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Abstract

Congestion externalities arise when airlines do not consider that scheduling another
flight may result in flight delays for other airlines. Open questions are whether and how
carriers take into account the delays a flight inflicts on other flights operated by the same
carrier. This paper addresses these questions by studying congestion during high-volume
time periods, used by hub-carriers to reduce the layover time of connecting passengers (also
known as flight banks). To facilitate the empirical application, I employ individual flight
time data, as well as airport, aircraft and weather information and explicitly identify the
characteristics of banks, such as their time length and the number of flights offered by
each carrier. The empirical analysis proceeds in two main steps: First, I show that banks
dominated by one airline are longer and are characterized by lower flight density. Second,
I find that longer banks are associated with shorter flight delays. These findings imply
that hub-carriers internalize congestion by scheduling longer banks. Furthermore, these
findings may suggest that congestion management solutions implemented at hub airports

dominated by one airline could have a limited impact on congestion itself.
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1 Introduction

Delays and congestion in the airline industry are a major concernH and policy makers are
considering solutions such as congestion pricing or restricting the number of flights during
high-demand periods to reduce congestionlq The early theoretical literature on congestion
pricing showed that the scarcity of public infrastructure results in congestion and delays since
commuters ignore the impact of their scheduling decisions on other commuters’ travel time.
More recent theoretical papers illustrated that the incentive to reduce congestion by taking
into account the impact of an additional flight on other flights’ performance increases as the
share of flights operated by one airline increases. Indeed, the optimal implementation of
the proposed solutions to congestion depends on how airlines schedule their flights without
regulatory intervention, and specifically on whether airlines internalize the impact of scheduling
an additional flight on other flights operated by the same airline.

Looking for evidence for internalizing behavior, empirical research explored whether
more concentrated airports, as a measure of the incentive to internalize congestionH exhibit

shorter flight delays, as a measure of congestion. These papers did not distinguish between

In the U.S. the total estimated costs of air transportation delays are $9.4 billion annu-
ally. Between 2002-2004 more than $4.5 billion annually was spent to reduce flight delays; See
www.fightgridlocknow.gov/docs/conginitoverview070301.htm. The cost of air delays in 1999 in Europe is es-
timated between EUR 6.6 - 11.5 billions; see www.eurocontrol.int/prc/gallery/content/public/Docs/stu2.pdf.
During the first five months of 2007, U.S. Airlines’ on-time performance, measured as the share of flights arriv-
ing less than 15 minutes after their schedule time, was 73.5% the lowest in seven years. “Passengers Scowl as
Airlines Smile”, NY Times, August 4, 2007.

2In the U.S., the Federal Aviation Administration adopted new rules and procedures regulating flight landings
and departures. These changes effectively allow U.S. airports to implement congestion pricing, where high
landing fees will be charged during peak hours and lower landing fees will be charged during off-peak periods.
Currently, in most U.S. airports the order of flights arrivals and departures is based on a first-come first-served
process. Landing charges are based on aircraft weight, rather than flight time of operation. Another approach
for alleviating congestion is to directly regulate the number of flights operated during a congested period, as
implemented in slot-constrained airports.

3The airport concentration is measured by the herfindahl index of flights at the airport.



time periods with a higher or lower volume of flights and found either no or weak evidence for
internalizing behavior. Analyzing data from low and high volume periods could explain why
strong evidence for the predicted congestion-concentration relationship was not found since
the incentive to internalize congestion arises mainly during high-volume periods of flights.

To address this concern, this paper focuses on hub airports and studies the empirical
relationship between congestion and concentration only during high-volume periods of flights,
known as flight banks. In addition, this paper employs a rich set of control variables such as
airport runway capacity, airport gates, weather and aircraft characteristics and focuses on flight
delays that are closely related to the scarcity of the public airport runway during takeoffs and
landings. I find a strong negative relationship between the level of delays and concentration.
Importantly, focusing on high-volume periods of flights not only results in better assessment of
the relationship between concentration and delays, but also enables me to explore the channel
through which internalization takes place. In particular, I provide evidence implying that hub
airlines internalize congestion by scheduling banks with lower flight density. I show that more
concentrated banks are longer and that longer banks are characterized by shorter flight delays.

Section 3 contains a simple framework of a hub-carrier scheduling decision that guides
the empirical analysis. According to the framework, a hub carrier can reduce congestion
by increasing the length of the bank. The incentive of the hub-carrier to reduce congestion
increases with its share of bank flights. The simple framework provides intuitive predictions for
internalizing behavior: more concentrated banks are longer and longer banks exhibit shorter
delays. Furthermore, as the unit cost of queuing rises, the longer the bank period chosen by
the hub carrier. In addition, airplanes operating during longer bank periods incur increased
aircraft ground time between subsequent flights.

In the empirical analysis, I follow the suggested framework and provide evidence con-
sistent with each of the framework implications. I start by examining, for both arriving and

departing banks, how the scheduled length of the bank period varies with the bank concentra-



tion level. I find that an increase of one standard deviation in bank concentration is associated
with 6.96 and 9.42 minutes longer departing and arriving banks, respectively. The estimated
regression of bank length suffers from potential endogeneity of the bank concentration variable.
In particular, the decision by the hub carrier on the length of the bank is affected by the (unob-
served) share of connecting passengers which is likely correlated with the bank concentration
variable. I account for this endogeneity concern by using the concentration of airport gates as
an instrument for bank concentration and discuss the validity of the instrument in section 5

After establishing a positive relationship between the length of the bank and bank
concentration, I explore the relationship between the length of the bank period and flight
delays. The analysis is performed separately for departing and arriving banks, and I adopt
measures of flight delays created during departing and arriving queues. The measure of delays
during departing queues is based on a flight taxi-out time, the elapsed time from leaving
the airport gate to wheels off the runway. Specifically, I subtract an airport-carrier measure
of unimpeded taxi-out time from a flight taxi-out time to obtain the departure queue delay
measure. The measure of delay during arriving queues is based on flight airtime, between
takeoff at the origin airport and landing at the hub airport. Specifically, the airtime delay
benchmark was constructed by computing the fastest hub-bound flight airtime in each pair
of origin airport - hub-airport!J I then subtract this benchmark from each flight airtime to
obtain the airtime delay measure for each particular flight. The advantage of these measures
is that they are closely related to the scarcity of the airport runway infrastructure during the
congested period.

I find that longer banks are associated with shorter flight delays during both arriving
and departing queues. In particular, the above changes in the length of departing and arriving

bank periods (6.96 and 9.42 minutes, respectively) translate, on average, into 0.5 minutes

4One important implication of using airport gates as an instrument is that the main source of variation
in identifying the relationship between concentration and bank length is across airports variation rather than
within airport variation.

