E[%Ztﬂ,j-%,_,]:o for i#/,

(AA7.2) Eli| w4, #,5, ..]# Bt
Conditional heteroskedasticity is stated in abstract form in (AA7.2). We have here an uninteresting
special case of (2.1)—uninteresting because weighted least squares, or maximum likelihood, would be
computationally straightforward and the additional specification required relative to our estimator is in
practice unlikely to be questionable. We use this example because it is particularly simple.

This example may be mapped into the notation of (2.1) by setting X,=2,=y,,, ¢=#,,. To
facilitate reference to (AA7.1), we do not work in terms of g or ¢ but instead stick to y and # In this

notation, then, the matrix § is diagonal with /th diagonal element Ex; u}; the vector ¥ has /'th element

E”z;,/y/-l =p 1)
(Es# 420 0 0 0 0 )
( Edi0 0 0 0 )
s= 0 0 E# 7 0 0 0o ),
(o )
(0 0 0 Edgd 0 )
( 0 0 0 0 Eity1; )
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(En,19,1)
¥ = EE”/-zym)-

(En,,)

Then for given T one can solve explicitly for the instrument ¥'S"'. In the limit, as T-c°, we have
(AAT.3) Z, = ZjZl[(Eﬂrﬂz-l)”f—j/ E”sz'”zz] = 2,7:1[6/—1”&// E”Zr//zr]

In #, were conditionally homoskedastic (i.e, if we replace (AA7.2) with the condition E[#|#,,, #,,,
.J=Eu,), then Eu, i, = Eu, For, =1 = Z=Y 7B u,. But Y 5B 'u,, = y,,. Soif #,were conditionally
homoskedastic, Z,=y,,. That is, an unnecessarily tedious argument has been used to show that in the
model (AA7.1), with the additional condition that #, is conditionally homoskedastic, the best
instrumental variables estimator is least squares. (To prevent confusion, we note that this argument
also holds when we allow the variance of #, to be something other than unity, say E#,=0°, upon noting
that IV estimation with Z,=(1/6%)y,, is numerically identical to IV estimation with Z,=y,,.)

But given conditional heteroskedasticity, least squares is no longer the optimal IV estimator. In
constructing Z,, one weights the innovations not only by ', but also (inversely) by Euz,j//z,. The
specific model for conditional heteroskedasticity considered in Broze et al. (2001) is #=€€,, for an i.i.d.
(0,1) t.v. €, In this case, Esx’ 1, = E€’€} €5, = E€,Ee’} E€>, = Ee}, > 1, while Eﬂi/f, =1 for />1.
Then

Z=u,/Ee!, + ijzﬁ/—lﬂz;f
Alternatively, if #~ARCH(1), E[uzt | #4,1, 21,5, ...] Z(o-i-owf_l, 0<a<1, w=1-a (this conditions insures the
simplification F#,=1), then

Z=Y [,/ (- B,

Observe that all lags of #, receive nonzero weight in Z, a result that also carties over if we rewrite Z, as
a distributed lag on past y,’s.

(b)Conditionally homoskedastic special case of the DGP used in the simulations.

Let consider the form of the optimal estimator when the model is:
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(AAT.4) =B+, 1,= 0,-0e,,, |e<1>
(AAT.5) = Pzate |O]<1,
(AA7.6) e, ~ 1.i.d (0,1).

We first use the approach of the present paper to solve for the sequence {gj} such that ZTZZA‘;’:(@@ "
Then we use the approach of West and Wilcox (1996) to solve for the sequence {g;}. Then we show
that the two are identical.

The approach of the present paper: As in (2.5), S is tridiagonal. Under the assumptions of
conditional homoskedasticity and unit vatiance for e, the diagonal elements are Fe //f = E¢, /Eﬂf = Ei,
= 1+0°, while the off-diagonal elements are E¢, u,,,u, = E¢, Eu,n,= Eu,,n,= -0. As for ¥, since

Ee,z,= ¢, the /th element of Pis ¢":

(1+6> -6 0 0 0 0 0 )
-6 1+6> -6 0 0 0 0 )
© G 1+6> -6 0 0 0 )
s= )
© 0 0 0 -0 1+6> -6 )
© 0 0 0 0 -0 146 )
a )
@ )
= (. )
@™ )

Since Z, results in the limit as T~ of ¥'S"¢(), we have the following: the sequence {g;} satisfies the
difference equation
(AA7.7) -0g,., + (1+0%g,-0g., = ¢,,/=0,1,2, ...
We solve (AA7.7) subject to the initial condition g';=0 and the terminal condition lim ... ¢=0. The
unique solution is
(AA7.8) g =0g,+d1-6¢)",;=0,12,.;¢,=0.
Thus, 2=(1-0d)", 2=(0+)(1-6d) ", etc.

