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Proof of Proposition 1 

(i)   First, we will derive the conventional Sato-Vartia price index.  Rewrite the unit-cost function 

for constant values of bit = bi  as, 
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where  γ = 1–η.  The cost shares are, 
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for τ = t-1,t.  Rewriting these, we obtain, 
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 Take a geometric mean of (A3) using the weights wi from (8) to obtain: 
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which shows that the Sato-Vartia index on the right of (A4) equals the ratio of unit-costs on the left.  

To show that the product of share terms in the center of (A4) equals unity, take its logarithm to 

obtain: 
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where the first equality follows from the definition of wi in (8), and the second equality follows 

from the fact that the cost shares siτ sum to unity over i =1,…,N, for τ = t–1, t. 

(ii)  Next, we show that we can choose the ib~  such that: 
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where the weights wi are evaluated as in (8) using the cost shares siτ = ∂ ln c(pτ,bτ)/∂ ln piτ  for  τ = 

t–1, t.  From (A4), the ratio of unit-costs on the left of (A5) equals: 

 

    
p
p

  
)~,(c

)~,(c iw~N

1i 1it

it

1t

t ∏
= −−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

bp
bp , (A6) 

 
where the iw~ are calculated as in (8) but using the cost shares τis~ = ∂ ln c(pτ, b~ )/∂ ln piτ, τ = t–1, t.  

Thus, a sufficient condition for (A5) to hold is that there exist ib~  such that: 

   wi = iw~     i =1, ..., N. (A7) 
 

From the definition of the weights in (8), condition (A7) will hold iff there exists k1 > 0 such that, 
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 Define πt ≡ )~,(c/)~,(c 1tt bpbp − .  Then, from (A2), the denominator on the right of (A8) 

equals γ(∆ ln pit – ln πt).  (If this is zero then we can replace the bracketed term on the right side of 

(A8) by its limiting value of it1it s~s~ =−  and adapt what follows to solve for ib~ .  So without loss of 

generality, suppose γ(∆ ln pit – ln πt) ≠ 0.)  Also using (A1) and (A2) to substitute for the numerator 

on right side of (A8), we have, 
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Rearranging terms in (A9) and recalling that )~,(c/)~,(c 1ttt bpbp −=π  with c(⋅) defined in (A1), we 

can solve for ib~ as, 
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Notice that (A10) determines b~  only up to a scalar multiple, so we are free to choose a 

normalization on b~ .  Specifying this normalization as ∑ =
γ =N

1j jtj 1pb~ , we solve for k1 by multiplying 

the right side of (A10) by γ
itp , summing over i=1, ..., N, and rearranging terms: 
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We can substitute (A11) into (A10) to obtain N equations in N unknowns, ib~  for i=1,…,N.  These 

equations have the form: 
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Recalling that )~,(c/)~,(c 1ttt bpbp −=π , these equations are highly nonlinear, but given any 

arguments 0~ >b  within πt on the right of (A12), we determine a solution 0*~ >b  on the left.  In 

other words, (A12) provides a continuous mapping ).~(F*~ bb =   Denote the set of parameters 0~ ≥b  

satisfying the normalization ∑ =
γ =N

1i iti 1pb~  as the simplex S.  Choosing S~ ∈b , it is readily verified 

that S*~
∈b , so F is a continuous mapping from S to S, and thus will have a fixed point.  Then (A7) 

holds by construction at this fixed point, so that (A5) follows from (A6). 

 
(iii)  Next, we must show that ib~  evaluated as in (A10) lies between the bounds described in 

Proposition 1.  The cost shares siτ appearing in (A10) are evaluated as in (A2), but using biτ, with 

τ = t–1, t.  Without loss of generality, we can normalize the price vectors pτ by a scalar multiple in 

each period so that c(pτ,bτ) = 1, τ = t–1, t.  We will drop the normalization on b~ that ∑ =
γ =N

1i iti ,1pb~  

and instead specify ∑ =
γ >=N

1i 2iti .0kpb~   Denoting Bi ≡ bit /bit-1, (A10) can then be written as, 
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From concavity of the natural log function we have 1 – (1/z) < ln z < z – 1, for z > 0, and letting  

z = Bi(pit /pit-1)γ it follows that, 
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 Notice that the last bracketed terms in (A13a, b) are the reciprocals of the previous 

bracketed terms, but with Bi = bit/bit-1 appearing instead of γ−πt .  Suppose that Bi > γ−πt .  Using 

(A14), we can show that: 
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It follows by comparing the bracketed terms in (A13) that: 
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while if Bi < γ−πt  then these inequalities would be reversed.  Express πt from (A5) as: 
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A straightforward extension of (A1)-(A4) allowing for bit ≠ bit-1 shows that the final product in 

(A16) equals c(pt, bt)/c(pt-1,bt-1).  But this is unity by our normalization of prices, so that γ−πt  in 

(A16) equals iw
1it
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into (A15), the bounds on b~  in Proposition 1 are obtained. 