5For example, the fastest airtime in the San Francisco - Denver route is one benchmark.



shorter delays during departing banks and 0.9 minutes shorter delays during arriving banks
for each flight operating during a bank. The different findings regarding arriving and departing
banks and particularly that arriving banks are longer than departing banks are consistent with
the unit cost of queuing being higher during arriving banks!y To examine aircraft ground time
between subsequent flights, I focus only on flights departing during departing banks and find
that the length of arriving and departing banks is positively associated with aircraft ground
time.

The findings of the empirical analysis are consistent with the predictions of the the-
oretical framework and thus suggest that dominant carriers do internalize congestion. One
interpretation of these results is that potential time savings at highly concentrated banks are
limited since hub airlines are already able to attain a lower level of delays at these airports.
My findings also suggest that congestion management tools would have a larger impact on
departing flights rather than on arriving flights.

The remainder of the paper is organized as follows. Section 2 provides a review of
the relevant literature. In Section 3, I describe the theoretical framework, which guides the
empirical estimation and derives testable implications. In Section 4, I describe the data,
provide descriptive statistics and explain how the variables used in the empirical estimation
were constructed. Section 5 includes the estimation results of the bank length regressions, the

different delay measures and aircraft ground time. Section 6 concludes.

2 Related Literature

Brueckner (200@} was the first to formalizeH the idea that concentrated airports should exhibit

less congestionlq In general, the theoretical literature on internalization by airlines assumes

SDuring arriving banks, when airplanes wait for their turn to land, queuing cost is larger than the unit
cost of congestion during departing banks when airplanes wait on the ground. Consequently, airlines can avoid
congestion during arriving banks by choosing longer bank periods.

"The initial insight should be attributed to Daniel (1995).

8Brueckner (2002) also provided rudimentary evidence for internalization based on annual measures of delay



that the daily pattern of flights at an airport can be divided into congested and non-congested
periods of flights. The focus of the analysis is on the congested period since during that period
airlines have an incentive to internalize the impact of their scheduling decision on other flights
they operate. Though this line of research derives the basic prediction that concentrated high-
volume periods are less congested, it does not provide clear guidance on how airlines internalize
congestion.

In contrast, the deterministic theoretical literature on road congestion and particularly
Henderson (1981) and Henderson (1985)H illustrates how the length of the congested period
increases and the level of delays falls following a social planner intervention to reduce conges-
tion. A shortcoming of these papers in the context of the airline industry is that they consider
either a fully competitive (atomistic) equilibrium, or fully monopolized (social planner) equi-
librium. Nevertheless, the predictions of these models are used as additional guidance for the
empirical analysis performed here, assuming that the change from fully competitive market to
fully monopolized market is continuous.

Empirical papers which investigated whether airlines internalize congestion generally
concluded that airlines do not internalize congestion. Daniel (1995) used stochastic queuing
models and data from Minneapolis-St. Paul hub airport and concluded that internalization
behavior by the hub-carrier is unlikely More recently, Morrison and Winston (2007) quan-
tified the potential benefits from eliminating congestion at airports. They used calibration
and alternative assumptions on the dominant carrier behavior and argue that the quantitative
difference between internalizing behavior and non-internalizing behavior is modest.

This paper is most closely related to the paper by Mayer and Sinai (2003). Mayer &

Sinai highlighted the role of hubbing and network effects in generating delays and demonstrated

at 25 U.S. airports. Other theoretical papers which examined aspects of airline internalization include: Brueckner
(2005), Pels and Verhoef (2004), Zhang and Zhang (2006), Basso and Zhang (2007), Brueckner and Van-Dender
(2008), Brueckner (2009).
9See also Vickrey (1969) as well as Arnott, Palma and Lindsey (1990), Arnott, Palma and Lindsey (1993).
Daniel and Harback (2008) applied the same methodology to 27 airports and found generally similar results.
See also Daniel and Pahwa (2000).



that flights operated by hub-carriers suffer longer delays than flights performed by non-hub
carriers. Mayer & Sinai attributed this finding to hub-carriers tendency to cluster flights in
high-volume banks leading to increased flight time. They also found evidence for shorter delays
at more concentrated airports Though acknowledging the importance of banks in generating
delays, these papers neither identified banks nor used variation across banks to examine how
bank structure, congestion and delays are related. In addition, none of the papers explored

the channel through which internalization takes place.

3 Theoretical Framework

Hub-and-spoke networks enable airlines to reduce their aircraft operating cost by achieving
higher load factors. Hub carriers carry passengers from the same origin but with different
destinations on the same flight to the hub. Passengers with different originations but the
same destination share the flights from the hub. Each spoke of the network carries many
more passengers to and from the hub than a direct route between individual city pairs would.
Consequently, the network can provide more frequent service in larger aircrafts at a lower
cost per passenger. Longer travel time and layover times at the hub are the costs of a hub
system. To minimize costs, hub-and-spoke networks schedule arrivals and departures at hubs
in banks of flights. Arrival banks consist of hub-bound flights from spoke cities landing at
approximately the same time. At the hub, connecting passengers change aircraft and the
aircraft they disembarked prepares for the next operation. Departure banks consist of flights
to spoke cities that depart at approximately the same time.

Assuming that all aircraft in an arrival or departure bank have similar mixes of con-
necting passengers, they all have the same preferred time of operation. Without capacity

constraints at hub airports, all arriving flights operated by a hub airline would arrive at a par-

" Rupp (2009) extended Mayer & Sinai’s analysis by adopting a different measure for delay as well as a larger
set of control variables and did not find evidence for internalizing behavior.



ticular time, and all departing flights would depart at a particular time later. Since capacity
constraints do play a role hub airlines schedule their arriving and departing bank of flights
over a time period. By choosing a longer bank period, hub-airlines reduce congestion costs but
increase connecting passengers’ layover time. Thus, the basic tradeoff faced by hub carriers is
between congestion costs and layover/ground time costs

Airplane operators bear the externalized cost of congestion because flights inflict de-
lay/congestion costs on other flights scheduled close in time. The closer in time airplanes
are operated, the larger the inflicted congestion cost. Consequently, an airline that operates
multiple airplanes benefits from scheduling a flight away from other flights more than a single
airplane carrier would benefit from rescheduling In computing congestion costs, the hub
carrier considers the cost each airplane inflicts on other hub-carrier airplanes. A carrier oper-
ating a single flight during a bank does not take into account any impact on other flights’ cost
of congestion. Consequently, we expect that when several airlines operate during the bank,
the bank is shorter and longer delays are created during these shorter, dense, banks.

Other implications of the suggested framework are that if the unit cost of congestion
is higher, the incentive of hub airlines to avoid congestion increases and they are expected to
reduce the density of bank flights by choosing a longer bank period. Figure 1 illustrates the
main predictions of the theoretical framework. These predictions can be viewed as extensions
for the theoretical models developed by Henderson (1981) and Henderson (1985) Finally,
the tradeoff faced by hub airlines between congestion and layover time suggests that scheduling

longer banks will result in longer aircraft ground time between subsequent flights.

12These costs include reduced willingness to pay by consumers to flights that include long connections as well
as the costs associated with lower utilization of the airline fleet of aircraft.