The approach of West and Wilcox (1996): Here we apply equation (2.10) in West and Wilcox.
To translate the notation of equation (2.10) in West and Wilcox (1996) into the notation of the present
paper: 0,-0, 0,=0, P'=1, F=¢, R;=z. Then equation (2.10) in West and Wilcox gives

(AA7.9) 7=07Z, + (1-0¢) "z,
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With some straightforward algebra it may be verified that Z, defined in (AA7.9) satisfies Z,=) 7.z, for
{g/} defined in (AA7.8).

In a conditionally homoskedastic environment, the feasible procedure described here is
asymptotically equivalent to the procedure described in West and Wilcox (1996) (provided, of course,
that the approximating parametric models are the same asymptotically). In our view, in a conditionally
homoskedastic environment, the West and Wilcox (1996) procedure will usually be computationally
simpler.

Observe once again that the optimal instrument puts nonzero weight on all lags of ¢, (from
(AA7.7), g#0 for all j) and on all lags of z, (from (AA7.9), Z, =(1-6¢) 'Y 7-,0’3,).

(c)The DGP in the simulations as an example of a forecasting application

Suppose that there is a variable », that evolves according to
(AAT.10) w=bw, e, + €,,,
where €, and €,, are martingale difference sequences that are independent at all leads and lags. Suppose
further than in forming expectations of future »’s, private agents see both €,, and €,, while the
economist sees only »#, and thus cannot distinguish between €,, and €, This is the simplest possible
parameterization of the presumption that private agents have information available for forecasting that
is not available to econometricians.

Then E(w,,, | €,,€0, €115 €210 -.)—1.€., the two period ahead private agent forecast of w—is
readily seen to be ¢p°w,+de,. In a typical forecasting application, we have a time series on the
realization and on the forecast. Let
(AAT7.11) 9, = W, 3—forecast=¢p w,+oe,,

Then we have
(AA7.12) D= zBy Tt o,
2= Pate,
where ;=1 and
(AAT.13) e=O’e TP, 1, = 0ottt

0247 = E(€1402| €142), a=1/b, v4, = €4-E (€17 | €142)-
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8. Some details on maximum likelihood calculations

This section presents some algebraic details on the ML calculations.

Without loss of generality, we drop the constant term in (3.1a), relabel B, as B, and write (3.1a),
(3.1b) as
(AA8.T) &=~ PReo+ Oy,

¢|#1 ~ N, 0; = @ty6.1 Ty, 0,4).
We define the (5X1) parameter vector of interest as
(AA82)  C=(BOwrny)
Apart from a constant, the log likelihood for one observation is (, =-0.5[log 0°+(¢;/ 7,)]. The object of
interest is the asymptotic variance of the ML estimator of £ This is the (1,1) element of the
expectation of the inverse of the outer product of the score, i.e., the (1,1) element of the inverse of
E(@t,/90)(0t,/30)".

To obtain this quantity we proceed as follows. (1)For M=10,000 and T=990,000, we generate a
time series of data of length M+T, setting the initial values of certain quantities to zero. (2)Use that
time series to generate a time series of observations on the score, again setting the initial values of
certain quantities to zero. (3)Discard the initial M observations. (4)Estimate E£(0(,/9()(0!,/9C)" as the
average of the remaining T" (non-discarded) observations, setting to zero terms with expectation zero.
(5)Report the (1,1) value of the inverse of the estimate of E(3!,/9C)(A(,/dC)".

Specifically, in step (1) we initialize ¢,=z,=3,=0,=0 and then generate data recursively via
(AA8.3) o= w+ yé,+ 1o, e=on. n,~iidN(,1), 5= ¢z, *e,

In step (2) we initialize d¢,/93=0e,/00=00/0 =00} /060=00;/dy,=00,/d¥,=0 and then generate data

recursively via






