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Abstract

This paper explores the asymmetry between entrants and incumbents in electric
power procurement auctions in Japan. In this market, entrants are considered to have
a signi�cant disadvantage in production cost structure, while incumbents have high
opportunity costs of winning auctions. Using transaction prices, we empirically analyze
the bidding patterns and the cost distributions of entrants and incumbents. We employ
a structural model where the participation of entrants in an auction is endogenous. We
also conduct counterfactual analyses under a price-preference policy to see whether such
a policy can enhance competition and the participation of entrants.
The results indicate that the cost distribution of incumbents has a higher mean than

that for entrants and that the opportunity cost of winning auctions for incumbents is
economically signi�cant. For the average auction, we �nd that price-preferential treat-
ment does not have much e¤ect on entrant participation. We also �nd that a prefer-
ence for the weak bidder (namely, the incumbent) does not improve the government�s
procurement cost. In fact, government cost is minimized with a small preference for
entrants, where the competition e¤ect on the incumbent o¤sets the preference e¤ect on
entrants.

1 Introduction

This study investigates the bidding patterns of entrant and incumbent �rms in electric power

procurement auctions in Japan. In the Japanese retail electricity market, ten �rms originally

supplied electricity as local monopolists. However, beginning in 2000, partial liberalization
�The author would like to thank Hideo Owan, Viplav Saini, Takashi Tsuchiya and Yosuke Yasuda for

helpful comments on an earlier version of this paper.
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allowed new �rms, known as Power Producers and Suppliers (PPS), to enter the market and

supply electricity to large users with power and voltage requirements greater than 2; 000kW

and 20; 000V, respectively: With this wave of liberalization, public agencies have begun to

utilize sealed-bid auctions for electric power supply contracts. The liberalization targets

have since expanded, and the PPS are now permitted to participate in any auctions with

power needs greater than 50kW :

Nevertheless, the participation rate of entrants in these auctions remains very low, im-

plying the signi�cant disadvantage of entrants compared with incumbents. In fact, the cost

structures of entrants and incumbents in this market di¤er signi�cantly. This is because

all of the incumbent �rms are vertically integrated and incorporate their own production

divisions, while most entrants purchase their electricity from outside sources, including the

Japanese electric power exchange market. Even for entrants with production divisions,

cost disadvantages still arise because they only own thermal power stations. These in-

cur higher costs generating electricity than the comparable nuclear power plants owned by

most incumbents. Furthermore, the transmission network is operated by incumbents, and

hence entrants must pay imbalance fees.1 Therefore, entrants generally face higher costs in

supplying electricity.

Nevertheless, practitioners have pointed out that incumbent bids in these auctions actu-

ally tend to be high despite their purported production cost structure. These high bids can

then be explained by the opportunity costs of the incumbents from winning auctions. This

is because the contracts auctioned o¤ by public agencies are not major activities for the

incumbents and their focus remains on large private users, to which they supply electricity

at publicly announced rates, or at rates determined by a bargaining process.2 Importantly,

if incumbents submit low bids and win auctions run by public agencies, they will reveal their

ability to supply electricity at lower rates to their private users. Then, when the contracts

with these private users are to be renewed, these users may demand lower rates. That is,

1The imbalance fees range from 0:57 to 3:42 yen/kWh; with a �xed component of 346:50 to 656:25
yen/kW, depending on the area, time, and voltage.

2The amount of electricity sold at these auctions accounts for less than 1% of all electricity supplied by
incumbents. However, it accounts for about 50% of the electricity supplied by PPS.
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winning auctions at lower bids may mean the incumbents lose future pro�ts from private

users. If the incumbents consider this foregone pro�t as their opportunity cost of winning

auctions, and when such opportunity costs are taken into account, the underlying cost of

auction for the incumbents may exceed the cost for entrants.

The purposes of this study are �rst to empirically assess the di¤erences in the distrib-

ution of costs for electricity contracts and bidding strategies for incumbents and entrants,

and second to conduct policy experiments in the spirit of price-preference policies to en-

hance competition and the participation of entrants. It has been shown that when bidders

have di¤erent cost distributions, strong bidders bid less aggressively when facing weaker

bidders, thereby reducing the level of competition (Maskin and Riley 2000a). Asymmetry

may also reduce the level of competition because the less e¢ cient �rms may be prevented

from participating in the auction. In such an auction, the auctioneer may be better o¤ im-

plementing a price-preference treatment and exploiting the asymmetry (see Krishna 2002;

Myerson 1981). Because the e¤ect of such preferential treatment depends on extent of

asymmetry, it is important to assess the existence and extent of asymmetry.3

We model the bidding and entry behavior of incumbents and entrants assuming that

�rms make an entry decision followed by a bidding decision. We nonparametrically estimate

the cost distributions of an incumbent and entrants following Guerre et al. (2000) to recover

the cost distributions from the bid distributions. However, because we only have access to

winning bids, not all bids (including losing bids), we estimate the winning-bid distribution

and use the theoretical relationship between the winning-bid and all-bids distributions to

recover the latter. We then apply the approach in Guerre et al. (2000). This approach

enables us to obtain cost estimates for the winning �rm in each observed auction. We then

calculate the entry costs that explain the present participation situation. Once we obtain

the underlying cost distributions and entry costs, we undertake counter-factual analyses to

see the e¤ect of the di¤erent level of preferential treatment on the government procurement

3Under general assumptions, Cantillon (2008) has shown that the auctioneer�s expected revenue is lower
as bidders become more asymmetric. Accordingly, serious asymmetry may imply the greater potential to
improve competition through a preferential policy.
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cost.

A number of previous studies have empirically examined asymmetry among bidders aris-

ing from many di¤erent sources. For example, the extant work has shown that asymmetries

arise from capacity constraints, as in Jofre-Bonet and Pesendorfer (2003), the possession of

better information, as in Hendricks and Porter (1992), collusion among a group of bidders,

as in Porter and Zona (1993) and Bajari and Ye (2003), the distance from places where the

service is required, as in Bajari (1997) and Flambard and Perrigne (2006), and �rm size, as

noted by La¤ont et al. (1995).

While asymmetries among bidders arising from these sources have already been exam-

ined in the literature, the asymmetries between incumbent and entrant �rms have received

little attention. The notable exception is De Silva et al.�s (2003) investigation of the di¤er-

ences in the bidding patterns of entrants and incumbents in road construction auctions in

Oklahoma. De Silva et al.�s (2003) �nd that entrants are less e¢ cient and their distribution

of costs has greater dispersion. However, they seek asymmetries in �rm experience or the

information-gathering process, while we focus more on the structural di¤erences between

entrants and incumbents.4

Existing studies have also examined the e¤ect of preference policies on auctioneer rev-

enue. In general, preferences can take the form of discriminatory reserve prices, the dis-

counting of the bids of preferred �rms, or a set-aside policy. For instance, Krasnokutskaya

and Seim (2008) investigated the California Small Business Program and found that the

existing 5% preference to small business had virtually no e¤ect on the cost of procurement

or the total number of bidders. Likewise, Nakabayashi (2009) examined the e¤ect of small

business set-asides on Japanese public construction auctions. He found that approximately

40% of small businesses would exit from auctions were set-asides to be removed, thereby

increasing government procurement costs. Many other studies have conducted policy ex-

periments in this area. For example, Flambard and Perrigne (2006) found that a �xed

4While it is also surely in our interest to consider any asymmetry arising from experience or the
information-gathering process, we focus on structural di¤erences because we consider them especially large
and economically signi�cant in this particular market.
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subsidy and discriminatory reserve prices can reduce the cost of snow removal contracts

in Montreal because these policies enhance competition from stronger bidders. Similarly,

Hubbard and Paarsch (2009) found that the participation e¤ect is relatively unimportant

and that for most cost-distribution assumptions, a positive cost-minimizing preference rate

exists. Finally, Saini (2009) examined a dynamic setting where �rms became more asym-

metric as they became more capacity constrained, and found that the greater the rate of

bid preference needed to be, the more farsighted �rms were.

We �nd that the mean of the cost distribution of the incumbent is higher than that of the

entrants for most auctions. This is even for auctions with high load-factor requirements,

where the incumbents are considered to have a signi�cant advantage in production cost

structure. Our results imply that the incumbents�opportunity cost of winning auctions is

economically signi�cant. In our auctions, the mean cost of the incumbents is, on average,

1.25 times higher than that of the entrants. We also �nd that the entrants�rent is higher

than that of the incumbent for a given auction. That is, as the theory suggests, strong

bidders (the entrants) bid less aggressively than a weak bidder (the incumbent).