13The benefit for the multi-airplane carrier is accrued for each of its airplanes.

14The figure suggests another implication, flights operating closer to the center of the bank suffer longer
delays. These flights are exposed to more adjacent flights than flights scheduled at either the beginning or the
end of the bank.



4 Data, Variable Construction and Descriptive Statistics

4.1 Data

The dataset for the empirical analysis was compiled from several sources. The main source is
the “On-Time Performance Dataset,” which includes data on all scheduled and actual domes-
tic flights operated by airlines carrying more than 1% of U.S. domestic passengers The ten
reporting carriers in October 2000 are: Alaska, America West, American, Continental, Delta,
Northwest, Southwest, Trans World, United and US Airways. For each flight the following
information is provided: carrier, date of flight, flight origin and destination, scheduled depar-
ture and arrival time, actual gate push back time and actual gate arrival time, actual airtime,
taxi-in time, taxi-out time, and the aircraft tail number. Using the aircraft tail number, I
add data on the following characteristics of the aircraft: the number of aircraft seats; man-
ufacturer; weight; number of engines and year of manufacture Measures of the number of
hourly landing and departing operations that an airport can handle under different weather
conditions were obtained from the “Airport Capacity Benchmark Report” 'Yl In addition, FAA
measures for unimpeded taxi-out time (derived by the FAA by airline-airport-season) are used
to derive the delay measures as discussed in section 3.3. I focus on flights departing from and
arriving at 16 U.S. hub airports in October 2000 Table 1 displays descriptive statistics of

the 16 hub airports.

5The database is available at www.transtats.bts.gov/OT — Delay/OT — DelayCausel.asp

1The FAA Aircraft Reference File and the Aircraft Registration Master File databases contain these data and
can be downloaded from www.faa.gov/licenses — certificates/aircraft — certification/aircraft — registry/.

"The full report is available at: http : //www.faa.gov/about/of fice — org/headquarters —
of fices/ato/publications/bench/. The report contains three measures for airport capacity derived based on
different weather conditions. The reported estimation results are based on the medium range capacity measure
but the results are qualitatively similar for the other measures.

18 A hub airport is defined as an airport in which more than 50% of a carrier passengers are connecting
passengers. The dataset includes all U.S. hub-airports except Chicago-O’hare, which is a slot-constrained
airport. To obtain the total number of an airport enplanements I use the T100 database, which consists of the
total thruput of passengers who used each airport. The number of non-connecting passengers (passengers who
use the airport as either their origin or final destination) was constructed using the DB1B database. The DB1B
database contains a survey of 10% of all the flight fares sold in the U.S. domestic market (I thank Chris Mandel
from the Department of Transportation for his help in obtaining these data.).



I also compiled data on the number of gates each airline leased in an airport in the
second half of 2000. Data on gates were extracted from competition plan reports, which were
submitted by airports to the FAA in 2000 and 2001 Finally, weather conditions at each
airport for everyday in October 2000 were obtained from the National Climatic Data Center,

which operates weather stations at each of the hub airports in the research sample

4.2 Bank Structures

The unit of analysis is a bank of flights. For each of the 16 hub airports, I use airlines’ flight
schedules to identify when each of the departing and arriving banks was scheduled to start
and end. For example, on 10/16/2000 Delta airlines operated a departing bank in Cincinnati
International Airport, which started at 08:31 a.m. and ended at 09:16 a.m. In Figures 2, 3 and
4 the derived bank structure in three hub airports: Cincinnati, Detroit and and Philadelphia
on 4 October, 2000 is presented. The appendix contains a detailed description of the bank
identification procedure.

Approximately 60% of the flights in October 2000 and included in the dataset arrived
at one of the selected 16 hub airports and 60% of the flights departed from one of the 16
hub airports. Among flights operating in hub airports, 70% arrive during bank periods and
more than 75% depart during bank periods. Hub airlines operate about 90% of the flights
arriving or departing during bank periods, whereas hub airlines operate only 45% of the flights
arriving during non-bank periods and 40% of the flights departing during non-banks. Figure
5 displays the mean taxi-out time for flights scheduled to depart during bank and non-bank

periods. The Figure illustrates that operating during bank periods entails longer taxi-out

19 Among the provisions of the Wendell H. Ford Aviation Investment and Reform Act for the 21st Century
(AIR 21), enacted in April 2000, is the requirement that an airport competition plan be filed annually with the
Federal Aviation Administration (FAA) by the operators of certain airports before they can receive grants under
the Airport Improvement Program (AIP) or be authorized to impose a new passenger facility charge (PFC).
The requirement for a competition plan applies to airports serving more than 0.5% of U.S. domestic passengers
at which one or two airlines control more than 50% of the enplaned passengers. See Ciliberto and Williams
(2009) for a more complete description of the competition plan reports.

2°The weather data can be found and downloaded at hittp : //cdo.nede.noaa.gov/uled/ULCD.
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times. Figure 6 displays the relationship between an airport overall concentration and the
average concentration of the banks at that airport. Since hub-carriers predominantly operate
during bank periods, banks are more concentrated than the airport overall concentration.

For each bank at each hub airport, the following variables are constructed: the number
of flights operating during the bank; its length from the time it began till it ended, and its
concentration level measured by flights’ HHI. Based on the bank length, I also construct a
variable denoting the location of a flight within a bank relative to beginning or the end of
the bank. Thus, if a bank starts at 8:00 a.m. and ends at 9:00 a.m. then a bank position
of a flight operating at 8:30 is % = 0.5, at 8:10 or 8:50 is % = %, and at 8:00 a.m. or 9:00
a.m. is 0. The measure of flight bank position is used to investigate whether flights arriving or
departing closer to the center of the bank experience longer delays. Table 2 provides additional

characteristics of bank structures at the 16 hub airports. In Figures 7 and 8, the distributions

of the length of banks and the number of flights per bank are presented.

4.3 Measuring Delays

Airlines report the scheduled and actual time of each flight departure and arrival. Based
on these reported measures, the literature has adopted two measures of delay: ‘actual vs.
scheduled’ and ‘actual vs. optimal actual benchmark’

The first measure, the difference between the flight actual time and scheduled time, is
intuitive Indeed, if a scheduled time of flight arrival represents the airline or passengers’
expectation regarding the time of arrival, then arriving earlier or later than expected may
entail costs or benefits for both passengers and airlines. Moving away from the expected time

of arrival could have a detrimental impact on subsequent operations It is likely, however,

21Gee Ater (2007) for a third type of delay measure which uses only the scheduled departure and scheduled
arrival time of a flight to derive a ’scheduled vs. optimal scheduled benchmark’ delay measure.

22The FAA defines a delayed flight as a flight that arrives 15 minutes or more after its schedule arrival time.

