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Appendix A. Data

We use the Panel Study of Income Dynamics (PSID) to estimate the wage process,

marriage and divorce probabilities, initial distributions of couples and singles over

state variables, and sample moments that we match using our structural model.

The PSID is a longitudinal study of a representative sample of the U.S. popu-

lation. The original 1968 PSID sample was drawn from a nationally representative

sample of 2,930 families designed by the Survey Research Center at the University

of Michigan (the “SRC sample) and from an oversample of 1,872 low-income families

from the Survey of Economic Opportunity (the SEO sample). Individuals and their

descendants from both samples have been followed over time.

We study the two cohorts born in 1936-1945 (the 1940s cohort) and in 1956-1965

(the 1960s cohort) and who are not in the SEO sample.1 More specifically, we select

all individuals in the SRC sample who are interviewed at least twice in the sample

years 1968-2013, select heads and their spouses, if present, and keep individuals born

between 1936 and 1965 who did not graduate from college. We also include only white

individuals and drop those who are married to a non-white spouse.2 As reported in

Table 1 in the main text, the resulting sample includes 5,039 individuals age 20 to

70, for a total of 73,944 observations.

The Health and Retirement Study (HRS) is a longitudinal data set that collects

information on people age 50 or older and includes a wide range of demographic,

economic, and social characteristics, as well as physical and mental health and cog-

nitive functioning. We use it to compute inputs for the retirement period because it

contains a large number of observations and high-quality data for this stage of the

life cycle.

Our data set is based on the RAND HRS files and the EXIT files, which include

information on the wave right after death. As that data quality from the first two

waves is lower, we use data from wave 3 to wave 12 (that is, from year 1996 to 2014).

We select individuals in the age range 50-100 and thus born between 1906 and 1964.

After keeping white, non-college graduates and their spouses, we are left with 19,377

individuals and 110,923 observations, as detailed in Table 3 in the main text.

1The SEO sample includes families with income below half of the poverty line in 1968, and only
29% of them are white individuals or couples with less than a college degree. In addition, in 1997,
the PSID stopped following most SEO families, so they are no longer in the data set.

2Wife race is not available in the PSID until 1985. When possible, we use information gathered
after that date. If that information is still missing, we assume wife race is the same as the husband.
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Appendix B. Choosing the appropriate price indexes

To compute real quantities and compare them across cohorts, it is necessary to

take a stand on price indexes. Given our focus, the appropriate price index to use is

one that refers to the out-of-pocket expenses of the people who are less educated and

thus have lower incomes, and not to the aggregate consumption basket consumed in

the economy. The latter, in fact, includes higher-education and higher-income people,

as well as government purchases.

Figure 1 compares the cumulated inflation implied by several price indexes during

the period for which all indexes are available, that is 1982-2013. More specifically,
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Figure 1: Cumulative inflation for various price indexes

the price indexes that we use in this comparison are as follows:

1. CPI-U, the Consumer Price Index for all urban consumers, computed by the

U.S. Bureau of Labor Statistics (BLS), is a measure of the average change over

time in the prices paid by urban consumers for a market basket of consumer
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goods and services. The weights are computed from the Consumer Expenditure

Survey (CE) using a Laspeyeres formula. It is available since 1913.

2. CPI-U-RS, the Consumer Price Index for all urban consumers Research Series,

also computed by the BLS, attempts to estimate the CPI-U over the 1978-1998

period by applying the most current methods used to estimate inflation to the

computation of the CPI since 1978.

3. IBEX, Chicago Fed Income Based Economic Index Consumer Price Index,

which uses CE data and item-specific Consumer Price Index data (that is, the

same prices used in constructing the CPI) to construct monthly chain-weighted

inflation measures for different demographic groups and for the urban popu-

lation as a whole starting from 1982. For this measure, we report the price

index referring to people with income below the median (IBEX-bottom50) and

75th percentile (IBEX-bottom75). See McGranahan and Paulson (2005) for a

discussion of these price indexes.

4. PCE, Personal Consumption Expenditures Price Index computed by the U.S.

Bureau of Economic Analysis. It is available since 1929 (at an annual frequency)

and uses a chain-type price index formula, whose weights are based on business

surveys. It is designed to measure the change in prices paid for goods and

services by the personal sector (i.e., individuals and nonprofit institutions that

serve them) in the U.S. national income and product accounts, and includes

items purchased by the government and nonprofit institutions. Unlike the CPI,

it includes U.S. citizens living abroad, parts of the institutionalized population,

and military personnel living on a military base.

Figure 1 highlights that the CPI-U and the overall IBEX imply very similar cu-

mulated inflation over the period (for people both below the median and in the 75th

income percentile of income), that the CPI-U-RS implies a slightly lower cumulated

inflation over the period, and that the PCE is the index implying the lowest cumula-

tive inflation of all of these indexes. Consistent with the IBEX indexes, Kaplan and

Schulhofer-Wohl (2017) use scanner data and find that lower-income households face

higher inflation rates: “The cumulative differences in inflation rates across income

groups, in particular, are striking: Over the nine years from the third quarter of

2004 through the third quarter of 2013, average inflation cumulates to 33% for house-
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holds with incomes below $20,000 but to just 25% for households with incomes above

$100,000. The negative correlation of inflation with income implies that inequality

in real incomes is rising faster than inequality in nominal incomes.” Jaravel (2019),

also using scanner data from the retail sector, finds comparable results. Thus, given

our focus, the most appropriate price index to use is the CPI-U, which not only is

very close to the IBEX and thus better represents the inflation rates faced by the less

educated, but also is available from the start of our sample period.