For the average auction, we �nd that the price-preferential treatment does not have much

e¤ect on the participation of entrants. Indeed, under the estimated participation cost, the

number of bidders would increase only under a very high percentage of preferential treatment

for entrants. However, in the case of a high preference for entrants, the government�s cost

of procurement increases signi�cantly.

We also �nd that a preference for the weak bidder, the incumbent, does not improve the

government�s procurement cost, although the theory suggests a preference for weak bidders

may enhance competition among strong bidders and thereby improve the government�s

procurement cost. The competition e¤ect on entrants is not much, presumably because each

entrant bids quite aggressively to compete with other entrants (not the incumbent), even

with no preference policy for the incumbent. Therefore, the preference for the incumbent

merely increases the probability of an incumbent with preferential treatment winning, and

this increases the government�s cost. The government cost is actually minimized with a
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small preference for entrants (5%) by making the incumbent bid more aggressively, while

not signi�cantly reducing the probability the incumbent winning.

2 Electricity procurement auction data

As discussed, the partial liberalization of the Japanese retail electricity market began in

2000, allowing new �rms, known as PPS, to enter the market and supply electricity to large

users with power and voltage requirements greater than 2; 000kW and 20; 000V, respectively:

The liberalization target was later expanded to users with power and voltage requirements

greater than 500kW and 6; 000V in 2004; and again to 50kW in 2005: Given the wave

of liberalization, public agencies have started to utilize �rst-price sealed-bid auctions for

electric power supply contracts for public places such as waterworks, roadway facilities,

schools, hospitals, and markets.

Each public agency advertises auctions on its webpage, in its o¢ cial gazette, or in

newspapers, with detailed information including the required maximum (peak) power (kW );

the amount of electricity to be supplied (kWh), the delivery period, the place of delivery,

the quali�cations needed for participating in the tendering process, and the time limit for

tenders. The �rm submitting the lowest bid wins the auction if the bid is lower than the

reserve price, and it is paid the total of its bid times the tax rate. Although a reserve

price exists, it is usually not announced (even after the bids have been opened). If the

lowest bid is higher than the reserve price, then the contract is not o¤ered. In this case, the

agency either conducts a second auction or enters into bargaining with one of the bidders.

In the case of the latter, a supplier will eventually supply the electricity at a negotiated

rate. From the bidders�perspective, the supply of electricity to public agencies is often a

secondary activity, and their focus remains on large private users where the prices are more

often determined by a bargaining process.
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2.1 The winning-bid data

This section describes our data set consisting of the winning bids of all electricity pro-

curement auctions conducted throughout Japan between April 2004 and March 2008. The

winning-bid data is from Electric Daily News, a newspaper specializing in electricity mar-

kets. The data contains information on the date when bids opened, the government agency

(the auctioneer), the required maximum power (kW ); the amount of electricity required

(kWh); the contract period, the place of delivery, the winner of each auction, the winning

bid, either the identi�cation or number of other bidders, and other descriptive auction infor-

mation, including whether there is a restriction on CO2 emissions.5 While the data contains

a rich number of observations, its disadvantages are that it does not include losing bids and

that identi�cation of losing bidders is not revealed for many observations.

A total of 2,098 contracts were o¤ered from April 2004 to March 2008.6 Nineteen

di¤erent �rms participate in these auctions, with nine incumbents and ten entrants. We

de�ne the �rms that operated before liberalization and that have continued to operate

as incumbents (i.e. the former monopoly �rms), and �rms that entered the market after

liberalization as entrants (i.e. PPS). In general, incumbent �rms continue to operate only in

their local areas following liberalization. Therefore, we do not observe any auctions where

multiple incumbents bid.

Table 1 provides some summary statistics. We have 1,351 observations without missing

information. As shown in the table, the auctions are not very competitive, with the average

number of active participants ranging from 1.50 to 2.05. The entrants do not participate in

all auctions, and the incumbent is the only bidder in many auctions. We can also see that

the number of bidders increased in 2005, but decreased thereafter. This may re�ect the

5The Environmental Conscious Contract Law has been enforced in Japan since November 2007. This
law clari�es the public sector�s responsibility to take into account not only economic concerns, but also the
reduction of greenhouse gas emissions, when they sign a contract. Speci�cally, contracts concerning the
purchase of electricity and o¢ cial vehicles, as well as service contracts such as those with energy service
companies (ESCO) and architects, are subject to law. In light of this law, public agencies have begun to set
numerical targets, such as the maximum CO2 emission coe¢ cient, as a quali�cation for the participation in
auctions.

6The Japanese �scal year begins in April. Hereafter, we use "year" to indicate the �scal year unless
otherwise noted.
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fact that the number of auctions with CO2 emission restrictions have gradually increased

since 2006. Because entrants usually only have thermal power stations that generate more

CO2, they tend to be disadvantaged in auctions with CO2 emission restrictions (see Hattori

and Saegusa 2010). Therefore, entrants are less likely to participate in auctions with CO2

restrictions. Here Green is a dummy variable that takes a value of 1 if the auction has any

restrictions on CO2 emissions; zero otherwise. As shown, this applies to 42% of auctions in

2006 and 34% of auctions in 2007.

The winning bids per kWh (yen/kWh) have also been increasing during this period.

Both the maximum (peak) power (kW ) and the size (kWh) decreased until 2006, but

increased in 2007. The downward trends in power and size until 2006 re�ect the fact that

the number of auctions of relatively small size increased as liberalization progressed. In 2007,

we observe many public agencies that bundle several contracts for o¤er at one auction. This

may also account for the increased size in 2007. Load refers to the load factor: the ratio

between the average and maximum (peak) usage of electricity during the contract period.

This is calculated as the required amount per year divided by the required capacity: (kWh)

/ (the maximum power (kW )� 24� 365). The low-load factor induces ine¢ ciency because

�rms need to hold capacity for peak usage that is not used for most of the time. The average

load factor is around 40% during this period.

The load factor appears to play an important role in the �rms�participation and bidding

decisions. Table 2 presents summary statistics of the winning bids and participation rates

by load factor. As shown in the second and third columns, winning bids decrease as the

load factor increases, implying that �rms can enjoy e¢ ciency with high load factors. In

the fourth column, we can see that the percentage of auctions with entrants decreases

with the load factor, and similarly in the �fth column, the percentage of auctions with

the entrant as winner decreases with the load factor. It then appears that entrants have

a signi�cant disadvantage in auctions with high load factors. As an explanation, Takagi

and Hosoe (2007) argue that petroleum thermal generation, on which entrants depend, are

peak power supplies and that it is di¢ cult to supply electricity for a whole day with this
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form of generation. Therefore, in auctions requiring high load factors, entrants are likely

to have a disadvantage. We can also see that entrants on average participate in only 44.0%

of auctions, while incumbents participate in almost all auctions7. The last column shows,

however, that the percentage of auctions where the entrant is the winner given the entrants�

participation is very high, except when the load factor is between 60% and 80%. Put simply,

once at least some entrants decide to participate in an auction, the incumbents are unlikely

to win that auction.

2.2 Some evidence of asymmetry

In total, incumbents submitted 1,351 bids of which 867 won contracts, while 1,080 bids were

submitted by entrants and 484 won contracts. Therefore, the winning rate of incumbents

and entrants is 64.2% and 44.8%, respectively. Incumbents, then, are clearly more likely to

win auctions. However, if we remove the auctions where an incumbent is the only bidder,

incumbents submitted 594 bids of which 110 won contracts. The winning rate of incumbents

and entrants in these auctions is 18.5% and 44.8%, respectively. Here, entrants are more

likely to win auctions.