 

Proof of Proposition 2 

Let bt denote the vector of the bit from the CES model, let βit = ln bit and let βt denote the 

vector with components ln bit.  Also, to model stochastic tastes, let  

  βiτ = βi* + eiτ,  (A17) 

for τ = t or t–1.  The eiτ are assumed to be iid with mean 0 and variance σ β
2 . 

Let w and ∆ ln pt represent vectors of the wi as in (8) and the log price changes, and let w* 

denote the value of w when βt-1 = βt = β*.  Then, 

  var πsv  = Ε[(∆ ln pt)′(w – E(w))(w – E(w))′(∆ ln pt)] 

  ≈ (∆ ln pt)′ Ε[(w – w*)(w – w*)′] (∆ ln pt) (A18) 

A linear approximation for w is: 

  w ≈ w* + (∂w /∂βt-1) et-1 + (∂w /∂βt ) et (A19) 

where the derivative matrices are evaluated at the point βt-1 = βt = β*.  In Lemma 1 below we show 

that these derivatives approximately equal:  

  ∂wt-1 /∂βt-1 = ∂wt /∂βt  ≈  12 [diag(w*) – w* w* ′]  (A20) 
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where diag(w*) denotes the matrix with the elements w* on its main diagonal and zeros elsewhere.  

Since E(et-1 et′) = 0, it follows that, 

 E[(w – w*)(w – w*)′] = 14 [diag(w*) – w* w* ′] [E(et et′) + E(et-1 et-1′)][diag(w*) – w* w* ′] 

 = 12 σ β
2

 [diag(w*) – w* w* ′][diag(w*) – w* w* ′]. (A21) 

 
Then substituting from (A21) into (A18) we obtain: 
 

  var πsv  ≈ ∑
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2
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2
2
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Lemma 1:  An approximate formula for the derivatives of Sato-Vartia weights with respect to the 

CES model disturbances is: 

  ∂wt /∂βt-1 = ∂wt /∂βt  ≈  12 [diag(w*) – w* w* ′]  (A20) 

Proof: 

In section (a) below we show that the elements on the main diagonal of ∂wt /∂βt-1 are of the 

form 0.5wi (1-wi).  Then in section (b) we show that ∂wt /∂βt-1 has off-diagonal elements of the form 

–0.5wi wj .  Furthermore, by symmetry ∂wt /∂βt  will have the same form as ∂wt /∂βt-1.  

(i)  Solution for ∂wi /∂βk,t-1 for k = i.  Denoting the logarithmic mean of the shares by mi ≡  

(sit – si,t-1) / ln(sit / si,t-1), or sit if sit = si,t-1, we have: 

∂wi /∂βi,t-1 = (∂wi /∂mi)(∂mi /∂ ln si,t-1)(∂ ln si,t-1 /∂βi,t-1) 

 +  ∑ j≠i (∂wi /∂mj)(∂mj /∂  ln sj,t-1)(∂  ln sj,t-1 /∂βi,t-1). (A23) 

In the first term on the right side of (A23),  
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 ∂wi /∂mi  =  (1 – wi ) /∑ k mk (A24) 

Also, since mi = (sit – si,t-1) / ln(sit / si,t-1), 

 ∂mi /∂  ln si,t-1 = (mi – si,t-1) / ln(si,t / si,t-1). (A25) 

Finally, since si,t-1 = bi,t-1 p1−η
i t - 1  cη−1

i t - 1   where cit-1 = 
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 ∂  ln si,t-1 /∂  βi,t-1  = 1 – si,t-1. (A27) 

Substituting from (A24), (A25) and (A26) into the first term of (A23), we have:  
 

 (∂wi /∂mi)(∂mi /∂ ln si,t-1)(∂ ln si,t-1/∂βi,t-1)  =  
(1 – wi )(mi – si‚t-1)(1 – si‚t-1)

ln(si,t / si,t-1)[∑ k mk]  . (A28) 

To find an expression for  (∂wi /∂mj)(∂mj/∂ ln sj,t-1)(∂ ln sj,t-1/∂βi,t-1), j ≠ i, note first that,  
 

 ∂wi /∂mj  =  –wi / [∑ k mk]. (A29) 

Also,  

 ∂mj /∂ ln sj,t-1 = (mj – sj,t-1) / ln(sj,t / sj,t-1). (A30) 

And finally, 

 ∂ ln sj,t-1/∂βi,t-1 = –si,t-1. (A31) 