Z3Papers that primarily relied on this measure of delays are: Brueckner (2002), Rupp (2009), Mazzeo (2003)
and Forbes (2008).
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that the ‘actual vs. scheduled’ measure is an inappropriate measure to examine the impact of
airport structure on congestion during peak periods, as airlines anticipate longer travel times
during peak periods and build these excess travel time into their schedules

The other measure discussed in the literature does not focus on the deviation from the
expected time of a flight. The ‘actual vs. optimal actual benchmark’ measure is derived based
on a flight actual time of operatio compared to an optimal performance benchmark This
measure is not subject to manipulation by airlines and has been used to investigate how the
hub-airport and network structure affect flights’ time performance An important advantage
of the ‘actual vs. actual’ delay measure is that for each flight the dataset contains several
measures of actual flight times: taxi-out time, the time an aircraft spends between leaving the
origin airport gate and takeoff; airtime, the time between wheels off at the origin airport till
touching the ground at the destination airport; taxi-in time, the elapsed time between wheels-on
at the destination airport runway and arriving at the airport gate. This decomposition enables
me to investigate the relationship between bank and airport characteristics and queuing time
at two bottlenecks: before aircraft takeoff and before aircraft landing. The two bottlenecks
are the result of common airport runway facility, which can be viewed as a ‘public good’.

Thus, in this paper, I adopt an ‘actual vs. actual’ measure of delay, using the taxi-
out time and airtime data to derive the before takeoff and before landing delay measures.
Specifically, the airtime delay measure was constructed by first computing the fastest airtime
among all flights arriving at a hub airport from the same origin airport I then subtracted this
benchmark from each flight airtime to obtain the airtime delay measure for a particular flight.

The taxi-out time benchmark is the FAA unimpeded taxi-out, a measure for unimpeded elapsed

24Known also as schedule padding. For example, Ater (2007) shows that the maximum scheduling padding
in October 2000 was 43 minutes for the same directional route.

25For example, from the time the airplane leaves the gate at the origin airport till it arrives at the gate at the
destination airport.

26For example, the fastest actual flight time in the same directional route.

2"See Mayer and Sinai (2003)

28There are other factors that could affect airtime, such as: aircraft type, weather conditions, runways,
routing, congestion on the way. I do control for some of these factors in the estimation.
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time from a carrier gate in a particular airport to takeoff. This benchmark was then subtracted
from a flight taxi-out time to obtain the relevant delay measure To provide initial evidence
for the negative relationship between these measures of delay and airport concentration, Figures
9 and 10 display the negative relationship between the airport concentration level and the mean

delay measure during bank periods at that airport.

5 Estimation and Results

The empirical section relies on the theoretical framework outlined in section 3 and contains
two main parts. In the first part I examine the relationship between an airline scheduling de-
cision regarding the length of the bank period and market structure determinants. Scheduling
decisions by airlines can be interpreted as the outcome of a simultaneous scheduling game,
where the number of flights offered by each carrier is exogenous but the time of operation is
endogenously determined. In the second part I explore how the length of the bank period is
associated with flight delays generated during bank periods. I also provide evidence on the
relationship between bank concentration and delays. Finally, I investigate whether airplanes
operating during longer banks remain on the ground for a longer time between subsequent

flights.

5.1 Bank Structure and Scheduling Decisions

In this section, I provide evidence on the link between the length of departing and arriving
banks and market structure determinants, such as the number of bank flights, airport runway
capacity and the concentration of the bank. The hypothesis is that more concentrated banks
are longer since hub carriers at these banks have a greater incentive to reduce congestion

at the bank. Other factors that may affect the length of the bank are the airport runway

2Morrison and Winston (2008) adopted this measure of delay but not in the context of the internalization
question. Note that this benchmark does not account for potential differences in the location of gates leased by
the same airline in an airport.
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capacity and the overall number of bank flights. I, thus, add the ratio of bank flights and
airport runway capacity as a control Variable In addition, I use two categorical variables to
proxy for passenger preferences over layover time. Presumably, if passengers’ layover time is
more expensive, then airlines will tend to choose shorter bank periods and reduce layover time.
First, I include the categorical variable ‘Weekend,” which equals one when the bank operates
on either Saturday or Sunday and 0 otherwise. It is expected that airlines will choose longer
banks during the weekend, when the average passenger value of time is lower. Also included
is the categorical variable ‘Tourist’ for departing and arriving banks at Miami Intl. Airport
as it is expected that the bank period is longer in airports where many of the passengers
are tourists. Another potential consideration for the length of a bank is the level of aircraft
utilization during the day. The greater the number of remaining aircraft operations during the
day, the higher the incentive is to reduce the ground time. Accordingly, we could expect banks
characterized by airplanes with relatively a large number of remaining flights to be shorter. To
obtain a measure of the number of remaining flights for each aircraft, I calculated the number
of remaining daily flights for each aircraf and then derived an average measure of a bank’s
remaining flights in a day. I define this measure as ‘Remain-Flights’.

In the empirical estimation, a unit of observation is a bank, and the analysis is per-
formed separately for arriving and departing banks unless mentioned differently. The length

of a bank is measured by minutes and the base specification examining how does the length of

bank j in airport k vary with the bank concentration is as follows:

Bank — Lengthj, = 81 Bank — Conc; + 2 Bank — Flights — Runway;+
(1)
BsWeekend + B4T ouristy, + Bs Remain — Flights; + €y,

39T use the ratio of bank flights and airport capacity rather than add them as separate regressors since the
airport gate instrument I use already exploits the variation across airports.
31(Clearly, this measure diminishes over the day.
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The length of the bank period is also affected by the (unobserved) number of bank
connecting passengers. The larger the share of connecting passengers out of total bank passen-
gers the larger the incentive of the hub carrier to reduce layover time. The share of connecting
passengers is likely to be correlated with the share of flights operated by the hub carrier, and
thus, an omitted variable bias may arise. To control for the potential endogeneity of the bank
concentration coefficient, I use the herfindahl concentration measure of airport gates as an
instrument. Airport lease agreements are typically long-term contract and the extent of
service an airline can offer at the airport is affected by the number of gates it leases. Hence,
banks at airports characterized by highly concentrated gate structure are also likely to be
highly concentrated. In Table 3, I report the results for the first stage instrumental vari-
able regression. As expected, the airport gates variable is positively correlated with the bank
concentration Furthermore, it is likely that this measure is uncorrelated with the share of
connecting passengers at a particular bank during a day since the measure of gate concen-
tration is invariant-airport-specific. Using airport gates as an instrumental variable, however,
implies that variation across airports is the main source of variation in the estimation and it
also hinders using airport fixed-effects to control for other differences across airports, such as
the type of population served by each airport Note also that in the delay regression below
I do use variation within airports and control for unobserved differences between airports by
including airport fixed effects.

The IV regression results are displayed in Table 4. Columns 1 and 2 correspond to
arriving and departing banks, respectively. In all the regressions the coefficient on the bank

concentration coefficient is positive and significant implying that more concentrated banks

32The 1990 study by the Government Accounting Office reported that 22 percent of the gates at the 66 largest
airports were for 3-10 years duration; 25 percent were for 11 - 20 years duration; and 41 percent were for more
than 20 years duration, GAO (1990).