We also run a simple regression as follows:

yi = XiB +D + T + "i;

where the subscript i refers to the auction. Because we have winning-bid data, the data is

at the auction level.8 We specify the dependent variable, the winning bid per amount of

electricity served (yen=kWh), throughout our analysis. The independent variables include

three sets of controls: X 0s controls for the auction-level variables, D is a vector of district

�xed e¤ects, and T is a vector of variables that control for the time trend. Because there is

only one incumbent in each district, D can also be considered as incumbent �xed e¤ects. We

7We observe only �ve auctions without incumbents.
8During the four years observed, some contracts for the same public places are repeatedly o¤ered because

most contracts are renewed each year. For simplicity, we pool the observations rather than using them as
panel data.
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use two types of T variables. The �rst is a vector of year dummies. This is because we wish

to control for trends in such variables as oil prices and technological progress. The second T

variable we use is the monthly spot transaction price of the Japan Electric Power Exchange

(JEPX) market. JEPX is the only wholesale exchange market for electricity in Japan, and

is one of the main input sources of entrants. Therefore, by controlling for JEPX prices, we

can partially control for the entrants�input costs in supplying electricity. Furthermore, the

JEPX price should also indirectly re�ect the oil prices and technological progress that we

would also like to control for using the T variable. In addition, the entrants can sell their

electricity to the JEPX when the JEPX price is high, rather than supplying electricity to

public agencies through auction. Therefore, the JEPX prices can e¤ectively account for the

opportunity cost of entrants in participating in auctions.

With respect to the auction characteristics X, we include the following variables. To

start with, in order to distinguish between entrants and incumbents, we simply include an

incumbent dummy variable that takes a value of 1 if the winner is an incumbent and zero

otherwise. We also include the number of bidders. We expect that auctions will be more

competitive and bids more aggressive as the number of bidders increases. The number of

bidders, however, may have a negative e¤ect on bids if the auction objects have a common

value because of the phenomenon of winner�s curse in common-value auctions. Because the

winner�s curse is more signi�cant when the number of bidders is large, bidders may become

less aggressive so as to avoid the winner�s curse when the number of bidders increases.

The load factor is also included as an independent variable. Because bids appear to

increase with the load factor, but not linearly, we include its square. We also include a

high-voltage dummy that takes a value of 1 if the contract for auction is for voltage greater

than 20; 000V: The peak power (kW) and the size (kWh) are also included. However,

because the two variables kW and kWh are highly correlated, we include only one in the

regression. These two variables are also highly correlated with the high-voltage dummy.

Therefore, we present the regression results with and without the high-voltage dummy. We

expect that the kWh size negatively a¤ects winning bids as �rms can enjoy scale economies
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with a larger size. For a similar reason, we expect that the contract length (year) has a

negative e¤ect on winning bids. The variable green is included to identify auctions with

CO2 emission restrictions.

In earlier auction studies using this type of reduced form regression, bidder character-

istics (such as the winning rate and the backlogs of a bidder) are commonly included in

the empirical speci�cation. The winning rate is typically used to represent �rm e¢ ciency,

while the backlog represents the �rm�s capacity constraints. Unfortunately, because we are

unable to identify losing �rms in most of the auctions in our dataset, we cannot construct

these variables. This is a signi�cant disadvantage of our data when undertaking reduced

form analysis. As for the capacity constraint, however, we believe that it is not binding

because the supply of electric power to the public sector is often a secondary activity for

both incumbents and entrants.

Finally, we do not include a variable for project type (place of delivery) because it would

appear that once we control for the load factor, the project type does not appear to matter

much for electricity suppliers (see Takagi and Hosoe 2007).

Table 3 shows the estimation results for the basic speci�cations with and without the

high-voltage dummy, kW; and kWh: The dependent variable is the winning bid per amount

(yen/kWh). In the �fth and sixth speci�cations, the monthly spot price on the JEPX is

used in place of the year dummies.

We can see similar results for the di¤erent speci�cations. The incumbent dummy does

not have a statistically signi�cant e¤ect, although it is positive. The number of bidders has

a negative and signi�cant e¤ect on the average bid, although this e¤ect is not statistically

signi�cant when we include the high-voltage dummy. This may suggest that the electric

power procurement auctions are likely to �t the private-value paradigm.9 The high-voltage

9Gilley and Karels (1981) conclude that one of the basic qualitative predictions in the common-value
paradigm is that "...a greater number of competitors on a tract will lower the optimal bid of the �rm"
(in higher-value auctions for oil tracts). This is because if a bid wins against a relatively large number of
competitors, it is more likely that the object has been overvalued and, as a result, �rms must take a more
pessimistic view of winning bids when more competitors enter. However, Pinkse and Tan (2002) show that
strategic behavior can cause bids to increase or decrease with the number of opponents under either the
private- or common-value paradigm. Gilley and Karels (1981) also show that this does not always hold when
the number of bidders is very small. Therefore, we cannot conclude that the auctions here can be modeled
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dummy has a negative and signi�cant e¤ect: that is, high-voltage contracts are won with a

lower bid. As expected, the load factor has a negative and signi�cant e¤ect on the winning

bid, and this e¤ect is not linear. The coe¢ cients on size (kWh or kW) and contract length

are also negative, implying that scale economies exist. The latter e¤ect is, however, not

statistically signi�cant. The e¤ects of size become insigni�cant when we include the high-

voltage dummy. The variable green has a positive e¤ect, implying that auctions with CO2

emission restrictions are more costly for suppliers. However, this e¤ect is also insigni�cant.

Finally, as expected, the JEPX transaction price has a positive and signi�cant e¤ect on the

winning bid.

Next, we include the dummy variable single that takes a value of 1 if no entrant par-

ticipates in the auction and zero otherwise. Because we do not typically observe multiple

incumbents in an auction, there is only one bidder (who is the incumbent) in the auction

if single=1. We include this variable in order to control for the participation decision of

entrants. As shown in Table 2, we �nd that entrants do not participate in all auctions. For

example, entrants are observed in only 3.1% of auctions when the load factor is higher than

80%. Unfortunately, if we cannot control for all of the variables that a¤ect the entrant�s

participation decision and the bidding behavior simultaneously, our results are likely to be

biased. Gilley and Karels (1981) point out the importance of the link between the dichoto-

mous bidding decision (bid, do not bid) and the bid-level decision, and suggest the use of

Heckman�s two-stage estimation (Heckman 1979). However, as we do not have losing bids

and cannot identify the losing �rms, we cannot employ this particular estimation method.

Therefore, we control for this variable, single, and assume that it proxies for all of the

auction characteristics on which entrants decide not to participate. Table 4 presents the

estimation results including the dummy variable single. The incumbent dummy now has

a positive and signi�cant e¤ect on the winning bid. That is, for similar types of auctions,

the incumbent�s winning bid is higher than that of the entrants. This may suggest that the

incumbents�bid distribution is higher, implying that incumbents are actually weak bidders

using the private-value paradigm only on the basis of this result. Recent studies introduce selection tests for
common- and private-value auctions (see, for example, Haile et al. 2003).
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in these auctions.10

3 Model and estimation strategy

We employ a structural approach to recover the �rms�underlying cost distributions and

entry costs. The recovered structural elements can then be used for conducting the analysis

of alternative economic policies. Similar to other work on auction participation, we model a

potential bidder�s decision as a two-stage process (Samuelson 1985, Levin and Smith 1994,

McAfee and McMillan 1987). In the �rst stage, each potential bidder decides whether to

participate in the auction. In the second stage, �rms that choose to participate submit their

bids.

In general, the literature analyzing endogenous participation di¤ers in the timing of

entry and the realization of the private value/costs (Li and Zheng 2007). That is, one

typical model assumes that potential bidders learn their private values/costs before they

decide whether to enter the auction, while another model assumes that potential bidders

do not draw their private values/costs until after they decide to enter the auction. In the

former model, entry cost is bid-preparation cost, while in the latter model, the entry cost

consists of costs from both information acquisition, such as the cost of investigating the

speci�cation of the contract, and bid preparation. Samuelson (1985) represents the former

model while Levin and Smith (1994) represents the latter; Li and Zheng (2007) test which

model applies in reality to timber sale auctions in Michigan.

In the case of Japan�s electricity procurement auctions, �rms �rst have to register for

auctions several weeks prior to the auction date. This registration can be considered as the

"entry" process. However, we understand from actual auction participants that sometimes

�rms decline to bid, even after entry into the auction. This behavior may imply that �rms

do not know their private costs when they make the decision otherwise �rms would never

"enter and decline" if participation is costly and they know their private costs. Therefore,

10Maskin and Riley (2000a) have shown that when asymmetry among bidders�cost distributions exists in
the sense of �rst-order stochastic dominance, their bids also exhibit �rst-order stochastic dominance.
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we follow the latter model and assume that bidders do not draw their private costs until

after they decide to enter. Speci�cally, we assume that incumbents participate in all of the

auctions (as in reality) while entrants make their participation decision by comparing the

expected pro�t conditional on participation to the cost of preparing the bid and acquiring

information. We also assume that �rms learn which other �rms have entered the auction

by the time of actual bidding once they decide to participate in the auction.