More generally, differences between the CPI and PCE have been extensively stud-

ied in the literature. McCully et al. (2007) show, for example, that in addition to the

different formula used, factors that explain the differences between these price indexes

include differences in weights and in items included in the two indexes. Both of these

factors depend on the different scope of the two indexes: while the PCE measures the

inflation of total private consumption, independently from who pays for it, the CPI

concentrates on out-of-pocket expenditures.

Appendix C. First-step estimation

This appendix details our computations of our first-step model inputs, which

comprise human capital, wages, health status at retirement, health dynamics after

retirement, out-of-pocket medical expenses, survival probabilities, marriage and di-

vorce probabilities, the distribution of people over state variables upon entering the

model and of prospective spouses, the number of children, wealth, Social Security

benefits, and taxes.

Human capital

In the model, we keep track of human capital measured as average accumulated

earnings for a person (ȳkt), subject to the Social Security cap that is applied to yearly

earnings and is time varying. To compute human capital, we assume that in the PSID

data, people start working at age 22, and we use the observed individual-level capped

average earnings that they report starting from that age to compute our measure of

human capital.3

3For people entering the sample after age 22, we impute average accumulated earnings at the
age of entry in the sample. For this purpose, we run a regression of capped earnings on cohort
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Wages

Our framework requires that we estimate not only wage as a function of human

capital, age, and gender, and the stochastic process for the wage shocks, but also the

realized wage shocks for all men and women of working age in our sample (whether

they are working or not). This is because we allow our initial conditions and assor-

tative matching in marriage to depend on the realized values of these shocks.4

To do so, we proceed as follows. First, we impute potential wages for individuals

who are not working, so that we are able to construct potential wage as actual wage

for participants and potential wage for non-participants. Second, we estimate poten-

tial wage as a function of age, gender, and human capital. Third, we estimate the

persistence and variance of its unobserved component and the realized wage shocks

using Kalman filtering, as in Borella et al. (2017).

Missing wages imputation. The observed wage rate is computed as annual

earnings divided by annual hours worked. Gross annual earnings are defined as labor

income during the previous year. Annual hours are given by annual hours spent

working for pay during the previous year.

We impute missing wages by using coefficients from fixed effects regressions that

we run separately for men and women. To avoid endpoint problems with the poly-

nomials in age, we include individuals age 22 to 70 in the sample. We define the

observed wage for labor market participants as

lnwagekt = Inkt ˜lnwagekt,

where k denotes an individual and t is age. The term Inkt is an indicator for partic-

ipation (which is equal to 1 if the individual participates in the labor market and

has no missing hours or earnings), and ˜lnwage is the potential wage that we wish to

dummies, a polynomial in age fully interacted with gender, education dummies, and marital status
and race dummies also interacted with gender. We then compute average capped earnings based on
the predictions from the regression and assign the average to late entrants. Average earnings after
entry in our sample are then updated for each individual following his/her observed earnings history
(as done in the model).

4French (2005) and Blundell et al. (2016), however, do not need the actual values of the realized
wage shocks and estimate the parameters of their wage equations by using their structural models
and matching moments on participants, thus relying on the model to generate the same selection
patterns that are in the observed data.
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estimate. We estimate

lnwagekt = Z ′ktβz + fk + ςkt,

where the dependent variable is the logarithm of the observed hourly wage rate, fk

is an individual-specific fixed effect, and ςkt is an error term. We include a rich

set of explanatory variables in Zkt: a fifth-order polynomial in age, a third-order

polynomial in experience (measured in years of labor market participation), marital

status (a dummy for being single), family size (dummies for each value), number of

children (dummies for each value), age of youngest child, and an indicator of partner

working if married. As an indicator of health, we use a variable recording whether

bad health limits the capacity of working (this is the only health indicator available

in the PSID for all years). Because this health indicator is not collected for wives, we

do not include it in the regression for married women. Both regressions also include

interaction terms between the explanatory variables. Variables that do not vary over

time are captured by the individual effect fk.

Using the estimated coefficients, we take the predicted value of the wage to be the

potential wage for observations with missing wages. Hence, we define potential wage

as

lnwagekt =

lnwagekt if Inkt = 1

Z ′ktβ̂z + f̂k if Inkt = 0

Wage function estimation. We model wages as a function of human capital,

age, and gender, and we measure human capital as average realized earnings accrued

up to the beginning of age t (ȳt).