331 also reject the exogeneity of the bank concentration variable.

341n all airports, the variation across days and weeks is very small. In addition, in some hub airports there
is little within-airports variation in bank concentration. Hence, to some extent, the loss from not exploiting
within-airport variation is limited.
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are longer. The coefficient on the ratio of bank flights and runway capacity is positive and
statistically significant, as expected. Other coefficients generally have the expected signs.
Weekend banks are typically longer so too are banks at airports serving relatively more tourists.
The coefficient on ‘Remain-Flight’ is negative and significant in the arriving bank regression -
suggesting that banks earlier in the day are more congested - but is negative for the departing
and pooled bank regressions. Overall the results are consistent with internalizing behavior by
hub carriers, and suggests that hub-airlines choose longer banks as their share of bank flights

increases.

5.1.1 Scheduling Decisions across Arriving and Departing Banks

The unit cost of congestion likely affects hub airlines’ decisions regarding the length of the bank.
The higher the unit cost of congestion the higher the incentive of hub carriers to increase
the length of the bank and consequently reduce the time an airplane spends in a queue.
I exploit the distinction between arriving and departing banks to explore this relationship,
assuming that the unit cost of congestion for arriving banks is higher than that of departing
banks Note that I use scheduled data to determine the length of a bank period. Thus,
safety considerations regarding time difference between flight arrivals are unlikely to affect my
findings. Hence, evidence that arrival banks are longer than departing banks is consistent
with an internalization behavior. The results of the pooled banks regressions are presented in
columns 5 and 6 in Table 4. In particular, I add to the bank length specification a dummy
variable, D(arr), which equals to one in arriving banks and zero otherwise. The results imply

that arriving banks are more than 3 minutes longer than departing banks, which is consistent

with higher marginal cost of queuing time during arriving banks.

3°During arriving banks, when airplanes wait for their turn to land, queuing cost is larger than the unit
cost of congestion during departing banks when airplanes wait on the ground. Consequently, airlines can avoid
congestion during arriving banks by choosing longer bank periods.
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5.2 Delays and Bank Length

In this section, I primarily seek to document the negative relationship between different mea-
sures of flight delays and the length of the bank. A negative relationship would suggest that
dominant airlines, operating in concentrated banks and choosing longer bank period, attain a
lower level of delays relative to banks, where several airlines operate concurrently.

The analysis below refers only to flights scheduled during bank periods and utilizes two
categories of delays as dependent variables. The first category, taxi-out delay, focuses on the
queue before takeoff, as aircraft wait for their turn to depart. The second category, airtime
delay, focuses on the queue before landing, as aircraft wait for their turn to land. In both
categories, airport runway capacity is interpreted as the scarce resource over which airlines
compete

In each of the regression analyses (for departure and arrival banks), an observation is a
flight. The base specification for aircraft n used for flight ¢ operating during bank j at airport

k on day m is as follows:

Delay;jkmn = f1Bank — Length; + B2Capacityy, + S3Bank — Flights;+ )

BaBank — Pos; j + fsWeather,, + fsAircraft, + €ijkmn )

Standard errors are clustered over an origin airport-flight number pair. The control
variables in the above specifications can be divided into two groups. The first group includes
variables that are determined by airlines prior to the actual operation of the flight and the
realization of delay. These variables are the airport runway capacity, the scheduled number
of bank flights, the bank length and the relative position of the flight within the bank. The

second group of control variables includes daily weather variables, which are not controlled by

36Hence, the taxi-in time, which corresponds to the flight segment post-landing is unlikely to be affected by
this scarce airport resource.
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the airlines. Thus, one can view airlines as engaging in a two-stage game. In the first stage,
airlines determine the schedule of flights. In the second stage, delay is realized given the first
stage outcome, as well as the daily weather conditions.

Table 5 displays the regression results when the taxi-out delay measure is used as the
dependent Variable In all regressions, the coefficient on the length of the bank is negative and
statistically significant. The coefficient on ‘Runway capacity’ is also negative suggesting that,
ceteris paribus, the scarcity of the runway has a detrimental impact on delays. Similarly, the
coefficient on the number of bank flights is positive indicating that larger banks are associated
with longer delays. The relative location of the flight within the bank is positive suggesting
that flights scheduled either at the beginning or towards the end of the bank wait less for their
turn to depart. Finally, weather conditions have the expected signs

In Table 6, I present regression results using the airtime delay as the dependent variable.
The regression results indicate that longer banks are associated with shorter delays and lend
additional support to an internalization behavior by airlines. In all the regressions the bank
length and the runway capacity coefficients are negative and significant. Furthermore, the
coefficients on bank flights and the flight bank position are all positive. The flight distance
variable, added in columns 4-5, is positive suggesting that longer flights incur longer airtime

delays

3"In columns 5, the dependent variable is the sum of the taxi-out delay measure and the flight departure
delay. Departure delay is the difference between the actual time a flight left the origin airport gate and the time
it was scheduled to leave the gate. In this regression, I restrict the sample to departure delays shorter than 20
minutes.

38Note also that adding aircraft characteristics entails losing about 40% of the observations. There are two
main reasons for this. First, the FAA registry data does not include the characteristics of aircraft which are
no longer operating or were sold to non-U.S. entities. Second, some airlines report their aircraft nose numbers
rather than the tail numbers.

39A potential explanation for this finding is that airlines operating in shorter routes can foresee better the
landing conditions at the destination airport. Consequently, they are more likely to adjust their schedule to
avoid operating when conditions at the destination airport require that.
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5.3 Analysis of Aircraft Ground Time

Internalization behavior suggests that hub airlines operating a larger share of the bank flights
will schedule longer banks. As a result, hub airlines reduce the cost of congestion but may
incur additional costs due to longer passengers’ layover time and lower utilization of their fleet.
In this section, I investigate whether airplanes that operate during longer banks experience
longer ground time. Using the aircraft tail number, I identify the daily sequence of flights by
each aircraft and the aircraft ground time between subsequent flights and employ the following

specification:

Ground — Time;kimn = b1 Bank — Length,,, + 2 Bank — Length,,
+B3Bank — Flights,, + BsBank — Flights, + (s Distance;y, (3)

+0sDistancej; + B Hub — Carrierj + €jmn

An observation is an aircraft and the dependent variable is the aircraft ground time
between subsequent flights. In the regression analysis I consider only flights that depart during
bank periods and restrict the sample to aircraft that remained less than 180 minutes on the
ground between subsequent ﬂights The coefficients of interest are 5y and (2 and standard
errors are clustered over an aircraft tail number. In column 4 I add aircraft characteristics, and
in column 5 I focus on flights operated by the hub airline. All the the coefficients of interest are

positive and significant In the regressions displayed in Table 7, implying that aircraft operating

during longer banks spend longer time on the ground between adjacent flights.