Putting these three factors together gives: 

 ∑ j≠i (∂wi /∂mj)(∂mj /∂  ln sj,t-1)(∂  ln sj,t-1 /∂βi,t-1)  =  
wi si‚t-1

∑ k mk
 ∑

j≠i
 

mj – sj‚t-1

ln(sj,t / sj,t-1) . (A32) 

The two terms in (A23) therefore have a total of, 
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 ∂wi /∂βi,t-1 =  
(1 – wi )(mi – si‚t-1)(1 – si‚t-1)

ln(si,t / si,t-1)[∑ k mk]   +  
wi si‚t-1

∑ k mk
 ∑

j≠i
 

mj – sj‚t-1

ln(sj,t / sj,t-1)  

  =  
(1 – wi )(mi – si‚t-1)
ln(si,t / si,t-1)[∑ k mk]  –  

si‚t-1(mi – si‚t-1)
ln(si,t / si,t-1)[∑ k mk]  +  

wi si‚t-1

∑ k mk
 ∑ 

k
 

mk – sk‚t-1
ln(sk,t / sk,t-1) . (A33) 

Since mk approximately equals the midpoint between sk,t-1 and sk,t,  

 
mk – sk‚t-1

ln(sk,t / sk,t-1)  ≈ 0.5mk.  (A34) 

The overall error of approximation in the variance estimate for πsv from substituting from (A34) 

into (A33) will be inconsequential, both because the individual errors are small and because they 

are on average zero.  Hence: 

 ∂wi /∂βi,t-1  =  
(1 – wi )(mi – si‚t-1)
ln(si,t / si,t-1)[∑ k mk]  –  

si‚t-1(mi – si‚t-1)
ln(si,t / si,t-1)[∑ k mk]  +  

wi si‚t-1

∑ k mk
 ∑ 

k
 

mk – sk‚t-1
ln(sk,t / sk,t-1)    

 ≈  
0.5 (1 – wi ) mi

 ∑ k mk
  – 

0.5 si‚t-1 mi

 ∑ k mk
   +  0.5wi si,t-1  =  0.5(1–wi) wi . (A35) 

(ii) Solution for ∂wi /∂βk,t-1 for k ≠ i.  A change in βk,t-1 will affect wi by changing si,t-1, by changing 

sk,t-1, and by changing any remaining shares:  

   ∂wi /∂βk,t-1 = (∂wi /∂mi)(∂mi /∂  ln si,t-1)(∂  ln si,t-1 /∂βk,t-1) 

 +  (∂wi /∂mk)(∂mj /∂  ln sk,t-1)(∂  ln sk,t-1 /∂βk,t-1)  

 + ∑
j≠i∪k

(∂wi /∂mj)(∂mj /∂  ln sj,t-1)(∂  ln sj,t-1 /∂βk,t-1). (A36) 

The components of the first term on the right-side above are: 
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 ∂wi /∂mi  =  (1 – wi ) / [∑k mk] (A37) 

  ∂mi /∂ ln si,t-1  =  [mi – si,t-1] / ln(si,t / si,t-1) (A38) 

  ∂ ln si,t-1 /∂βk,t-1  =  −sk,t-1. (A39) 

From (A34),  [mi – si,t-1] / [ln(si,t / si,t-1) {∑ k mk}] ≈ 0.5wi.  Making this substitution, 

 (∂wi /∂mi)(∂mi /∂  ln si,t-1)(∂ ln si,t-1 /∂βk,t-1) ≈  −0.5 (1–wi ) wi sk,t-1. (A40) 

Next, decompose (∂wi /∂mk)(∂mj /∂ ln sk,t-1)(∂ ln sk,t-1 /∂βk,t-1) as: 

 ∂wi /∂mk =  −wi  / [∑k  mk] (A41) 

 ∂mk /∂ ln sk,t-1 = [mk – sk,t-1] /ln(sk,t / sk,t-1) (A42) 

 ∂ ln sk,t-1 /∂βk,t-1 = 1 − sk,t-1. (A43) 

Last, decompose ∑ j≠i ∪k (∂wi /∂mj)(∂mj /∂  ln sj,t-1)(∂  ln sj,t-1 /∂βk,t-1) as, 

 ∂wi /∂mj  =  −wi  / [∑ k mk] (A44) 

 ∂mj /∂  ln sj,t-1  =  [mj – sj,t-1] /ln (sj,t / sj,t-1) (A45) 

  ∂ ln sj,t-1 /∂βk,t-1  = −sk,t-1.  (A46) 

 