To estimate the wage profiles, we proceed in two stages. First, we run the following

fixed effect regression for the logarithm of potential wages

lnwagekt = dk + f i(t) +
G∑
g=1

βgDg ln(ȳkt + δy) + ukt, (1)

on a gender-specific fifth-order polynomial in age f i(t), gender-cohort cells g, and

gender-cohort dummies Dg.
5 The shifter δy is set equal to $5,000 to avoid taking

5To estimate a cohort-specific effect of human capital on wages in Equation (1), we redefine how
we construct our cohorts. More specifically, we take two broader windows to define our cohorts: the
1950 cohort includes the generations born in 1935-1950, while the 1960s cohort includes those born
in 1951-1965. We do so because we do not observe the complete age profile for the wages of the
1960s cohort.
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the logarithm of values that are too small.6 We also experimented by adding marital

status dummies to capture the effect of changing marital status on wages, but they did

not turn out to be statistically different from zero, conditional on average earnings.

Second, we regress the sum of the fixed effects and the residuals for each person on

cohort and marital status dummies and their interactions, separately for each gender,

and use those estimated effects for gender, marital status, and cohort as a shifter for

the profiles of each group. This procedure allows for differences in average wages by

marital status and cohort.

Table 1 reports the coefficients of the estimated equation from the first stage, the

fixed effect regression, and Table 2 reports those from the second stage, that is, the

regression on the residuals and fixed effects from the first stage. The marginal effects

are in Table 7 in the main text.

Coefficient Standard Error
ln(ȳt + δy) 0.346*** (0.0191)
ln(ȳt + δy)*female 0.0669*** (0.0246)
ln(ȳt + δy)*born in 1940s -0.0907*** (0.0246)
ln(ȳt + δy)*born in 1940s*female 0.0425 (0.0347)
Age -0.0951 (0.185)
Age2/(102) 0.497 (0.925)
Age3/(104) -1.222 (2.237)
Age4/(106) 1.504 (2.626)
Age5/(108) -0.763 (1.198)
Age*female 0.343 (0.246)
Age2/(102)*female -1.897 (1.229)
Age3/(104)*female 4.932* (2.977)
Age4/(106)*female -6.101* (3.498)
Age5/(108)*female 2.912* (1.598)
Constant -1.452 (0.946)
N 62176
R-sq 0.100

Table 1: Coefficients from fixed effects estimates. Dependent variable: logarithm of the
potential wage. PSID data. Robust standard errors in parentheses, clustered at
the individual level. * p<0.10, ** p<0.05, *** p<0.01

The shock in log wage is modeled as the sum of a persistent component plus white

noise, which we assume captures measurement error:

dk + ukt+1 ≡ wkt+1 = ln εkt+1 + ξkt+1, (2)

6While we use earnings subject to the Social Security cap to compute average earnings (this is
the state variable in our model), estimating this wage regression by using uncapped previous average
earnings yields very similar estimates.
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Men Women
Born in 1940s 1.079*** 0.488***

(0.0556) (0.0409)
Born in 1950s 0.418*** 0.278***

(0.0503) (0.0366)
Married 0.0730*** -0.0146

(0.0244) (0.0233)
Married*Born in 1940s -0.0509 0.0137

(0.0569) (0.0445)
Married*Born in 1950s 0.0795 -0.0194

(0.0527) (0.0395)
Constant 1.110*** -1.895***

(0.0227) (0.0212)
N 31256 30920
R-sq 0.324 0.145

Table 2: Second stage: coefficients from OLS estimates. Dependent variable: residuals
from fixed effects estimates. PSID data. Robust standard errors in parentheses,
clustered at the individual level. * p<0.10, ** p<0.05, *** p<0.01

ln εkt+1 = ρε ln εkt + vkt+1, (3)

where ξkt+1 and vkt+1 are independent white-noise processes with zero mean and

variances equal to σ2
ξ and σ2

v , respectively.

We use the residuals from the first stage to estimate these processes separately

for each gender.7

Because initial conditions and assortative matching in marriage are functions of

one’s wage shocks, we need the value of those wage shocks for each person of working

age over time. To do so, we estimate the system formed by (2) and (3) by maximum

likelihood, which can be constructed assuming that the initial state of the system

and the shocks are Gaussian, and using standard Kalman filter recursions. With this

procedure, we are able to estimate both the parameters in (2) and (3) and the entire

state, that is, ln εkt, t = 1, ...T . Table 3 reports our estimates of the AR component

of the wage.

Alternative estimation methods in the presence of sample selection.

Our results are thus obtained by running fixed effect regressions to impute missing

wages, constructing potential wages by using observed wages when available and

imputing wages when missing, and running fixed effects regressions on potential wages

7For this, we limit the age range to between age 25 and 65, and because we rely on residuals
also taken from imputed wages, we drop the highest 0.5% residuals for both men and women. This
approach avoids large outliers to inflate the estimated variances (however, the effect of this drop is
negligible on our estimates).
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Parameter Men Women
ρε 0.939 0.946
V ar(v) 0.023 0.014
V ar(ln ε1) 0.101 0.086

Table 3: Estimated processes for the wage shocks for men and women, PSID data.

to estimate the deterministic and stochastic components of our wage processes.