5.4 Using Bank Concentration to Explain Delays

Existing literature on the relationship between congestion and concentration typically exam-

ined the empirical relationship between congestion and concentration. To provide a compar-

40The results are not sensitive to other time restrictions.
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ison with previous literature, I report the results of estimating delays as a function of bank
concentration. Specifically, I replace the bank length variable in equation 2 with the bank con-
centration variable. The results for taxi-out and airtime delays are reported in Tables 8 and 9
and document a negative relationship between bank concentration and delays. The regression

results confirm the clear negative patterns displayed in Figures 9 and 10.

5.5 Discussion of Results

The empirical analysis consists of several pieces of evidence for an internalizing behavior by
hub carriers. The results suggest that hub airlines are able to lower the density of bank flights
and consequently reduce congestion by scheduling longer banks. Indeed, starting at 2002 hub
airlines, looking for ways to reduce costs, have implemented de-peaking strategies that essen-
tially increased passengers’ layover time and at the same time reduce congestion and delays.
The empirical findings may also imply that policy intervention should consider treating hub-
airlines differently than fringe carriers, since dominant carriers already internalize congestion
and schedule their flights accordingly. The findings may also suggest that an attempt to reduce
congestion externalities will have a limited impact on congestion at highly concentrated air-
ports since hub-airlines already internalize congestion. To provide a crude measure of potential
savings, I rely on the bank length regression and consider how an increase of one standard de-
viation in bank concentration would affect the length of the corresponding bank. My findings
suggest that departing banks would increase by (0.17* 40.95) 6.96 minutes whereas arriving
banks would be (0.15%62.78) 9.4 minutes longer. Using the coefficients from the delay re-
gressions, I find that these changes in bank length translate, on average, into approximately
(6.96*0.071) 0.5 minutes shorter taxi-out time during departing banks and (9.4*0.098) 0.9
minutes shorter airtime delays during arriving banks for each flight operating during a bank.
The results also underscore the adverse effect of weather on airlines’ time performance. For

example, a thunderstorm is associated with an additional three minutes of taxi-out time and
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two minutes of excess airtime. Thus, this may warrant allocating more resources to improving

airline performance under severe weather conditions.

6 Concluding Remarks

Air delays and congestion have become a major policy issue in recent years. Traditionally,
economists proposed congestion pricing solutions to reflect the real value of scarce runway
capacity. Economists, however, disagree on how to implement these solutions and whether
airlines should be charged a uniform fee for operating at a particular time, or alternatively
whether dominant carriers operating a large share of flights, should be charged a lower fee,
because these airlines already internalize congestion externalities inflicted on their own flights.

This paper investigates the relationship between congestion and the structure of hub
airports. Specifically, I study how congestion varies across high-volume time periods at hub
airports, known as flight banks. An advantage of focusing on bank flights at hub airports is the
ability to compare airports with relatively similar patterns of operations. Extending the sample
of airports to non-hub airports would require addressing basic differences between these two
types of airports. I find a clear negative relationship between market/bank concentration and
the level of delays, as a measure of congestion. Furthermore, using bank as the unit of analysis
enables me to explore how hub airlines internalize congestion. I find that hub airlines choose
longer banks as their share of bank flights increases. These longer banks are associated with
shorter flight delays. Thus, the results suggest that introducing congestion pricing at non-
concentrated banks or airports could yield better time savings than at highly concentrated
hub-airports. Future research could offer better estimates of the potential savings as well as
compare the effectiveness of alternative policy prescriptions. The results also shed light on
efficiency gains that may arise following a merger between two airlines operating at an airport,
as congestion costs are likely to fall. Lastly, the vast literature on the airline industry and its

hub & spoke network has generally ignored the explicit role of airport banks. Future research
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could explore how airline performance and traveler welfare are affected by the structure of

banks.

7 Appendix A

The identification of banks relies on flights operated only by the relevant hub carrier in each
airport. To identify the arriving banks, the number of arriving flights for each minute of
every day and hub airport was derived and then the average number of flights arriving at the
airport in a 21 minute time window was computed To exploit the structure of arriving and
departing banks, the number of departing flights in each minute was considered as negative,
when this average was computed Based on the 21 minute operation rates, I compute also
the daily operation rate and its standard deviation. An arriving bank threshold is defined as
the operation level at one standard deviation above the daily operation rate. An arriving bank
period occurs when the average 21 minute operation rate is higher than the positive threshold.

The bank period starts and ends when the per minute operation rate falls below the daily

average operation rate The structure of departing banks is derived equivalently.
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Figure 1: Graphic [llustration of the Theoretical Framework

The Figure displays the congested period in competitive and concentrated markets/banks as postulated
by the theoretical framework. Bank periods are longer and delays are shorter in concentrated banks
than in competitive banks. The Figure also shows that flights scheduled to operate closer to the center
of the bank experience longer delays. The depicted pattern of congestion is similar to the pattern of
congestion illustrated by Henderson (1981).
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Figure 2: Bank Structure in Cincinnati Airport

The Figure illustrates the algorithm used to identify banks in Cincinnati Airport, where Delta Airlines
operates as a hub carrier. The smooth line depicts the average 21-minute operation rate based on the
number of arriving and departing flights. An arriving (departing) bank occurs when the 21-minute
operation rate is higher (lower) than one standard deviation of the daily average operation rate. The
rectangles denote the banks.

26



Detroit Airport, 10/04/00
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Figure 3: Bank Structure in Detroit Airport

The Figure illustrates the algorithm used to identify banks in Detroit Airport, where Northwest Airlines
operates as a hub carrier. The smooth line depicts the 21-minute operation rate based on the number
of arriving and departing flights. An arriving (departing) bank occurs when the 21-minute operation
rate is higher (lower) than one standard deviation of the daily average operation rate. The rectangles

denote the banks.
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Figure 4: Bank Structure in Philadelphia Airport

The Figure illustrates the algorithm to identify banks in Philadelphia Airport, where US Airways
operates as hub carrier. The smooth line depicts the 21 minutes operation rate based on the number
of arriving and departing flights. An arriving (departing) bank occurs when the 21-minute operation
rate is higher (lower) than one standard deviation of the daily average operation rate. The rectangles
denote the banks.
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Figure 5: Taxi-out Time during bank and non-bank periods in hub airports

Figure 5 displays the mean taxi-out time for flights operating during bank and non-bank periods at
the 16 hub airports. Hub-airports (The horizontal axis) are sorted by their concentration levels, where
highly concentrated airports are on the right side of the Figure. More flights operate during bank
periods and taxi-out time during these periods is longer than during non-bank periods. Furthermore,
taxi-out at more concentrated hub-airports is generally shorter.
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Figure 6: Bank and Airport Concentration