In the second stage, we consider an asymmetric auction model with independent costs.

We assume cost independence based on the empirical �nding in the last section that the

number of bidders decreases with the winning bid. This generally �ts the private-value

paradigm (see footnote 8). Cost independence is a reasonable approximation, because

�rms have di¤erent opportunity costs resulting from their various principal activities. In

procurement auctions, Bajari (1997), Jofre-Bonet and Pesendorfer (2003), Krasnokutskaya

(2010) and Flambard and Perrigne (2006) have also assumed independence. Although a

common component may exist, we consider it as negligible in this activity. The observed

auctions have secret reserve prices: that is, the reserve prices are never announced. In fact,

most reserve prices are not announced, even after the bids have been opened. However,

many public documents show that the reserve price in electricity procurement auctions is

generally the publicly listed power rate o¤ered by the incumbents. Therefore, we assume

that both incumbents and entrants know the reserve prices precisely, even though they are

not announced. The reserve price introduces a truncation in the bid distribution if it is

binding, and it causes the number of �rms actually participating in the auction to vary

from the potential number of �rms. Here, however, we assume that the reserve price is

not binding. We assume that entrants do not enter the industry unless they can supply

electricity cheaper in the �rst place than the listed fee of their local incumbent. Therefore,

the only factor that causes the number of actual �rms to deviate from the number of

potential �rms is the participation cost in the �rst stage.
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3.1 The second stage

We now consider the second stage. We apply the nonparametric approach in Guerre et

al. (2000) to estimate the �rms�costs and strategies. Flambard and Perrigne (2006) use

the same approach for asymmetric bidders and a binding reserve price, and show that the

independent private value (IPV) model with a binding reserve price is nonparametrically

identi�ed. Their approach involves �rst identifying the relationship between the bid and

cost from the theoretical model. They then estimate the bid distribution nonparametrically,

and recover the cost distribution using the theoretical relationship. Because we only observe

winning bids, not all bids, we additionally need to identify the relationship between the

winning-bid distribution and the all-bids distribution before fully applying this approach.

That is, we �rst estimate the winning-bid distribution nonparametrically, and recover the

all-bids distribution using the theoretical relationship. We then recover the cost distribution

using the all-bids distribution thus obtained.

3.1.1 The bidding model

We consider a procurement auction in which n risk-neutral �rms compete for a contract

to provide electricity throughout the contract period. Before bidding starts, each �rm i

forms an estimate of its cost to complete the task. The cost estimate is then �rm i�s

private information. Thus, �rm i knows its own cost estimate but does not know the cost

estimates of the other �rms. The cost estimate for �rm i is a random variable Ci with a

realization denoted as ci; and is drawn independently across all �rms. We consider two

types of �rms. Type 1 (0) refers to the incumbent (entrant). Types 1 and 0 consist of

n1 = 1 and n0 = n � 1 �rms, respectively: we assume that there is only one incumbent,

and the incumbent, as in reality, always participates in the auction: Firms are assumed to

learn the number of participants n (and therefore, n0 = n� 1) before they enter the second

stage. Let c1 and c0 denote the costs of the incumbent and entrant, respectively, drawn

respectively from distribution F1(�) and F0(�), de�ned on the common support [c; c]:11 Both
11Under this common support assumption, �rms always have a non-zero probability of winning the auction,

and therefore tender bids once they enter the second stage and learn their private costs. However, as described
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distributions are continuous, with densities f1(�) and f0(�):We consider a �rst-price sealed-

bid auction. Maskin and Riley (2000b) establish the existence of Bayesian equilibrium in

asymmetric auctions.

We assume that both the incumbent and entrants guess the reserve price pe1 and p
e
0

because this is undisclosed in this industry. We also assume that they guess the reserve

price p correctly (i.e. pe1 = pe0 = p) for the reason described above. We assume that the

reserve price is nonbinding. However, when the number of bidders is 1, that is, when the

incumbent is the only participant (n = n1 = 1); the incumbent bids the reserve price. In

other cases, �rm i must submit the bid that is lowest among the participants and lower

than the reserve price in order to win the contract. In the following model, we consider the

case where n 6= 1:

If �rm i submits a bid b; given that it is lower than the reserve price, it will win the

contract when cj � �j(b) for all j 6= i; where �j is the inverse strategy function that maps

the equilibrium bids to costs. At the Bayesian-Nash equilibrium, each �rm i chooses its bid

b to maximize its expected pro�t:

max
b
�i(b; ci) = (b� ci)

Y
j 6=i

�
1� Fj(�j(b))

�
: (1)

As we can see, �rm i�s expected pro�t is a markup times the probability that �rm i is

the lowest bidder. Di¤erentiating (1) with respect to b gives the following two �rst-order

conditions for type 1 and 0:

c1 = b1 �
1

(n� 1)f0(�0(b1)�
0
0(b1))

1�F0(�0(b1))

(2)

c0 = b0 �
1

f1(�1(b0)�
0
1(b0))

1�F1(�1(b0))
+ (n� 2)f0(�0(b0)�

0
0(b0))

1�F0(�0(b0))

(3)

earlier, some �rms actually exist that enter auctions but decline to submit bids. These �rms presumably
decline to bid because they have learned there is no probability of winning. Therefore, to explain this
behavior, we need to relax either the assumption of common support or the assumption of a nonbinding
reserve price. However, as we do not observe the reserve price or where �rms have declined to bid, we use
these assumptions for simplicity.
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with boundary conditions (Maskin and Riley (2000a))

�k(�c) = �c for k = 0; 1 (4)

9� s.t. �k(�) = c for k = 0; 1

3.1.2 Identi�cation and the estimation method of the bidding model

In a �rst-price sealed-bid auction, the bids and number of actual bidders are typically

observed, while the bidders�costs and their distributions are not. The typical problem of

identi�cation reduces to whether F1(�); F0(�) are identi�ed from the observed bids and the

number of actual bidders n:

Because the distributions and densities of costs are not observed, Guerre et al. (2000)

and Flambard and Perrigne (2006) rewrite the above �rst-order conditions using only the

distribution of observed bids, and nonparametrically estimate the latter. Let G1(�) be the

distribution of bids for the incumbent bidder with the density function g1(�): Let G0(�)

be the marginal distribution of bids for the other bidders with the density function g0(�):

Because the observed bids are the equilibrium bids, we have, for every b 2 [b; �c]; G1(b) =

F1(�1(b)) = F1(c); and G0(b) = F0(�0(b)) = F0(c): Similarly, gi(b) = G
0
i(b) = fi � �0i(b) for

i = 1; 0: The system of equations (2) and (3) can be then rewritten as:

c1 = b1 �
1

(n� 1) g�0(b1)
1�G�0(b1)

(5)

c0 = b0 �
1

g�1(b0)
1�G�1(b0)

+ (n� 2) g�0(b0)
1�G�0(b0)

(6)

That is, knowledge of G�1(�); G�0(�); g�1(�); g�0(�); n determines the costs c1 and c0 in Equations

(5) and (6) for any bid value. We can then estimate the cost distribution using c1 and c0

for each observed bid: that is, the cost distributions are identi�ed from the observed bids

and the number of participants.

Given we only have access to winning bids, we need to transfer Equations (5) and (6) to

those that relate to the cost and winning-bid distributions. Let Wi(�) be the distribution of
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bidder i0s winning bids. Then, as in Brendstrup and Paarsch (2003) and Athey and Haile

(forthcoming), Berman�s (1963) derivation yields the relation:

Gi(b) = 1� exp
"
�
Z b

�1

dWi(t)

1�
Pn
j=1Wj(t)

#
(7)

for a given n (see the Appendix for derivation). Therefore, for each type, we have:

G1(b) = 1� exp
�
�
Z b

�1

dW1(t)

1�W1(t)� (n� 1)W0(t)

�
(8)

G0(b) = 1� exp
�
�
Z b

�1

dW0(t)

1�W1(t)� (n� 1)W0(t)

�
(9)

g1(b) = [1�G1(b)]�
dW1(t)

1�W1(t)� (n� 1)W0(t)
(10)

g0(b) = [1�G0(b)]�
dW1(t)

1�W1(t)� (n� 1)W0(t)
: (11)

Then, we estimate the observed winning-bid distributions W �
1 and W

�
0 and its density

w�1 = dW �
1 and w

�
0 = dW �

0 nonparametrically and obtain G
�
1; G

�
0; g

�
1; g

�
0 from the above

relationship. Once we obtain G�1; G
�
0; g

�
1; g

�
0; the cost of the winner corresponding to each

observed auction is recovered as:

cw1 = bw1 �
1

(n� 1) g�0(b
w
1 )

1�G�0(bw1 )

(12)

cw0 = bw0 �
1

g�1(b
w
0 )

1�G�1(bw0 )
+ (n� 2) g�0(b

w
0 )

1�G�0(bw0 )

(13)

where cwk and b
w
k are the cost and bid of a type-k winner. We can immediately see that the

knowledge of W �
1 (�);W �

0 (�); w�1(�); w�0(�); n determines the costs cw1 and cw0 for any winning

bid value from Equations (8) to (13).