In this section, we compare the results from our procedure with those resulting

from two other approaches commonly used in the literature: running fixed effects

on wages for labor market participants and running fixed effects on wages for labor

market participants and applying a control function approach to correct for sample

selection (Dustmann and Rochina-Barrachina, 2007).

The control function approach corrects for sample selection by modeling labor

market participation as a probit, computing the Mills ratio (which is the probability

that a person is working given his or her characteristics), and then using the inverse

Mills ratio as an additional regressor to the main fixed effect (or demeaned) regres-

sion for wages. This approach was pioneered by Heckman (1979) and extended by

Wooldridge (1995) to panel data.

To apply the control function approach, we include the following variables to

explain the participation decision: home ownership (dummy), age of the youngest

child, total number of children, number of children age 0-5, and completed grades

of education, all interacted with gender, cohort, and marital status. In addition, we

include an age polynomial interacted with gender.

In the wage equation, we also interact the inverse of the Mills ratio with gender.

As Table 4 shows, the inverse Mills ratio is not significantly different from zero for

men or women, indicating no selection bias is present in the fixed effects estimates.8

The table also shows that all of our estimated coefficients are very similar when using

these three approaches and thus are robust to the specific approach used.

8Because we model wages as a function of human capital and human capital is predetermined
but not strictly exogenous, it should be instrumented, as suggested by Semykina and Wooldridge
(2010), among others. Unfortunately, it is not easy to find good instruments for human capital, in
addition to those used to predict participation. We do not attempt to do so, as it is a task that goes
beyond the scope of this appendix. See Costa Dias et al. (2018) for more on this.
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(1) (2) (3) (4)
BASELINE FE W95 W95

λ̂t 0.0560 0.140
(0.0418) (0.194)

λ̂t ∗ female -0.0902
(0.199)

ln(ȳt) 0.346*** 0.379*** 0.369*** 0.368***
(0.0191) (0.0208) (0.0207) (0.0217)

ln(ȳt)*female 0.0669*** 0.148*** 0.149*** 0.149***
(0.0246) (0.0301) (0.0306) (0.0309)

ln(ȳt)*born in 1940s -0.0907*** -0.105*** -0.104*** -0.101***
(0.0246) (0.0260) (0.0260) (0.0271)

ln(ȳt)*born in 1940s*female 0.0425 0.0501 0.0487 0.0461
(0.0347) (0.0444) (0.0448) (0.0451)

Age -0.0951 -0.250 -0.233 -0.242
(0.185) (0.237) (0.244) (0.231)

Age2/102 0.497 1.271 1.220 1.265
(0.925) (1.215) (1.242) (1.183)

Age3/104 -1.222 -3.125 -3.069 -3.187
(2.237) (3.024) (3.070) (2.944)

Age4/106 1.504 3.784 3.784 3.941
(2.626) (3.657) (3.690) (3.560)

Age5/108 -0.763 -1.823 -1.854 -1.943
(1.198) (1.722) (1.728) (1.678)

Age ∗ female 0.343 0.599* 0.562 0.574
(0.246) (0.358) (0.350) (0.354)

Age2 ∗ female/102 -1.897 -3.183* -3.021* -3.079*
(1.229) (1.834) (1.787) (1.816)

Age3 ∗ female/104 4.932* 8.103* 7.775* 7.921*
(2.977) (4.555) (4.428) (4.519)

Age4 ∗ female/106 -6.101* -9.942* -9.621* -9.804*
(3.498) (5.501) (5.342) (5.470)

Age5 ∗ female/108 2.912* 4.731* 4.610* 4.708*
(1.598) (2.588) (2.514) (2.581)

N 62716 51662 51662 51662
R-sq 0.100 0.101 0.101 0.101

Table 4: Sample selection. (1) Fixed effects on potential wage (our estimates in the model),
(2) fixed effects on actual wage, (3) FE plus inverse Mills ratio λ on actual wage
(Wooldridge, 1995). Robust standard errors in parentheses, clustered at the
individual level. In (3), bootstrap standard errors (500 replications). * p<0.10,
** p<0.05, *** p<0.01

Health status at retirement

We use the HRS data and define health status, ψ, on the basis of self-reported

health, a variable that can take five possible values (excellent, very good, good, fair,

poor). Bad health status is defined as a dichotomous variable equal to 1 if self-reported

health is fair or poor and 0 otherwise.9

We cannot calculate the probability of being in bad health at the start of retire-

9Blundell et al. (2017) study labor supply behavior around retirement time and show that self-
reported health captures the effects of health well compared with a variety of health measures,
including measures computed using objective health outcomes.
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ment using the observed frequencies for the 1960s cohort because we do not observe

that cohort at that age. We thus resort to the following imputation procedure for

health status at age 66. We estimate a logistic regression for people age 50-68 in

which the dependent variable is health status (0 for good health, 1 for fair or bad

health), on a third-order polynomial in age and cohort dummies, separately for single

men, single women, and couples. In the case of couples, we estimate a multinomial

logistic regression over the four possible health states in the couple, respectively, for

the husband and the wife: (good, good), (good, bad), (bad, good), and (bad, bad),

and we use a second-order polynomial in age because higher powers of age are not

statistically different from zero for them. We then use our estimated coefficients to

predict the health status at age 66 for our 1960s cohort.