Hence, substituting from (A41) to (A46) and summing the approximations for (∂wi /∂mk)(∂mj /∂  ln 

sk,t-1)(∂  ln sk,t-1 /∂βk,t-1) and  ∑ j≠i ∪k (∂wi /∂mj)(∂mj /∂  ln sj,t-1)(∂  ln sj,t-1 /∂βk,t-1) gives: 

 ∑ j≠i (∂wi /∂mj)(∂mj /∂  ln sj,t-1)(∂  ln sj,t-1 /∂βk,t-1)  ≈ 0.5wi sk,t-1 [∑ j≠i wj ] – 0.5wi wk 

 =  0.5wi sk,t-1(1–wi ) – 0.5wi wk . (A47) 

The final step is to combine all the approximations for terms in ∂wi /∂βk,t-1.  This gives: 
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   ∂wi /∂βk,t-1 =  (∂wi /∂mi)(∂mi /∂ ln si,t-1)(∂ ln si,t-1 /∂βk,t-1)  + 

(∂wi /∂mk)(∂mj /∂ ln sk,t-1)(∂ ln sk,t-1 /∂βk,t-1) + ∑
j≠i∪k

(∂wi /∂mj)(∂mj /∂ ln sj,t-1)(∂ ln sj,t-1 /∂βk,t-1) 

                ≈  −0.5 (1–wi ) wi sk,t-1 + 0.5(1– wi )wi sk,t-1 – 0.5wi wk   =  –0.5wi wk . (A48) 

 

Proof of Proposition 3  

We prove a more general version of Proposition 3 than that stated in the text.  In this version, we 

suppose that regression (12) is run over goods i=1,…,N and periods t =1,…,T.  In addition, we now 

denote the weights in (8) by wit, and the weighted variance of prices by st
2 = ∑ i wit(∆ ln pit – πt)2.  

Finally, let w=.t ≡ ∑ i wit
2(∆ ln pit – πt)2/st

2  denote the weighted average of the wit  that has weights 

proportional to wit(∆ ln pit – πt)
2.  The more general version (which simplifies to equation (15) when 

T = 1) is:  

 
Proposition 3′: 

Let  w–.t ≡ ∑ wit
2 , the weighted average of the wit that has weights wit, let λt ≡ st[∑τ sτ

2]−0.5, and let  

ρt ≡ (st - 1st)
–1[w=.t-1w=. t]−0.5[∑ i wit-1(∆ ln pit-1 – πt-1)wit(∆ ln pit – πt)] denote the autocorrelation of the 

products wit(∆ ln pit – πt).  Finally, denote the mean squared error of the generalized version of 

regression (12) by sε
2 ≡ ∑ t ∑ i wit ε$ it

2, where ittitit pln)1ˆ(ˆslnˆ ∆−η+δ−∆=ε .  

Then an approximately unbiased estimator sβ
2 for σβ

2 is: 

  
∑ ∑ ∑ > −

ε
β

ρλ−λλ+λ−−
=

t t 1t
5.0

t1-tt
2
tt1tt

2
tt

2
2

]).w.w()1(2.w.wT[2
s

s . (15′) 
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Formula (15′) is only approximately unbiased because it treats the  wit  as predetermined and 

therefore nonstochastic. 

Proof: 

Replacing (1–η) in (12) with γ, let ε$ it
 be the fitted value of εit from:    

  itittit    pln  sln ε+∆γ+δ=∆ , (12) 

and let sε
2 ≡ ∑ t ∑ i wit ε$ it

2, the weighted sum of squared errors of the regression equation (12).  

Substituting from equation (A17) into equation (14) implies that εit = eit – ei,t-1 – ∑ j wjt(ejt – ej,t-1), 

where ei,t-1 and eit have variance σ β
2.  Furthermore,  ∑ i wit[δ t + ∑ j wjt(ejt – ej,t-1)](∆ln pit – πt) =  

[δ t + ∑ j wjt(ejt – ej,t-1)][∑ i wit(∆ln pit – πt)] = 0, so it follows that  ∑ i wit(∆ln sit)(∆ln pit – πt) =  

γ[∑ i wit(∆ln pit – πt)2] + ∑ i wit(eit – ei,t-1)(∆ln pit – πt).  Consequently, a weighted least squares 

estimator of γ in equation (12) is:  

γ̂   =  
∑ t ∑ i wit (∆ln sit)(∆ln pit – πt)

 ∑ t ∑ i wit (∆ln pit – πt)2   

 =  γ  +  
∑ t ∑ i wit(eit – ei‚t-1)(∆ln pit – πt)

 ∑ t ∑ i wit (∆ln pit – πt)2   

 =  γ  +  
∑ t ∑ i λt wit p∼it(eit – ei‚t-1)