Next we control for heterogeneity in auctions. We consider L auctions indexed by l;

l = 1; :::; L: Let Xl be a vector of variables characterizing the auction l: We assume that all

of the information characterizing the auctioned object is available to the analyst, and that

any unobserved heterogeneity arises only from the di¤erences in the bidders�private costs,
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which are unobserved random terms in the model. Then, the winning-bid distribution can

be written conditionally on Xl and the number of actual bidders n.

Following Guerre et al. (2000) and Brendstrup and Paarsch (2003), we nonparamet-

rically estimate these winning-bid distributions and densities. We �rst estimate the joint

distribution (de�ned below) and the joint density of winning bid bw; the auction character-

istics X; and the total number of actual bidders n as follows:

Ŵ �
k (b

w; X; n) =
1

Lh1kh2k

LkP
l=1

1 (bwkl � bw)KG
�
x�Xl
h1k

;
n� nl
h2k

�
;

ŵ�k(b
w; X; n) =

1

Lh1kh2kh3k

LkP
l=1

Kg

�
bw � bwkl
h3k

;
x�Xl
h1k

;
n� nl
h2k

�
;

for k = 0; 1, where Ŵ �
k (b

w; X; n) = Ŵ �
k (b

wjX;n) � fxn(X;n); Lk is the number of auctions

where type k is the winner, 1 (�) is the indicator function, KG, Kg, Kx are kernels de�ned on

compact supports, the variables with subscript l are the values of these variables in auction

l; and hs are smoothing parameters. We also nonparametrically estimate the joint density

of X and n as follows:

f̂xn(X;n) =
1

Lhxh2k

LP
l=1

Kx(
x�Xl
hx

;
n� n�l
h2k

):

for k = 0; 1: Then, we obtain the conditional winning-bid distributions and densities by

Ŵ �
k (b

wjX;n) = Ŵ �
k (b

w; X; n)=fxn(X;n) and ŵ�k(b
wjX;n) = ŵ�k(bw; X; n)=fxn(X;n): Follow-

ing Equations (8) to (11), we then obtain Ĝ�k(bjX;n) and ĝ�k(bjX;n): Equations (12) and

(13) can be rewritten as:

cw1 = bw1 �
1

(n� 1) g�0(b
w
1 jX;n)

1�G�0(bw1 jX;n)

(14)

cw0 = bw0 �
1

g�1(b
w
0 jX;n)

1�G�1(bw0 jX;n)
+ (n� 2) g�0(b

w
0 jX;n)

1�G�0(bw0 jX;n)

: (15)

The above procedure recovers the winner�s cost. We calculate the type-k winner�s rent by

bwk � cwk :
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In order to obtain the equilibrium strategies of the two types of �rms, we need to obtain

the corresponding cost for each bid, including the losing bids of �rms. However, unlike

previous studies, we do not observe all of the bids. Therefore, we rely on simulation. More

speci�cally, we obtain T random draws from the estimated bid distribution Ĝ�k(bjX;n) for

any observed value of Xl and nl, by the inverse transform method (Brandimarte (2006)).

For each draw btk; we calculate the pseudo cost ĉ1t and ĉ0t from Equations (5), (6) using the

estimated bid densities and distributions, g�1; g
�
0; G

�
1; G

�
0:

ĉt1 = bt1 �
1

(n� 1) ĝ�0(b
t
1tjXl;nl)

1�Ĝ�0(bt1tjXl;nl)

(16)

ĉt0 = bt0 �
1

ĝ�1(b
t
0tjXl;nl)

1�Ĝ�1(bt0tjXl;nl)
+ (n� 2) ĝ�0(b

t
0jXl;nl)

1�Ĝ�0(bt0jXl;nl)

(17)

for given Xl: By plotting btk against ĉ
t
k for k = 0; 1; we can show the �rms�bidding strategies

of type 0 and 1.

3.1.3 Auction characteristics, choice of kernels, and bandwidths

In order to take into account auction heterogeneity, we control for the load factor, the

peak power (kW ), district, and the JEPX price because in Section 2.2 these factors were

found to most substantially a¤ect the winning bid.12 We conduct a separate nonparametric

estimation for each district in order to control for the district e¤ect because the auction and

participant characteristics di¤er signi�cantly across districts. However, we only show the

results for Tokyo district because of the limited number of observations in other districts.

We also remove observations with a load factor of less than 10%, because in such auctions

bids are extremely higher than in other auctions. We then have 408 observations. We

12The reduced form estimation in Section 2.2 shows that the auction characteristics that are statistically
signi�cant are dummy variables for a high-voltage auction and the load factor. To control for the high-voltage
dummy in the nonparametric estimation, we should conduct a separate estimation for each dummy value.
However, the number of observations in the high-voltage group is too small for nonparametric estimation.
Therefore, instead of a high-voltage dummy, we use peak-power (kw) as it is continuous and has a strong
positive correlation with the high-voltage dummy. In fact, if we drop the high-voltage dummy from the
regression, the coe¢ cient on peak power becomes negative and signi�cant in the estimations in Section 2.2.
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also exclude observations with single=1, because in such an auction the only bidder (the

incumbent) bids the reserve price. The �nal number of observations is 241. Summary

statistics for the Tokyo district are shown in Table 5.

Because of the relatively small size of our data set and the use of nonparametric esti-

mators, we reduce the dimension of Xl by constructing a single variable to capture auction

heterogeneity. We employ principal component analysis following Flambard and Perrigne

(2006). Three variables characterize the auction, namely, the load factor, power, and the

JEPX price. We construct the following variable zl = 0:6813Ll+0:5100Pl�0:5252tl, where

Ll; Pl and tl are standardized variables for load factor, power, and JEPX price, respectively.

We obtain a zl varying from �2:16 to 7:54 with a mean equal to 0 and a variance of 1:12.

Following Flambard and Perrigne (2006), we select the biweight kernel: K(u) = (15=16)(1�

u2)21 (juj � 1): KG(�; �) and Kg(�; �; �) are the products of two and three univariate biweight

kernels, respectively. For the choice of bandwidth, we follow Simono¤ (1996, p.105). The

general form of the kernel estimator for multivariable x is f̂(x) = (1=(n jHj))
nP
i=1
Kd[H

�1(x�

xi)] where d is the dimension of x and H is a nonsingular d � d bandwidth matrix. To

simplify the estimation, we employ a diagonal H :

H = diag(h1; :::; hd) = 2:623� (
4

d+ 2
)1=(d+4)(diag�

1
2 )n�1=(d+4):

Then, for our kernel estimators for winning-bid distributions, we have h1k = 2:623 �

�̂zk � L�1=6; h2k = 2:623 � �̂nk � L�1=6 for k = 1; 0 where �̂zk and �̂nk are the empirical

standard deviations of z and n in observations with a type-k winner. For our estimators of

the winning-bid densities, we have h1k = 2:623�0:969� �̂yk�L�1=7, h2k = 2:623�0:969�

�̂zk � L�1=7; and h3k = 2:623 � 0:969 � �̂nk � L�1=7 where �̂s are de�ned similarly. For

the estimator for the joint density of X and n; we have hx = 2:623� 1� �̂zk � L�1=6: The

factor 2.623 is the correction arising from the use of a biweight kernel instead of a Gaussian

kernel.
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3.2 The �rst stage

In this subsection, we consider the �rst stage where �rms decide whether they participate

in the auction. Once a potential bidder enters an auction, it will incur a participation cost

ek; draws its cost realization, and submits a bid in the second stage. We assume that the

participation cost di¤ers between incumbents and entrants. More speci�cally, based on the

observed fact that incumbents participate in all auctions, we assume that the participation

cost for incumbents, e1; is negligible, and that the incumbents participate in any auction.