Single Single Husband/Wife Husband/Wife Husband/Wife
Men Women (Good/Good) (Good/Bad) (Bad/Good)

Age -5.749* 4.784** -0.273* -0.379** -0.271
(3.210) (2.133) (0.154) (0.184) (0.180)

Age2/102 9.842* -7.675** 0.187 0.290* 0.209
(5.390) (3.572) (0.127) (0.152) (0.149)

Age3/104 -5.564* 4.094**
(3.006) (1.987)

Born in 1930s -0.181 -0.322*** 0.484*** 0.0774 0.403**
(0.161) (0.114) (0.148) (0.175) (0.177)

Born in 1940s -0.334** -0.193** 0.449*** 0.133 0.445***
(0.130) (0.0985) (0.131) (0.154) (0.158)

Born in 1950s -0.262** -0.125 0.0943 -0.268* 0.248
(0.121) (0.0938) (0.125) (0.147) (0.151)

Constant 110.4* -99.60** 11.12** 12.60** 8.831
(63.50) (42.30) (4.601) (5.512) (5.388)

Table 5: Probability of being in bad health. Logit (for singles) and multinomial logit (for
couples, husbands and wives) coefficient estimates. HRS data. Robust standard
errors in parentheses, clustered at the individual level. * p<0.10, ** p<0.05, ***
p<0.01

Table 5 shows our estimated coefficients, while Table 6 reports our predicted

probabilities of being in bad health at age 66 by demographic status, as well as the

p-value of the test of equal probabilities by cohort.

Table 6 shows that single men born in the 1960s are almost 8 percentage points

more likely to be in bad health by the time they reach age 66 than those born in the

1940s: this difference is statistically different from zero at the 1% level, as illustrated

by the p-value in the last row of the table. For single women the increase in the

probability of being in bad health at age 66 is also substantial, almost 4.5 percentage

points, and also statistically different from zero. Turning to couples, the probability
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that both partners are in good health drops by 6.0 percentage points relative to the

cohort born in the 1940s, and the probability that both partners are in bad health

increases by 4.2 percentage points. The probability of women being in bad health and

having husbands in good health increases by 3.4 percentage points with respect to

the cohort born in the 1940s, while the probability that husbands are in bad health

and have a healthy wife decreases slightly, although the change is not statistically

significant.

Single Single Husband/Wife Husband/Wife Husband/Wife Husband/Wife
Men Women (good/good) (good/bad) (bad /good) (bad /bad)

Born in 1940s 0.349 0.347 0.576 0.148 0.173 0.104
Born in 1960s 0.428 0.392 0.516 0.182 0.156 0.146
P-value 0.013 0.055 0.021 0.025 0.229 0.008

Table 6: Predicted probabilities of being in bad health at age 66, by gender, marital status,
and cohort. P-value of the difference between cohorts.

Health dynamics after retirement

We model the evolution of health for people born between 1900 and 1965 as a

logit function:

πψt = Prob(ψt = 1 | Xψ
t ) =

exp(Xψ′
t β

ψ)

1 + exp(Xψ′
t β

ψ)
,

which we then use to construct the transition matrix at each age, gender, and marital

status. The set of explanatory variables Xψ
t includes cohort dummies, a second-order

polynomial in age, previous health status, gender, marital status, and interactions

between these variables when they are statistically different from zero. We use es-

timated coefficients relative to the cohort of interest as input in our model. As the

HRS data are collected every two years, we obtain two-year probabilities and convert

them into one-year probabilities. Table 7 reports our estimated coefficients.

Out-of-pocket medical expenses

Out-of-pocket (oop) medical expenses are defined as the total amount that the

individual spends out of pocket in hospital and nursing home stays, doctor visits,

dental costs, outpatient surgery, average monthly prescription drug costs, home health

care, and special facilities charges. They also include medical expenses in the last year
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Coefficient SE
Age -0.0188 (0.0197)
Age2/102 0.0252* (0.0132)
Healtht−1*age 0.105*** (0.00182)
Healtht−1*age2/102 -0.0936*** (0.00240)
Male -3.312*** (0.868)
Male*age 0.0924*** (0.0244)
Male*age2/102 -0.0616*** (0.0169)
Married -0.0857*** (0.0251)
Married*age 0.0666*** (0.0175)
Married*age2/102 2.493*** (0.891)
Born in 1910s 0.308*** (0.0729)
Born in 1920s 0.132** (0.0604)
Born in 1930s -0.0453 (0.0531)
Born in 1940s -0.0520 (0.0446)
Born in 1950s -0.0524 (0.0477)
Constant -1.539** (0.712)

Table 7: Health dynamics over two-year periods. Logistic regression coefficients, depen-
dent variable: health status. HRS data. Robust standard errors in parentheses,
clustered at the individual level. * p<0.1, ** p<0.05, *** p<0.01

of life, as recorded in the exit interviews. In contrast, expenses covered by public or

private insurance are not included in our measure, as they are not directly incurred

by the individual. The estimated equation is

ln(mkt) = Xm′
kt β

m + αmk + umkt,

where explanatory variables include a third-order polynomial in age fully interacted

with gender and current health status, and we include these interactions whenever

they are statistically different from zero. Marital status (also interacted with other

variables) does not turn out to be significantly different from zero in the first step.