 [∑ t st
2]0.5   (A49) 

 
where st

2 ≡ ∑ i wit(∆ln pit – πt)2,  λt ≡ st/[∑ τ sτ
2]0.5, and p∼it ≡ (∆ln pit – πt)/st. The ith regression error is: 

  ε$ it  =  ∆ln sit – γ̂ (∆ln pit – πt) 
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 =  eit – ei,t-1 –  ∑ j wj(ejt – ej,t-1) – λt p∼it{∑ τ λτ [∑ j wjτ p∼jτ(ejτ – ejτ-1)]} 

 =  [1 – wit(1 + λt
2 p∼it

2)](eit – ei,t-1) – ∑ j≠i wjt(1 + λt
2 p∼it p∼jt)(ejt – ej,t-1)  

 – λt p∼it{∑ τ≠ t λτ [∑ j wjτ
 p∼jτ(ejτ – ej,τ−1)]}. (A50) 

 

Since the ei,t-1 and the eit have been assumed to be independent of one another,  

E[(eit – ei,t-1)2
 ] = 2σ β

2.  Also, E[(eit – ei,t-1)(eiτ – ei,τ-1)]= −σ β
2  if τ = t+1 or t–1, but all other 

covariances equal zero. For example, in case when t=1, we have:  

E[ε$ i1
2]/2σ β

2   =  (1 – wi1(1 + λ1
2 p∼i1

2))2 + ∑ j≠i wj1
2(1 + λ1

2 p∼i1 p∼j1)
2 + λ1

2
 p∼i1

2 {∑ τ > 1  λτ
2 [∑ j wjτ

2 p∼jτ
2]} 

  +  [1 – wi1(1 + λ1
2 p∼i1

2)]λ1λ2 wi2 p∼i1p∼i2 −  ∑ j≠i wj1(1 + λ1
2 p∼i1p∼j1)λ1λ2 wj2 p∼i1p∼j2   

 –  λ1 p∼i1{∑ τ= 3,…,T λτ λτ−1[∑ j (wjτ
 p∼jτ)(wjτ−1

 p∼jτ−1)]} 

         = 1 – 2wi1(1 + λ1
2 p∼i1

2) + ∑j=1,…,N wj1
2(1 + λ1

2 p∼i1 p∼j1)
2 + λ1

2
 p∼i1

2 {∑ τ > 1  λτ
2 [∑ j wjτ

2 p∼jτ
2]} 

              + λ1λ2 wi2 p∼i1p∼i2  –  p∼i1λ1λ2 [∑ j wj1(1 + λ1
2 p∼i1p∼j1)wj2 p∼j2] 

                      –  λ1 p∼i1{∑ τ= 3,…,T λτ λτ−1[∑ j (wjτ
 p∼jτ)(wjτ−1

 p∼jτ−1)]} 

           =  1 – 2wi1 – 2wi1λ1
2 p∼i1

2 + ∑ j wj1
2  + 2λ1

2 p∼i1[∑ j wj1
2 p∼j1] 

  + λ1
2 p∼i1

2 {∑ τ = 1,…, Τ  λτ
2 [∑ j wjτ

2 p∼jτ
2]} + λ1λ2 p∼i1wi2 p∼i2   

  –  p∼i1λ1λ2[∑ j wj1 wj2 p∼j2]  – p∼i1
2 λ1

3 λ2 [∑ j wj1 p∼j1wj2 p∼j2]   

  – λ1 p∼i1{∑ τ= 3,…,T λτ λτ−1[∑ j (wjτ
 p∼jτ)(wjτ−1

 p∼jτ−1)]}. (A51) 

To express the weighted mean of the expected squares of the time period 1 regression errors 

in a convenient way, let  w–.t denote ∑ i wit
2 , and let  w=.t  denote a weighted average of the wit that 
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has weights proportional to witp∼it
2.  (That is, w=.t = ∑ i wit

2(∆ln pit – πt)2/∑ i wit(∆ln pit – πt)2.)  

Furthermore, define ρt as the (unweighted) correlation between wjt p∼jt and wj,t-1 p∼j,t-1. We use the 

following equalities to make substitutions:  

 ∑ i wit = 1 ,          ∑ i witp∼it
2 = 1 ,  

 ∑ i wit
2  ≡  w– .t ,   ∑ i wit

2 p∼it
2 ≡  w=.t ,  

  ∑ i wit p∼it = 0 ,   ∑ i wi,t-1 p∼i,t-1wit p∼it = ρt[w=.t-1w=.t]0.5. 