This may not be as strong an assumption as it at �rst sounds because the incumbents

have a supply duty, and therefore must supply electricity to these public agencies, even

when there are no participants in the auction. Therefore, as they have to investigate the

contracts regardless, it is not a participation cost for the incumbent. Further, we assume

that incumbents continue to operate only in their former monopoly areas. Therefore, there

is always one incumbent bidder in each auction. We assume that the incumbents�decision

in the �rst stage and their participation cost ek for k = 1; 2 are common knowledge for all

bidders.

We follow the entry process of McAfee and McMillan (1987) and Nakabayashi (2009),

and assume that participation decisions are made sequentially. Speci�cally, we assume that

entrants make their participation decision on the basis that there always exists one and

only one incumbent in an auction. Entrants enter an auction until their expected pro�ts

are driven down to equal the entry cost e0: We assume that the participation cost e0 is

binding because in each area we do not observe any auction where all of the potential

entrants participate. For example, in the Tokyo area we have eight potential entrants

operating in this area, while the observed maximum number of entrants in any Tokyo area

auction is �ve. Therefore, the entrants are marginal bidders whose ex ante payo¤ is zero.13

An entrant�s expected pro�t for auction l; given c0 and n0; is

�l0(c0; n0) = (�(c0; n0)� c0) Pr ob(winjc0; n0):
13We temporarily ignore the fact that there must be an integer number of bidders.

22



Then their ex ante expected pro�t for auction l; given n0; Vl0(n0); is:

Vl0(n0) =

Z
c0

�l0(ĉ; n0)dF0(ĉ): (18)

The unique entry equilibrium must satisfy

Vl0(n0) = e0

subject to n0 � nh0 where nh0 is the maximum number of entrants in the area. The partici-

pation cost e0 di¤ers by auction because of the auction characteristics.

Using the estimated results from the second stage, we obtain �l0 for any value of c0

in Equation (18). Then, using the estimated cost density and the observed number of

participants, we obtain Vl0 for any observed auction, thereby obtaining the participation

cost e0.

4 Estimation results

Table 6 provides summary statistics on the estimated costs of winners (cw1 and cw0 ) in

the observed auctions in Tokyo. The average estimated costs of the type-1 (incumbent)

and type-0 (entrant) winner are 9.03 yen=kWh and 10.11 yen=kWh, respectively, and the

average rents are 0.39 yen=kWh and 0.34 yen=kWh, respectively, without controlling for

auction characteristics. The cost of a type-1 (incumbent) winner is, on average, lower than

that of a type-0 (entrant) winner, presumably because incumbents win auctions with high

load factor requirements more often than entrants: put di¤erently, the contracts with high

load factor requirements are less costly. The incumbent�s rent is probably higher for a

similar reason: that is, contracts with high load factor requirements are more pro�table.

Table 7 provides the estimated costs and rents of winners on auction characteristics.14 Once

we control for auction characteristics in Tokyo area, we can see that the incumbent winner�s

14Because the number of bidders should not a¤ect �rm costs, it only enters the regression for the �rm
rents.
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cost is higher than that of entrants while the incumbent�s rent is lower than that of entrants.

Next, we draw T random bids from the estimated bid distribution Ĝ�k(bjX;n) for all ob-

served values ofXl and nl, and obtain the corresponding cost distributions F1(c1jXl; nl); F0(c0jXl; nl)

for each (Xl; nl) from Equations (16) and (17).15 From F1(c1jXl; nl); F0(c0jXl; nl); we obtain

the mean of the cost distributions E(c1jXl; nl); E(c0jXl; nl); and the standard deviations

of the cost distributions sd(c1jXl; nl); sd(c0jXl; nl) for each (Xl; nl): Table 8 provides sum-

mary statistics of these estimated means and standard deviations of cost distributions. We

can see that on average (average on (Xl; nl)); the incumbent has a higher mean and a

lower standard deviation. Figure 1 displays the estimated cost densities of entrants and

the incumbent in the Tokyo area, given the median value of auction characteristics and

the number of bidders (Peak power = 1,340kW; Load factor = 34.33%, JEPX price = 8:60

yen/kWh; one incumbent and one entrant). This is a typical cost density of two types.

We can see that the density of the incumbent has a higher mean while that of the entrant

has a higher variance. Figure 2 plots the estimated equilibrium strategies given the median

values of the auction characteristics and two bidders in the Tokyo area. We can see that

the incumbent bids more aggressively than the entrants: that is, as the theory suggests, for

the same cost value, the incumbent submits a lower bid.

Our �ndings show that the incumbent has a higher cost for the electricity supply con-

tracts despite its advantage in production cost structure. Its higher costs may then be

explained by its opportunity cost of winning the auctions as discussed in the Introduction:

winning auctions for public agencies at lower bids may lose future pro�ts from private users

for the incumbent. It appears, then, that the incumbent�s opportunity cost of winning the

auction is economically signi�cant.

Table 9 shows the result from the regression of the di¤erence of the mean cost of the

incumbent and the entrants (E(c1jXl; nl) � E(c0jXl; nl)) on auction characteristics. We

can see that the cost di¤erence becomes smaller the higher the load factor. This implies

that the incumbent�s opportunity cost is lower for contracts with higher load factor require-

15For now, we set T = 10000:
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ments. This may be because the incumbent already o¤ers a low rate for private users whose

electricity usage requires a high load factor.

Using the estimated costs for each observed auction characteristic and the number of

participants, we calculate the participation cost of entrants. We calculate the participation

cost for one observed auction with a mean value of zl (peak power = 3,200kW; load factor =

33.1%, amount = 9; 270 thousand kWh; JEPX = 8:605yen/kWh) and n = 5. The calculated

entry cost is 4; 206 thousand yen. This is comparable to the estimates in Krasnokutskaya

and Seim (2008), though the auction objects are di¤erent in their case.

5 Counterfactual analyses

We use the above estimation results to assess the e¤ect of hypothetical preferential treat-

ment. We compare the costs to the government (the auctioneer) under di¤erent settings of

the preference rate �. With a bid preference rate of �; if a preferred �rm has tendered a

bid of b; then the auctioneer would consider the preferred �rm�s tender a bid of b=(1 + �);

but still pays b for the contract. As noted in Hubbard and Paarsch (2009), introducing

preferential treatment has three e¤ects. First, �rms receiving preferential treatment can

in�ate their bids and still win the auction: they refer to this as the preference e¤ect. Sec-

ond, nonpreferred �rms will behave more competitively than under the equal treatment of

bids: this is the competitive e¤ect. Finally, if preferential treatment changes �rms�expected

pro�t, it will also a¤ect their participation behavior: this is the participation e¤ect. We now

examine the net e¤ect of these three individual e¤ects on government procurement costs

under di¤erent bid preference rates.

In order to evaluate auction outcomes under alternative settings, we need to simulate

bidding strategies that take the policy parameters into account. More speci�cally, we need

to modify the �rst-order conditions (2) (3), which are based on the common support as-

sumption, to those that incorporate the bid preference � as follows (see Krasnokutskaya and
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Seim (2008)): When a preference is given to incumbents:

c1 = b1 �
1

(n� 1)=(1 + �)f0(�0(b1=(1+�))�
0
0(b1=(1+�)))

1�F0(�0(b1=(1+�)))

(19)

c0 = b0 �
1

(1+�)f1(�1(b0(1+�))�
0
1(b0(1+�)))

1�F1(�1(b0(1+�)))
+ (n� 2)f0(�0(b0)�

0
0(b0))

1�F0(�0(b0))

(20)

with the boundary conditions,

�0(�c) = �c = �b0; (21)

�1(
�b1) = �c and �b1 > �b0: (22)

9� s.t. �0(�) = c and �1(�(1 + �)) = c

where,

�b1 = argmax
b
(b� �c)(1� F0(b=(1 + �))n0 :

When a bid preference � is given to entrants, the �rst order conditions are:

c1 = b1 �
1

(n� 1)(1 + �)f0(�0(b1(1+�))�
0
0(b1(1+�)))

1�F0(�0(b1(1+�)))

(23)

c0 = b0 �
1

f1(�1(b0=(1+�))�
0
1(b0=(1+�)))

(1+�)(1�F1(�1(b0=(1+�))))
+ (n� 2)f0(�0(b0)�

0
0(b0))

1�F0(�0(b0))

(24)

with the boundary conditions,

�k(�c) = �c for k = 0; 1: (25)

9� s.t. �1(�) = c and �0(�(1 + �)) = c:

The �rst-order conditions hold for cm�1 2 (c;�bm=(1 + �)) and cm 2 (c; �c) where m is the

preferred bidder. Nonpreferred bidders with cost cm�1 2 (�bm=(1 + �); �c) cannot submit a

winning bid that would cover their cost. We assume that in this range of cost realization,

they bid their cost. This system of di¤erential equations does not have a closed form solution
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and therefore needs to be solved numerically. We follow Marshall et al. (1994) who solve

the di¤erential equations forwards.16 As noted by Marshall et al. (1994), the numerical

determination of � is a critical component of the problem to be solved. We conduct a

forward recursion algorithm starting at a lower boundary value � chosen to result in an

endpoint that satis�es the upper boundary condition. We embed this forward algorithm in

a routine that searches for a starting point that also satis�es the lower boundary condition.