We estimate the equation on the HRS data using a fixed effects estimator, which

takes into account all unmeasured fixed-over-time characteristics that may bias the

age profile, such as differential mortality (as discussed in De Nardi et al. (2010)). We

then regress the residuals from this equation on cohort, gender and marital status

dummies to compute the average effect for each group of interest. Hence, the profile

of the logarithm of medical expenses is constant across cohorts up to a constant.

Table 8 reports estimated coefficients, while Table 8, in the main text, reports and

discusses marginal effects.

Finally, we model the variance of the shocks regressing the squared residuals from

the regression in logs on a third-order polynomial in age fully interacted with gender

and current health status, and on cohort, gender, and marital status dummies, and
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Coefficient SE
Age 0.497*** (0.0477)
Age2/102 -0.634*** (0.0675)
Age3/104 0.277*** (0.0315)
Bad health 3.876*** (0.335)
Bad health*Age -0.101*** (0.00947)
Bad health*Age2/102 0.0672*** (0.00659)
Male*Age -0.253*** (0.0842)
Male*Age2/102 0.370*** (0.120)
Male*Age3/104 -0.177*** (0.0560)
Constant -3.853*** (0.929)
Second stage
Male 5.547*** (0.00779)
Married 0.283*** (0.00808)
Born in 1910s -0.527*** (0.0262)
Born in 1920s -0.429*** (0.0211)
Born in 1930s -0.396*** (0.0200)
Born in 1940s -0.396*** (0.0199)
Born in 1950s -0.129*** (0.0211)
Constant -2.076*** (0.0196)
N 96098
R-sq first stage 0.027
R-sq second stage 0.854

Table 8: Estimates for the logarithm of medical expenses, first stage (fixed effects) and
second stage (OLS). HRS data. Robust standard errors in parentheses, clustered
at the individual level. * p<0.1, ** p<0.05, *** p<0.01

use it to construct average medical expenses as a function of age by adding half the

variance to the average in logs before exponentiating.

Survival probabilities

We model the probability of being alive at time t as a logit function,

st = Prob(Alivet = 1 | Xs
t ) =

exp(Xs′
t β

s)

1 + exp(Xs′
t β

s)
,

which we estimate using the HRS data (which are biennial). Among the explanatory

variables, we include a third-order polynomial in age, gender, marital status, and

health status in the previous wave, as well as interactions between these variables

and age, whenever they are statistically different from zero. We also include cohort

dummies and use coefficients relative to the cohort of interest to adjust the constant

accordingly. Table 9 reports estimated coefficients.

Table 10 reports the marginal effects from our estimated equation. On average,

a marginal increase in age reduces the biennial probability of survival by 0.75 and

0.53 percentage points for men and women, respectively, with the effect getting larger
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Coefficient SE
Age -0.745*** (0.218)
Age2/102 0.967*** (0.284)
Age3/103 -0.476*** (0.122)
Healtht−1*age -0.0632*** (0.00327)
Healtht−1*age2/102 0.0578*** (0.00394)
Male -0.563*** (0.0304)
Married 0.316*** (0.0323)
Born in 1910s 0.0854 (0.237)
Born in 1920s 0.106 (0.233)
Born in 1930s 0.121 (0.232)
Born in 1940s 0.116 (0.224)
Born in 1950s 0.220 (0.216)
Constant 24.94*** (5.457)

Table 9: Logistic regression coefficients, dependent variable: survival over a two-year pe-
riod. HRS data. Robust standard errors in parentheses, clustered at the individ-
ual level. * p<0.1, ** p<0.05, *** p<0.01

with age: at age 96, a marginal increase in age decreases the survival probability by

4.54 and 4.27 percentage points for men and women. The effect of age also differs

according to one’s health status: a marginal increase in age reduces the biennial

probability of survival by 0.61 percentage points if a man is in good health, and by

1.05 percentage points if he is in bad health. For women, the negative effect of age

almost doubles if they are in bad health, going from 0.41 to 0.77 percentage points.

While being married increases the probability of survival, being born in the 1960s

(relative to being born in the 1940s) decreases it, although the cohort effect, when

conditioning on health status, is not precisely estimated and statistically different

from zero (although it would be very significant if we did not include health in the

regression).

We transform the biennial probability of surviving that we estimate from the HRS

data into an annual probability by taking the square root of the biennial probability.