These substitutions give the result: 

 [∑ wi1E(ε$ i1
2)]/2 σ β

2  = 1 – w–.1 – 2λ1
2 w=.1 + λ1

2 [∑ τ =1,…,Τ   λτ
2 w=.τ]  

  + [λ1λ2 – λ1
3λ2][∑ j wj1 p∼j1wj2 p∼j2] 

 = 1 – w–.1 – 2λ1
2 w=.1 + λ1

2 [∑ τ =1,…,Τ   λτ
2 w=.τ] + λ1(1–λ1

2)λ2 ρ2[w=.1w=.2]0.5 (A52) 

 
 When 1 < t < T, the expression for E(ε$ it

2 ) contains autocorrelations between both periods t–

1 and t and periods t+1 and t.  Its derivation is as follows:  

 E[ε$ it
2]/2σ β

2  =  (1 – wit(1 + λt
2 p∼it

2))2 + ∑ j≠i wjt
2(1 + λt

2 p∼it p∼jt)
2  

 + λt
2

 p∼it
2{∑ τ≠ t λτ

2 [∑ j wjτ
2
 
 p∼jτ

2]} 

 +  [1 – wit(1 + λt
2 p∼it

2)]λtp∼it[λt-1wi,t-1p∼i,t-1 + λt+1wi,t+1p∼i,t+1] 

 − ∑ j≠i wjt(1 + λt
2 p∼it p∼jt)λt p∼it[λt-1wj,t-1 p∼j , t-1 + λt+1wj,t+1 p∼j,t+1]   

 –  λt p∼it{∑ τ≠ 1 ∪ t ∪t+1 λτ [∑ j (wjτ 
 p∼jτ)(wj,τ−1

 p∼j,τ−1)]}  

 =  1 – 2wit – 2witλt
2 p∼it

2 + w– .t + 2λt
2 p∼it[∑ j wjt

2 p∼jt] 

  + λt
2 p∼it

2 {∑ τ  λτ
2 [∑ j wjτ

2 p∼jτ
2]} 
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 + λt p∼it[λt-1wi,t-1 p∼i,t-1 + λt+1wi,t+1 p∼i,t+1] 

 – λt
3 p∼it

2{∑ j wjt
 p∼jt [λt-1wj,t-1 p∼j,t-1 + λt+1wj,t+1 p∼j,t+1]} 

 – λt p∼it{∑ τ≠ 1∪ t ∪ t+1 λτ [∑ j (wjτ
 p∼jτ)(wj,τ−1

 p∼j,τ−1)]}. (A53) 

Consequently, for 1 < t < T, 
 

 E[∑ i wit ε$ it
2]/2 σ β

2  =  1 – w– .t – 2λt
2 w=.t + λt

2[∑ τ  λτ
2 w=.τ] + λt-1λt (1–λt

2)ρt[w=.t-1w=. t]0.5 

 + λt(1–λt
2)λt+1ρt+1[w=.t w=. t+1]0.5. (A54) 

  
Using the fact that ∑ λt

2 = 1, the sum over all time periods is: 

 E[∑t ∑ i witε$ it
2]/2σ β

2   =  T – ∑ w–.t –  ∑ λt
2 w=.t  

  +  2 ∑t=2,…,T  λt-1λt (1–λt
2)ρt[w=.t-1w=. t]0.5. (A55) 

The sum of squared errors  ∑t ∑ i witε$ it
2  divided by 2 times the right side of (A55) therefore has an  

expected value of σ β
2, which is the result in Proposition 3′. 

 

Proof of Proposition 4   

In this section we denote the vector of log price changes ∆ ln pt by p· , and assume that these 

have a random error term of ep, which may be heteroskedastic. That is,  

 p·  = µp
  + ep. (A56) 

Denote the variance of  p· i by σ i
2 and denote the estimate of this variance by si

2.  Although 

an assumption that  p· i  has a positive covariance with wi is appealing because positive shocks to bi 

raise equilibrium market prices, it adds excessive complexity to the expression for var π.  (See 
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Mood, Graybill and Boes, 1974, p. 180.)  Hence, for the sake of simplicity, we will assume that the 

shocks to prices are independent of the error term for preferences.  We continue to assume that the 

taste parameters are distributed as in (A17), now written as  βτ = β∗ + eτ , for τ = t-1,t.  