The counterfactual analyses are again conducted for a particular auction that has a

mean value of zl (peak power = 3; 200kW; load factor = 33:1%, amount = 9; 270 thousand

kWh; JEPX= 8:605yen/kWh). Table 10 presents the result from the counterfactual analy-

ses. The upper panel presents the simulation results when preferential treatment is awarded

to the entrants. � is the preference rate. E(rent1) and E(rent0) are the (ex-ante) expected

pro�t of the incumbent and entrants, respectively. E(cost) is the government�s expected

procurement cost. E(incumbent win) is the expected rate of the incumbent winning. We

can see that the preference for entrants does not have much e¤ect on the number of bidders

when the rate is small. Although the expected pro�t for entrants increases as the discount

increases, the �fth entrant cannot enter because if it did the expected pro�t would be less

than the participation cost. When the preference rate reaches 20%; the number of bid-

ders jumps to nine. The expected pro�t of the incumbent decreases with the discount rate

for entrants. This is �rstly because the incumbent bids more aggressively the higher the

preference to entrants, and secondly, because it becomes more di¢ cult for the incumbent

to win the auction. The expected winning bid decreases with the discount rate, re�ecting

discounted bids by the entrants and more aggressive bids by the incumbent. The govern-

ment�s procurement cost has nonmonotonic movement with the discount rate. We can see

that the government cost is minimized with a preference rate of 5% for this auction. At

this discount rate, the competitive e¤ect on the incumbent o¤sets the preference e¤ect on

the entrants. However, as the preference rate increases, the e¤ect of a more aggressive bid

by the incumbent is o¤set because even with more aggressive bids, incumbents are unlikely

16Marshall et al. (1994) solves a high bid auction and suggest solving the problem backwards. Here, we
consider a low-bid auction and solve the system forwards.
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to win the auction.

The second panel presents the simulation results when a preferential treatment is awarded

to the incumbent. Theory suggests a preference for weak bidders may enhance competi-

tion among strong bidders, and thereby improve the government�s procurement cost. We

can see, however, that a preference for the incumbent does not improve the government�s

procurement cost. Not surprisingly, the expected pro�t of the incumbent increases while

that of the entrants decrease, with the preference rate for the incumbent. However, the

competition e¤ect on the entrants is not su¢ cient to o¤set the preference e¤ect on the

incumbent. The reason for this small competition e¤ect may be that each entrant already

bids aggressively, even without the preferential treatment for the incumbent, in order to

compete with other entrants. Because of the small competition e¤ect, the preference for

the incumbent merely increases the probability of winning by an incumbent that already

has preferential treatment, and this increases the government�s cost.

6 Conclusion

This paper studies the bidding patterns of entrant and incumbent �rms in electric power

procurement auctions in Japan. In the Japanese retail electricity market, ten �rms that

supplied electricity acted as local monopolists. Partial liberalization started in 2000, al-

lowing PPS to enter the market and to supply electricity to large users with power and

voltage requirements greater than 2; 000kW and 20; 000V, respectively: Accompanying this

liberalization wave, public agencies have begun to utilize sealed bidding systems for elec-

tric power supply contracts. Although PPS are now allowed to participate in any auctions

with power requirements exceeding 50kW , their participation rate remains very low, im-

plying a signi�cant cost disadvantage of entrants relative to incumbents. Conversely, the

incumbents�opportunity costs of winning auctions are considered high because they have

large outside customers already trading in the publicly announced power rate. We assess

the extent of asymmetry between the incumbent and the entrants and whether preferential

treatment on one or the other type can improve the participation of entrants and decrease
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the government�s procurement costs.

We model the bidding and participation behavior of the incumbents and the entrants in

a two-stage game and recover the cost distributions using the structural estimation method

proposed by Guerre et al. (2000). Because we only have access to winning bids, we non-

parametrically estimate the winning-bid distribution, and use the theoretical relationship

between it and the all-bids distribution to apply the approach in Guerre et al. (2000). We

then calculate the participation cost that explains the present participation situation using

the estimated cost distributions.

We �nd that an incumbent has a much higher cost for a given auction than the en-

trants, despite its advantages in production cost structure. Our results indicate that the

incumbent�s opportunity cost of winning auctions is also economically signi�cant: that is,

the incumbent cannot win auctions with low bids because it will reveal its ability to supply

electricity at lower rates to outside customers.

Having estimated the bid and cost distributions, we are able to simulate auction out-

comes under alternative scenarios for price-preference policy. We �nd that a preference

for the weak bidder, the incumbent, does not improve the government�s procurement cost,

although theory suggests a preference for weak bidders may enhance competition among

strong bidders and thereby improve the government�s procurement cost. In fact, government

cost is minimized with only a small preference for entrants (5%) by making the incumbent

bid more aggressively while not signi�cantly reducing the probability of the incumbent

winning.

Some points that should be considered remain outstanding in our approach. First,

we do not consider heterogeneity among entrants. In reality, entrants have very di¤erent

characteristics, such as size. However, because our data set does not permit the identi�cation

of entrants when they do not win, it is not possible to consider the heterogeneity among

entrants here. We are currently gathering all auction bids (not just the winning bid) for

further study. Second, our study considers only the static e¤ects of preference treatment.

Further research is needed to assess preference policy in a dynamic setting.
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A Appendix

The identi�cation of each marginal bid distribution Gi from the observation of the winning

bid is formally equivalent to the identi�cation of the competing risks model with indepen-

dent non-identically distributed risks (see Brendstrup and Paarsch (2003); Athey and Haile

(forthcoming)). The distribution of the winning bid of �rm i; Wi(y); is the union of two

disjointed events, bi being min(b1; :::; bn) and bi � y:

Wi(y) = Pr(Y � y;winner is i)

=

Z y

�1

Q
j 6=i
[1�Gj(t)] gi(t)dt

=

Z y

�1

nQ
j=1

[1�Gj(t)]

1�Gi(t)
gi(t)dt

=

Z y

�1

1� Pr(y � t)
1�Gi(t)

gi(t)dt

=

Z y

�1

1�
Pn
j=1Wj(t)

1�Gi(t)
gi(t)dt

=

Z y

�1
�

241� nX
j=1

Wj(t)

35 d log(1�Gi(t)) (26)

where n is the number of bidders who actually participated in the auction. Rearranging

the above equation, we obtain the relationships between the winning-bid distribution and

the all-bids distribution and between the winning-bid density and the all-bids density as

follows.
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dWi(y) = �

241� nX
j=1

Wj(y)

35 d log(1�Gi(y))
d log(1�Gi(y)) = � dWi(y)
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FY # of # of Winning bids Peak power Amount Load Green
auctions bidders (yen/kWh) (kW) (thousand kWh)

2004 335 1.50 14.25 2110.04 9565.24 0.44 0.00
2005 279 2.05 14.75 2047.39 8774.40 0.41 0.00
2006 324 1.97 15.11 1680.45 6757.03 0.38 0.42
2007 413 1.75 15.74 2165.51 9685.31 0.38 0.32
Total 1351 1.80 15.02 2011.04 8765.15 0.40 0.20