Marriage and divorce probabilities

We use the PSID to estimate the probabilities of marriage and divorce.10 We model

the probability of getting married, νt+1, and separately estimate the probability of

getting married for men and women,

νit+1 = Prob(Marriedt+1 = 1|Marriedt = 0, Zt) = F (Z ′tβm),

10Because the number of new marriages (and also of divorces) is limited in the data, we constrain
the cohort effect of the 1960s cohort to be the same as the one for the 1950s cohort.
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Men Women
Age overall -0.0075*** -0.0053***

(0.0002) (0.0002)
Age = 66 -0.0031*** -0.0019***

(0.0002) (0.0001)
Age = 76 -0.0063*** -0.0040***

(0.0004) (0.0003)
Age = 86 -0.0175*** -0.0121***

(0.0009) (0.0006)
Age = 96 -0.0454*** -0.0427***

(0.0028) (0.0031)
Age overall if good health -0.0061*** -0.0041***

(0.0002) (0.0001)
Age overall if bad health -0.0105*** -0.0077***

(0.0004) (0.0003)
Married 0.0222*** 0.0153***

(0.0024) (0.0015)
Born in 1960s -0.0084 -0.0059

(0.0169) (0.0119)

Table 10: Average marginal effects on the two-year survival probability for men and
women. HRS data. Robust standard errors in parentheses, clustered at the
individual level. *p < 0.10, ** p < 0.05, *** p < 0.01

where Zt include a polynomial in age, cohort dummies, and the after 1997 dummy.11

The term F denotes the standard logistic distribution.

Similarly, we estimate the probability of divorce as

ζt = Prob(Divorcedt+1 = 1|Marriedt = 1, Zt) = F (Z ′tβd),

where Zt include a polynomial in age, cohort dummies, and an indicator for biennial

waves. The term F denotes the standard logistic distribution. Table 11 reports our

estimated coefficients for marriage and divorce from our logistic regressions.

Conditional on meeting a partner, the probability of meeting with a partner p

with wage shock εpt+1 is

ξt+1(·) = ξt+1(εpt+1|εit+1, i),

where i denotes gender. We compute the above probability using our estimates of

the wage shocks, by partitioning households in age groups (25-35, 35-45, 45-60) and

computing the variance-covariance matrix of newly matched partners’ wage shocks

in each age group. The implied correlation in the three age groups is 0.24, 0.33, and

0.36, respectively. We then assume that the joint distribution is lognormal. As we

11The PSID goes from a yearly to a biennial frequency in 1997. To take this into account, we
include an indicator variable taking value one from 1997 on in the regression, which we then abstract
from when constructing the yearly probabilities.
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Single Men Single Women Couples
Marriage Marriage Divorce

Age 0.0179 0.00743 0.0224
(0.0405) (0.0441) (0.0278)

Age2/(102) -0.0897* -0.0988* -0.0931***
(0.0532) (0.0575) (0.0356)

I(year > 1997) 0.188 0.474** 0.706***
(0.191) (0.193) (0.114)

Born in 1940s 0.622*** 0.173 -0.119
(0.174) (0.179) (0.105)

Constant -1.672** -1.615** -2.886***
(0.731) (0.804) (0.526)

N 4206 5410 25597
Pseudo R-sq 0.025 0.042 0.019

Table 11: Estimated coefficients from logistic regressions. Column 1: Marriage of single
men; column 2: marriage of single women; column 3: divorce of couples. PSID
data. Robust standard errors in parentheses, clustered at the individual level.
* p<0.10, ** p<0.05, *** p<0.01

observe 722 new marriages in the age range 25-60 in the whole sample, we do not

allow this probability to depend on cohort.

We assume random matching over asset and lifetime income of the partner con-

ditional on partner’s wage shock. Thus, we compute

θt+1(·) = θt+1(apt+1, ȳ
p
t+1|ε

p
t+1)

using sample values of assets, average capped earnings, and wage shocks. More specif-

ically, we assume θt+1 is lognormally distributed at each age with mean and variance

computed from sample values. Assets include a shifter as described for the computa-

tion of the joint distribution at age 25 (see Wealth subsection in this appendix).

Distributions upon entering the model and for prospective

spouses

For single men and women, we parameterize the joint distribution of assets, aver-

age realized earnings, and wage shocks at each age as a joint lognormal distribution

given by  ln(ait + δa)

ln(ȳit + δy)

ln εit

∼ N

 µiat + δa

µiȳt + δy

µiεt

,Σi
st

 , (4)
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where Σs is a 3x3 covariance matrix and i denotes gender. We characterize this

distribution by estimating its mean and variance, which both depend on age t. To

estimate means, we regress the logarithm of assets plus shift parameter, average

earnings, and the productivity shock ln ε̂it on a third-order polynomial in age and

cohort dummies. The predicted age profile is the age-specific estimate of the mean

of the lognormal distribution. We estimate the elements of the variance-covariance

matrix by taking the relevant squares or cross-products of the residuals from this

regression. To obtain a smoothed estimate of the variance-covariance matrix at each

age, we regress them on a third-order polynomial in age, element by element.

For couples, we compute the initial joint distribution at age 25 of the following

variables: 
ln(a+ δa)

ln(ȳ1 + δȳ)

ln(ȳ2 + δȳ)

ln(ε1)

ln(ε2)

∼ N


µa + δa

µȳ1 + δȳ

µȳ2 + δȳ

µε1

µε2

,Σc

 , (5)

where Σc is a 5x5 covariance matrix computed on the data for couples.