Figure 6 plots bank concentration levels as a function of the hub airport concentration levels. It
demonstrates that banks are more concentrated than the airport they operate in. For example, the
concentration level in Miami Intl. Airport is less than 0.4, whereas the average bank concentration
is nearly 0.8. Thus, hub carriers predominantly operate during banks, and non-hub carriers generally
prefer to operate during non-bank periods. Nevertheless, non-hub carrier still operate during bank
periods.
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Figure 7: Kernel Distributions of Length of Departing and Arriving Bank Periods

The Figure displays the distribution of the length of bank periods. The mass of departing banks lasts
for less than 30 minutes whereas arriving banks are typically longer.
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Figure 8: Kernel Distributions of Volume of Flights During Departing and Arriving Banks

Kernel distributions of bank flight volume are presented in Figure 8. A representative bank consists of
roughly 30 flights.
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Figure 9: The Relationship between Airport Concentration and Taxi-out Delay

The Figure shows a negative empirical relationship between airport concentration and taxi-out delay.
The taxi-out delay is a measure of airplane queuing time before departure, as airplanes wait for their turn
to use the airport runway. Taxi-out time during bank periods is typically longer at less concentrated
hub-airports. This finding is consistent with an internalizing behavior by dominant carriers, whose
incentive to take into account the impact of their scheduling decisions on congestion is higher the
greater their share of the flights.
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Figure 10: The Relationship between Airport Concentration and Excess Airtime Delay

The Figure displays a negative empirical relationship between airport concentration and excess airtime
delay. A flight excess airtime is derived relative to the fastest airtime of a flight on the same directional
route in the same month. Excess air-time is used as a proxy for queuing time before landing, while
airplanes wait for their turn to land on the airport runway. This negative relationship is consistent with
an internalizing behavior by dominant carriers, whose incentive to take into account the impact of their
scheduling decisions on congestion is higher the greater their share of the flights.
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Table 1: Hub Airport Characteristics

Airport Airport con- | Dominant Dominant carrier | Share of dominant | Capacity
centration™® carrier share of passengers | carrier connecting | (oper-
passengers* ations
per
hour)
Atlanta 0.71 Delta 0.72 0.66 173
Charlotte 0.8 US Airways | 0.9 0.8 128
Cincinnati 0.91 Delta 0.64 0.69 122
Denver 0.58 United 0.64 0.62 194
Dallas-Fort Worth 0.52 American 0.58 0.63 241.5
Detroit 0.63 Northwest 0.68 0.58 170.5
Washington Dulles 0.38 United 0.59 0.51 117
Houston 0.61 Continental 0.72 0.65 130.5
Memphis 0.65 Northwest 0.7 0.74 153.5
Miami 0.37 American 0.53 0.61 111
Minneapolis-St. Paul | 0.65 Northwest 0.71 0.59 113.5
Philadelphia 0.49 US Airways | 0.64 0.51 99
Phoenix 0.29 Southwest 0.31 0.69%* 113.5
Pittsburgh 0.8 US Airways | 0.87 0.71 146
Salt Lake City 0.47 Delta 0.71 0.62 115
St. Louis 0.53 Trans World | 0.72 0.77 93.5

*Notes:

dominant carrier share of connecting passengers out of the carrier total passengers (3) In Phoenix, the

(1) Concentration is measured by flights” HHI (2) Share of connecting passengers is the

share of connecting passengers relates to America West, the second largest carrier.

35




Table 2: Hub Airport Bank Structures

Hub Airport | Hub carrier | # of de- | Operation Rates | Mean Mean Mean dep. &
parting & | during dep. & arr. | dep. bank | arr. bank | arr. bank con-
arriving banks (flights per | length length centration
banks min.) (min.) (min.)

Atlanta Delta 300,279 | 118 (0.3); 1.12(0.1) | 47 (8.2) | 489 (8) | 0.83, 0.88
Charlotte US Airways | 310, 310 0.98 (0.3) ; 0.73(0.2) | 31.5(6.7) | 43.4(74) | 0.93,0.9
Cincinnati | Delta 246, 218 | 0.55(0.15) ; 0.57(0.1) | 40.5 (12) | 38.2 (10.5) | 0.99 , 0.99

Denver United 362, 371 0.93(0.3) ; 0.77(0.24) | 19.3 (6.8) | 24.6 (7.6) | 0.88,0.83

Dallas American | 300, 277 1 76(0.5) ; 1.3(0.2) | 32.2 (11.4) | 45.3 (9.8) | 0.7, 0.69

Detroit Northwest | 301, 274 | 1.1(0.1) ; 0.95(0.2) | 34.4 (11) | 40.6 (10.2) | 0.84 , 0.89

Washington | United 210, 185 0. 45(0 15); 0.36(0.2) | 28.6 (6.4) | 32.4 (15) 0.77 ,0.78

Dulles
Houston Continental | 329 , 275 1.18(0.2) ; 0.88(0.14) | 22.8 (6.4) | 32.9 (11.6) | 0.85, 0.86
Memphis | Northwest | 124, 124 | 0.6(0.1) ; 0.52(0.1) | 52.7 (16) | 59.7 (12) | 0.91, 0.91

Miami American 181, 154 0.39(0.1) ; 0.38(0.13) | 52 (27) 57.4 (32.7) | 0.62,0.9

Minneapolis | Northwest | 276 , 257 1.07(0.2) ; 0.73(0.1) | 33.8 (6.9) | 52 (6.9) 0.84 , 0.86

Philadelphia | US Airways | 217, 217 | 0.83(0.2) ; 0.68(0.1) | 39.3 (10.1) | 43.3 (3.3) | 0.73, 0.84

Phoenix America 338, 343 1.05(0.3) ; 0.96(0.3) | 26.4 (8.43) | 27.8 (6.42) | 0.58 , 0.54

West
Pittsburgh US Airways | 247, 221 0.79(0.2) ; 0.77(0.2) 42.6 (17.7) | 44.4 (15) 0.91, 0.93
Salt Lake | Delta 248,248 | 0.53(0.1); 0.54(0.3) | 36.8 (10.5) | 39.7 (14.9) | 0.73, 0.79
City
St. Louis Trans 333, 312 1.1(0.25) ; 0.84(0.2) | 28.7 (6.95) | 35.4 (8) 0.74 , 0.87
World

The Table contains monthly characteristics of banks at the 16 hub airports, where a hub airports is
defined as an airport, in which 50% of a carrier passengers are connecting passengers.

* The numbers in parentheses reflect the standard deviation of the corresponding variable.
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Dep. Var: Bank Conc, 2sls first stage regressions

Arriving Banks

Departing Banks

Pooled Banks

(1) (2) 3)
VARIABLES
Gates Conc 0.493*** 0.500*** 0.497***
(0.014) (0.015) (0.011)
Bank Flights/Runway -0.132*** -0.381*** -0.288***
(0.023) (0.024) (0.017)
Remain Flights 0.011*** -0.019*** -0.005***
(0.001) (0.001) (0.001)
Tour -0.152*** -0.251*** -0.212***
(0.014) (0.010) (0.009)
Weekend 0.008* 0.001 0.004
(0.004) (0.005) (0.003)
Arriving Bank -0.004***
(0.002)
Constant 0.567*** 0.696*** 0.645***
(0.010) (0.011) (0.007)
Observations 4032 4305 8337
R-squared 0.264 0.302 0.257

Robust standard errors in parentheses

*** 520,01, ** p<0.05, * p<0.1

Table 3: First Stage IV regressions
The Table displays the results of the first stage IV regression presented in Table 3.