To obtain an estimator for the variance, we use the following linear approximation for w: 

  w  ≈  µw + (∂ w /∂βt-1)e t-1 + (∂ w /∂βt)e t 

 ≈  µw
  + Gew  (A57) 

where µw denotes the value of w when βt-1 = βt = β∗,  ∂ w /∂βt-1 and ∂ w /∂βt are evaluated at βt-1 = 

βt = β∗ and are estimated by G = 0.5[diag(w) – ww′], and where ew = e t-1 + e t.  We then have, 

 
  π sv  =  w′p·   ≈ (µw

  + Gew)′(µp
  + ep). (A58) 

 

Using the independence assumption to eliminate the expected values of cross-products of error 

terms, we have: 

 E[πsv
 2 − [E(πsv)]2]  ≈  E(µw′ep)2 + E(ew′G′µp)2 + E(ew′G′ep)2. (A59) 

To obtain an estimator for the first term on the right side of (A59), substitute w for µw and si
2  for 

σ i
2: 

  E(µw′ep)2  =  ∑ i (µ i
w)2σ i

2  ≈  ∑ i wi
2 si

2. (A60) 

Similarly, to obtain an estimator for E(ew′G′µp)2,  substitute p·  for µp and s β
2  for σ β

2: 

 E(ew′G′µp)2  ≈  12 σ β
2 ∑ i wi

2[µp
i –( w′µp)]2 ≈  12 s β

2 ∑ i wi
2(p· i – πsv)2. (A61) 
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To estimate the third term, note that E(ew′G′ep)2 = E(ep′G ew ew′G′ep) = 2σ β
2 E(ep′G G′ep).  Letting g 

denote a vector equal to the main diagonal of GG′ and using the independence assumption to set the 

expected value of the cross-product terms equal to zero gives, 

 E(ep′G G′ep)  =  [σ1
2  σ2

2  …  σn
2]g (A62) 

Letting w2 denote the vector of the wi
2  and noting that w′w =  w– ,  G G′ equals  14 [diag(w2) – (w2)w′ 

– w(w2)′ + w–(ww′)].  Hence, the ith element of g, equals  14 wi
2(1 + w– – 2wi)  and,  

 E(ep′G G′ep)  =  14 ∑ i σi
2 wi

2(1 + w– – 2wi). (A63) 

Therefore,  
 E(ep′G ew ew′G′ep)  =  12 σ β

2 ∑ i σi
2 wi

2(1 + w– – 2wi). (A64) 
 

Finally, adding together the estimators for the three terms gives: 

 E[πsv
 2 − [E(πsv)]2] ≈ ∑ (µ i

w)2σ i
2 +  12 σ β

2 ∑  wi
2(p· i – π)2 +  12σ β

2 ∑ σi
2 wi

2(1 + w– – 2wi). (A65) 

We can estimate this expression by: 

 var πsv ≈  ∑  wi
2 s i

2  +  12 sβ
2 ∑  wi

2(p· i – π)2  +  12 sβ
2 ∑  si

2 wi
2(1 + w– – 2wi),   

 = .
)ww1(4

)w2w1(sws
)ww1(4

wss
sw i

2
i

2
i

22
p

2
2
i

2
i −−

−+
+

−−
+ ∑∑ εε  (A66) 

where the expression subsituted for sβ
2  comes from Proposition 3.   

 Note that equation (A66) is only an approximately unbiased, because the responses of 

demand to price disturbances add a (presumably small) to additional component to the variances of 

the wi that is ignored in (A66).  Note also that in the special case where all prices have the same 

distribution, so that s i
2  = sp

2/(1 – w–), the variance of the index may be estimated as: 
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 var πsv ≈ .
)w1)(ww1(2

wwss
)w1)(ww1(4

)w1(wss
)ww1(4

wss
)w1(

ws 3
i

2
p

22
p

22
p

22
p

−−−
−

−−−

+
+

−−
+

−
∑εεε   (Α67) 

   

 
Proof of Proposition 5 

Taking the log of (21), we obtain, 
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⎡
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⎦

⎤
⎢
⎣

⎡
+= ∑

=
−−

N

1i
1itit1itit )p/pln()ss(

2
1 , (A68) 

 
where the second line follows by using the translog formula in (18), the third line using simple 

algebra, and the final line follows from the share formula in (19). 

 
Proof of Proposition 6 

Proved in the main text. 

Proof of Proposition 7   

We now assume that ln pt = p*t   + ut, where ut is an error term with E(uit) = 0 and uit 

independent of ujt and ui,t-1.  Define µp
t as p*t  – ln p*t -1 and  vt as ut – ut-1.  We assume that the ith 

element of vt has variance σi
2 . Then, letting Γ  represent the matrix of the γij, from equation (21), 
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  w =  α +  12 Γ (ln pt + ln pt-1)  +  12(εt + εt-1) 

 =  α +  12 Γ (µp
t  + µp

t-1 + ut + ut-1)  +  12(εt + εt-1) 

  =  µw
t +  et (A69) 

where et  =  12[Γ(ut + ut-1) + (εt + εt-1)], E(εt εt′ ) = Ω, and E(εt εt -1′ ) = ρ Ω.  Let Σ denote  

E[(ut + ut-1)(ut + ut-1)′ ],where the main diagonal of Σ equals the σi
2 and its off-diagonal elements 

equal 0 because the uit are assumed to be independently distributed.  We also assume that (ut + ut-1) 

is independent of εt and εt-1.  Hence, E(et et′ ) = 14 ΓΣ Γ′  +  12 (1+ρ )Ω. 