Number of children

We regress the number of children on a fifth-order polynomial in maternal age,

interacted with marital status and cohort dummies to construct the average age

profile of children in each age group for single and married women and use the profiles

relative to the cohorts of mothers born in the 1960s. We run such a regression for

total number of children (used in equivalence scales), children 0-5, and children 6-11

(these two groups affect child care costs).

Wealth

We define wealth as total assets (defined as all asset types available in the PSID)

plus home equity net. Wealth in the PSID is only recorded in 1984, 1989, 1994, and

then in each (biennial) wave from 1999 onward. We rely on an imputation procedure

to compute wealth in the missing years, starting in 1968. This imputation is based
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on the following fixed effect regression:

ln(akt + δa) = Z ′ktβz + dak + wakt, (6)

where k denotes the individual and t is age. The parameter δa is a shifter for assets

to have only positive values and to be able to take logs, and the variable Z includes

polynomials in age, also interacted with health status, and with average earnings (un-

capped), family size, and a dummy for health status. The term dak is the individual

fixed effect and wakt is a white-noise error term. Equation (6) is estimated separately

for single men, single women, and couples, as wealth is measured at the household

level.

We then use the imputed as well as the actual observations to estimate the wealth

profiles used as target moments and to parameterize the joint distribution of initial

assets, average realized earnings, and wage shocks for single men, single women, and

couples.

Social Security benefits

The Social Security benefit at age 66 is calculated to mimic the Old Age and

Survivor Insurance component of the Social Security system:

SS(ȳr) =


0.9ȳr, ȳr < 0.1115;

0.1004 + 0.32(ȳr − 0.1115), 0.1115 ≤ ȳr < 0.6725;

0.2799 + 0.15(ȳr − 0.6725), 0.6725 ≤ ȳr < ycapt


The marginal rates and bend points, expressed as fractions of average household

income, come from the Social Security Administration.12

The Social Security tax and Social Security cap have been changing over time.

We also allow them to change over time for the households in our model.

Taxes

Guner et al. (2012) estimate the tax function by marital status. We use their

estimated parameters for married and singles unconditional on number of children.

The resulting values for a married couple are p2 = 1.8500; b2 = 0.2471; s2 = 0.0006.

12Available at https://www.ssa.gov/oact/cola/bendpoints.html. We use values for year 2009.
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Those for singles are: p1 = 1.4150; b1 = 0.2346; s1 = 0.0074. We also add a 4% state

and local tax.
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Appendix D. Robustness to sample selection

Table 12 uses the PSID data to show that the fraction of the population having

less than a college degree dropped from 83.1% in the 1940s to 77.2% in the 1960s.

This corresponds to a 6 percentage points reduction in the fraction of non-college

graduates in the population across our two cohorts (5.6 and 6.6 percentage points for

men and women, respectively).

Men Women All
Grades 1940 1960 1940 1960 1940 1960
up to 11 22.9 13.5 17.6 10.5 20.4 12.0
12 50.8 38.2 51.9 38.7 51.3 38.5
13 59.6 52.0 65.2 51.0 62.2 51.5
14-15 81.7 76.1 84.8 78.1 83.1 77.2
16-17 100.0 100.0 100.0 100.0 100.0 100.0

Table 12: Cumulative distributions of grade of school completed for the sample of white
people in our main cohorts, by gender and cohort. PSID data.

To check whether sample selection is an important issue for us, we compare our

main model inputs for our original sample, the “education selection sample,” with

that in the other two samples, “education selection with constant fraction size.” To

construct these two additional samples, we first take white people without a college

degree born in the 1940s cohort and in the 1960s cohort in both data sets. Then, we

increase the size of the 1960s cohort by picking, among those who have completed

college in the 1960s cohort, those that had the lowest (in the first additional sample)

average lifetime human capital (among both men and women). In the second addi-

tional sample we increase the sample size by randomly picking college graduates from

the same cohort.

Table 13 and Figures 2 and 3 compare life expectancy, wages, and medical expenses

for our 1940s cohort (unchanged) and 1960s cohort with the two selection criteria.

They show that the results are very similar across the three samples.
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Figure 2: Wage profiles by age, comparing 1960s and 1940s for married people (left panels)
and single people (right panels). Top panels: original sample. Middle panels:
same size by cohort sample, bottom part of human capital distribution. Bottom
panels: same size by cohort sample, random.

23



Men, 1940s Men, 1960s Women, 1940s Women, 1960s
Original education sample
At age 50 79.59 77.51 83.51 81.46
At age 66 82.53 80.91 85.68 84.02
Fixed fraction sample - bottom human capital
At age 50 79.59 77.42 83.52 81.39
At age 66 82.53 80.85 85.70 83.97
Fixed fraction sample - random
At age 50 79.59 77.65 83.52 81.60
At age 66 82.53 81.01 85.70 84.12

Table 13: Life expectancy for white and non-college-educated men and women born in the
1940s and 1960s cohorts. HRS data
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Figure 3: Average out-of-pocket medical expenses for the cohorts born in the 1940s and
1960s. Top left graph: original education sample. Top right graph: fixed frac-
tion sample, bottom part of human capital distribution. Bottom graph: fixed
fraction sample, random.
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