Table 1: Auctions from FY2004 to FY2007

Load # Win bid Win bid % % %entrant win
factor of of of with entrant given

auctions incumbent entrant entrant wins entrant entry
�10% 59 37:08 27:12 83:1% 83:1% 100%
10� 20% 125 20:24 20:23 56:0% 52:8% 94:3%
20� 40% 524 16:09 15:48 50:2% 45:8% 91:3%
40� 60% 413 12:87 12:32 42:1% 27:9% 66:1%
60� 80% 198 11:05 10:62 18:7% 6:6% 35:1%
80%� 32 10:56 11:50 3:1% 3:1% 100%
Total 1351 14:23 16:41 44:0% 35:8% 81:5%

Table 2: Load factor and bid di¤erence between incumbent and entrant
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(1) (2) (3) (4) (5) (6)
Incumbent wins 0:150 0:153 0:244 0:249 0125 0:242

(0:275) (0:275) (0:277) (0:277) (0:277) (0:277)
Number of bidders �0:201 �0:201 �0:330��� �0:335��� �0:340��� �0:344���

(0:122) (0:123) (0:122) (0:122) (0:120) (0:120)
High voltage �1:173��� �1:160���

(0:213) (0:206)
Load �0:550��� �0:551��� �0:550��� �0:549��� �0:547��� �0:546���

(0:017) (0:017) (0:017) (0:017) (0:017) (0:017)
Load^2 0:004��� 0:004��� 0:004��� 0:004��� 0:004��� 0:004���

(0:000) (0:000) (0:000) (0:000) (0:000) (0:000)
KW �0:007 �0:051�� �0:049��

(0:022) (0:021) (0:021)
KWh �0:002 �0:008�� �0:007��

(0:004) (0:003) (0:003)
Contract length �0:020 �0:011 �0:049 �0:029 �0:061 �0:041

(0:239) (0:160) (0:161) (0:162) (0:160) (0:161)
Green 0:161 0:119 0:001 0:008 �0:099 �0:091

(0:234) (0:239) (0:242) (0:242) (0:215) (0:215)
JEPX 0:074��� 0:075���

(0:027) (0:027)
Constant 30:168��� 30:142��� 30:179��� 30:075��� 29:534��� 29:420���

(0:592) (0:593) (0:599) (0:600) (0:667) (0:668)
F(P-value) 0:000 0:000 0:000 0:000 0:000 0:000
Adj. R-squared 0:652 0:652 0:645 0:644 0:645 0:645
# of obs. 1349 1349 1349 1349 1349 1349

Notes: Dependent variable is average bid (yen/kWh). (1) to (4) include district and
year dummies. (5) and (6) include district dummies. SEs are in parentheses.

Table 3: Estimation results:Basic speci�cation
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(1) (2) (3) (4) (5) (6)
Incumbent wins 0:704�� 0:711�� 0:694�� 0:687� 0:654� 0:647�

(0:342) (0:342) (0:346) (0:346) (0:346) (0:346)
Number of bidders �0:362��� �0:363��� �0:464��� �0:465��� �0:467��� �0:467���

(0:136) (0:136) (0:137) (0:137) (0:135) (0:136)
Single �0:988��� �0:994��� �0:795��� �0:772�� �0:740�� �0:717�

(0:365) (0:364) (0:361) (0:367) (0:368) (0:367)
High voltage �1:123��� �1:218���

(0:214) (0:206)
Load �0:554��� �0:555��� �0:553��� �0:552��� �0:550��� �0:549���

(0:017) (0:017) (0:017) (0:017) (0:017) (0:017)
Load^2 0:004��� 0:004��� 0:004��� 0:004��� 0:004��� 0:004���

(0:000) (0:000) (0:000) (0:000) (0:000) (0:000)
KW �0:010 �0:055��� �0:053��

(0:022) (0:021) (0:021)
KWh �0:003 �0:008�� �0:008��

(0:004) (0:004) (0:003)
Contract length �0:021 �0:010 �0:051 �0:029 �0:065 �0:043

(0:159) (0:160) (0:161) (0:162) (0:160) (0:161)
Green �0:008 0:009 0:023 �0:015 �0:132 �0:122

(0:239) (0:239) (0:242) (0:242) (0:216) (0:216)
JEPX 0:067�� 0:068��

(0:028) (0:028)
Constant 30:865��� 30:836��� 30:740��� 30:611��� 30:106��� 29:966���

(0:645) (0:644) (0:652) (0:651) (0:724) (0:723)
F(P-value) 0:000 0:000 0:000 0:000 0:000 0:000
Adj. R-squared 0:654 0:654 0:646 0:645 0:646 0:646
# of obs. 1349 1349 1349 1349 1349 1349

Notes: Dependent variable is average bid (yen/kWh). (1) to (4) include district and
year dummies. (5) and (6) include district dummies. SEs are in parentheses.

Table 4: Estimation results: Controlling for auctions with incumbent only

Variables # of obs. Mean Std. Dev. Median
Winning bid (yen/kWh) 241 14:56 2:95 14:27
Peak power (thousand kW) 241 2:48 3:70 1:34
Load factor (%) 241 36:59 14:98 34:33
# of actual bidders 241 3:38 1:34 3:00
Incumbent dummy 241 0:19 0:39 0:00
JEPX (yen/kWh) 241 10:12 2:820 8:60

Table 5: Summary statistics of Tokyo area
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Variables Mean S.D.
Incumbent
Bid 14:13 3:33
Cost 9:03 4:92
Rent 0:39 0:22
Entrants
Bid 15:01 2:58
Cost 10:11 4:32
Rent 0:34 0:20

Table 6: Summary statistics of estimated winner�s cost and rent in Tokyo area

Dependent var. Cost Rent
Incumbent wins 1:750�� �0:103���

(0:611) (0:0334)
Number of bidders �0:048���

(0:013)
Load �66:903��� 2:580���

(6:383) (0:334)
Load2 56:130��� �2:385���

(7:458) (0:391)
KW �0:283�� 0:012��

(0:116) (0:006)
JEPX �0:435��� 0:030���

(0:092) (0:005)
Constant 30:060��� �0:359���

(1:737) (0:109)
F(P-value) 0:000 0:000
Adj. R-squared 0:518 0:387

Notes: SEs are in parentheses.

Table 7: Regression of estimated winner�s cost and rent
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Variables Mean S.D.
Incumbent
Mean of cost 16:98 3:72
S.D. of cost 3:34 1:49
Entrants
Mean of cost 13:57 2:95
S.D. of cost 4:34 1:34

Table 8: Summary statistics of estimated mean and standard deviation of cost distributions
in Tokyo area

Variables Di¤erence
(E(c1)� E(c0))

Load �9:526 (1:307)���

KW �0:134 (0:077)�

JEPX 0:385 (0:069)���

Constant 3:262 (0:972)���

F(P-value) 44:30
Adj. R-squared 0:364

# observations 228

Notes: SEs are in parenthesis.

Table 9: Regression on the di¤erence between estimated mean cost of incumbent and en-
trants in Tokyo area
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Discount on E(rent1) E(rent0) E(winbid) E(cost)
entrants (�) # bidders (yen/kWh) (yen/kWh) (yen/kWh) (yen/kWh) E(incumbent wins)
0 4 0:187 0:485 13:825 13:825 0:154
0.05 4 0:114 0:505 13:232 13:821 0:105
0.10 4 0:065 0:515 12:681 13:859 0:068
0.15 4 0:040 0:520 12:132 13:860 0:047
0.20 9 0:344 0:950 12:519 15:012 0:088

Discount on E(rent1) E(rent0) E(winbid) E(cost)
incumbents (�) # bidders (yen/kWh) (yen/kWh) (yen/kWh) (yen/kWh) E(incumbent wins)
0 4 0:181 0:488 13:815 13:815 0:148
0.05 4 0:282 0:475 13:797 13:906 0:152
0.10 4 0:391 0:467 13:738 13:973 0:162
0.15 4 0:557 0:443 13:718 14:113 0:184
0.20 4 0:683 0:439 13:594 14:137 0:190

Table 10: Simulation results of bid discount program
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Figure 1: Estimated cost densities of incumbent and entrants for the median covariates
(Peak power = 1340kW; Load factor = 34:33%;JEPX price = 8:60 yen/kWh; one incumbent
and one entrant)
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Figure 2: Equilibrium bidding strategies of incumbent and entrants for the median co-
variates (Peak power =1340kW; Load factor = 34:33%; JEPX price = 8:60 yen/kWh; one
incumbent and one entrant)
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