The Törnqvist index, which we denote by π, may be written as: 

 π  =  (µw
  + et)′(µp

t  + vt).  

 =  µw′µp
t  + µw′vt + µp

t′ et + et′ vt. (A70) 

Note that E[(ut – ut-1)(εt + εt-1)′ ]  = 0 and that E(et′ vt) = 0.  (E(et′ vt) = E[(ut + ut-1)Γ′  + (εt + εt-1)′ ](ut 

– ut-1), which equals 0 since E[γij (uit + ui,t-1)(ujt – uj,t-1)] = 0 for i≠j and γii
2 E(uit

2 – ui,t-1
2) = 0.)  It 

follows that,  

 Ε(π)  = µw′µp
t. (A71) 

In addition, because the cross-products of the terms in (A70) have expected values of 0, we have 

 Ε(π2) – [Ε(π)]2  =  E(µw′vt vt′ µw) + E(µp
t′ et et′ µp

t) + E[(et′ vt)2]. (A72) 

We can substitute the following expressions for the terms in (A72) : 

 E(µw′vt vt′ µw) = ∑ (µw
it)

2 σi
2 (A73) 

 E[µp
t′ et et′ µp

t]  =  14 µp
t′ ΓΣ Γ′ µp

t  +  12 µp
 t′ (1+ρ ) Ω µp

t (A74) 
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To evaluate  E[(et′ vt)2], note that E(eitvitejtvjt) = 0 because vit is independent of the other terms in this 

product.  Also,  

E[(eitvit )2] = E{[1
2 [∑j γij(ujt + uj,t-1)](uit – ui,t-1) + 12(εit + εi,t-1)(uit – ui,t-1)]2} 

 =  14 σi
2[∑j γij

2 σj
2]  + 12(σi

2)(1+ ρ)Ωii . 

Hence,    

 E[(et′ vt)2]  =  14 ∑i σi
2 [∑j  γij

2 σj
2] +  12 ∑i (σi

2)(1+ ρ)Ωii    (A75) 

where Ωii represents the elements on the main diagonal of Ω.  Substituting (A73)- (A75) into (A72), 

we have: 

 var(π) = ∑ (µw
it)

2 σi
2 +   14 µp

t′ Γ′ Σ Γµp
t  +  12 (1+ρ ) µp

t′Ω µp
t    

 +  14 ∑i σi
2 [∑j  γij

2 σj
2]  +  1

2 (1+ ρ)[∑ Ωii σi
2] . (A76) 

 To estimate var(π) using the expression in (A76), estimate µw
it by wit, estimate σi

2 by si
2, 

where si
2 may be the sample variance for the log changes in the individual prices collected for item 

i.  In addition, µp
it can be estimated by ∆ ln pit, and Γ, ρ and Ω can be estimated from regression 

(24).  Substituting  ∑i  ∑j  (∆ ln pit)(∆ ln pjt) [∑k  γikγjk sk
2]  for µp

t′ Γ′ Σ Γµp
t, an estimator for var(π) is, 

then: 

 var(π)  ≈  ∑ wit
2 si

2 +  14 ∑i  ∑j  (∆ ln pit)(∆ ln pjt) [∑k  γikγjk sk
2]  

 +  12 (1+ ρ$ )( ∆ ln pt)′ Ω$ ( ∆ ln pt) 

 +  14 ∑i (si
2)[∑j  γ$ij

2sj
2]  +  12 (1+ ρ$ )[∑ Ω$ ii si

2]. (A77) 
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In the case where all prices have the same trend and variance, we can estimate σi
2 by sp

2/(1 – w–) for 

all i.  Then (A77) becomes: 

 var(π)  ≈  sp
2 w– /(1 – w–)  +  14[sp

2/(1 – w–)] ( ∆ ln pt)′ Γ$ Γ$ ( ∆ ln pt) +   12 (1+ ρ$ )( ∆ ln pt)′ Ω$ ( ∆ ln pt)  

   +  14 [sp
2/(1 – w–)]2 [∑i  ∑j  γ$ij

2] +  12 [sp
2/(1 – w–)](1+ ρ$ )[∑ Ω$ ii] (A77′ ) 

 

where ( ∆ ln pt)′ Γ$ Γ$ ( ∆ ln pt)  can be expressing  as ∑i  ∑j  (∆ ln pit)(∆ ln pjt) [∑k  γ$ikγ$jk]. 