As expected, gates
concentration is positively correlated with bank concentration.
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Dep. Var: Bank Length, IV Regressions

Arriving Banks

Departing Banks

Pooled Banks

(1) (2) (3)
VARIABLES
Bank Conc 62.780*** 40.950*** 52.013***
(2.745) (2.707) (1.953)
Bank Flights/Runway 98.933*** 91.371*** 98.703***
(2.320) (2.336) (1.665)
Tour 16.631*** 23.641*** 21.590***
(1.577) (1.288) (1.009)
Weekend -0.057 1.067** 0.559*
(0.444) (0.424) (0.313)
Remain Flights -0.809*** 1.502*** 0.517***
(0.116) (0.130) (0.081)
Arriving Bank 3.107***
(0.145)
Constant -30.727*** -23.467*** -28.899***
(2.276) (2.605) (1.780)
Observations 4032 4305 8337
R-squared 0.152 0.127 0.144

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 4: Bank Length Estimation Results

In all columns a bank length is used as the dependent variable. Columns 1 and 2 correspond to arriving
and departing banks, respectively. Column 3 reports the estimation results of the pooled data using
both arriving and departing banks. I account for potential endogeneity of the bank level of concentration
using the concentration of airport gates. The results are consistent with an internalization behavior,
where more concentrated banks are longer. Other coefficients generally have the expected signs. For
example, the ratio of bank flights and airport runway is positive and the weekend banks are longer.
The pooled data estimation results suggest that arriving banks are longer which is consistent with the
higher marginal cost of queuing time during arrival queues.
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Dep. Var: Taxiout delay, OLS regressions
(1) (2) (3) (4) (5)
VARIABLES

Runway Capacity -0.020***  -0.035**  -0.022***  -0.018***  -0.033***
(0.002) (0.002) (0.004) (0.002) (0.003)
Bank Flights ~ 0.146***  0.162°*  0.193**  0.139**  0.182**
(0.005) (0.005) (0.007) (0.005) (0.007)
Bank Length  -0.071**  -0.062***  -0.065**  -0.076**  -0.073**
(0.005) (0.005) (0.007) (0.005) (0.007)
Flight Bank Pos  1.150**  0.852**  1.082"*  1.137**  1.106**
(0.377) (0.371) (0.351) (0.401) (0.457)
ThunderStorm ~ 3.599***  3.376** 3445  3.549%** 4478
(0.179) (0.177) (0.177) (0.222) (0.233)

Rain 1.260*** 1177 0.877*** 1.391%** 1.677*
(0.101) (0.101) (0.096) (0.124) (0.130)
Snow 4.099*** 4.330*** 3.912%* 4.305*** 7.651***
(0.492) (0.478) (0.461) (0.637) (0.709)
Heavy Fog 1.106*** 1.213*** 0.407*** 1.236*** 2.360***
(0.139) (0.139) (0.137) (0.167) (0.188)
Constant 6.191** 10.075*** 5.301*** 3.778*** 9.594***
(0.316) (0.510) (0.870) (0.557) (0.641)
Carrier FE - + + - +
Airport FE - - + - -
Aircraft Char. - - - + -
Observations 130927 130927 130927 85953 113425
R-squared 0.043 0.053 0.074 0.049 0.065

*** p<0.01, ** p<0.05, * p<0.1
Robust standard errors in parentheses

Table 5: Taxi-out Delay Estimation Results

In the Table, I present the results of the delay regression using the taxi-out delay measure. Taxi-out
delay is derived by subtracting the unimpeded carrier-airport delay measure from a flight taxi-out time.
Standard errors are clustered over a flight number. In all regressions, the coefficient on the bank length
variable is negative and statistically significant. Runway capacity is also negative suggesting that,
ceteris paribus, the scarcity of the runway has a detrimental impact on delays. Similarly, the coefficient
on the number of bank flights is positive indicating that larger banks are associated with longer waiting
times. The relative location of the flight within the bank is positive suggesting that flights scheduled
either at the beginning or towards the end of the bank wait less for their turn to depart. Weather and
aircraft characteristics typically have the expected signs. In column 5, the dependent variable is the
sum of the taxi-out delay measure and the flight departure delay. The results are qualitatively the same
in all the regressions.
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Dep. Var: Airtime delay, OLS regressions
(1) (2) (3) (4) (5)
VARIABLES

Runway Capacity -0.024**  -0.055***  -0.054**  -0.026"**  -0.031***
(0.004) (0.005) (0.011) (0.004) (0.003)
Bank Flights  0.138**  0.162***  0.139**  0.141***  0.152***
(0.012) (0.013) (0.020) (0.011) (0.011)
Bank Length  -0.098***  -0.068***  -0.053***  -0.087**  -0.094***
(0.011) (0.011) (0.013) (0.011) (0.012)
Flight Bank Pos ~ 2.590**  2.558**  2.709***  2.833**  2576**
(0.774) (0.756) (0.739) (0.689) (0.611)
ThunderStorm  2.545**  1.839***  {1.729%*  2277**  218p***
(0.163) (0.145) (0.134) (0.187) (0.151)

Rain 1.877*** 1.680*** 1.449*** 1.257*** 1.566***
(0.148) (0.119) (0.094) (0.146) (0.127)
Snow 9.564*** 8.277*** 7.344*** 9.452*** 8.526***
(0.988) (0.929) (0.797) (1.086) (0.853)
Heavy Fog 1.595%** 1.587*** 0.812*** 0.777*** 1.085***
(0.188) (0.177) (0.138) (0.191) (0.167)
Distance 0.011*** 0.010***
(0.000) (0.000)
Constant 17.694***  23.943***  24.473*** 7.540*** 10.214***
(0.666) (1.015) (2.306) (1.216) (0.632)
Carrier FE - + + - -
Airport FE - - + - -
Aircraft Char. - - - + -
Observations 123811 123811 123811 80661 116675
R-squared 0.030 0.060 0.087 0.256 0.232

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 6: Airtime Delay Estimation Results
Table 6 presents the regression results using the airtime delay measure. To derive this measure, the
fastest airtime flight in October 2000 was calculated for each directional route. I then subtract this
benchmark from each flight airtime flying in the same directional route. The regression results indicate
that longer banks are associated with shorter delays and lend additional support for an internalization
behavior by airlines. Thus, in all the regressions the bank length and the runway capacity coefficients
are negative and significant. Furthermore, the coefficients on bank flights and the flight bank position
are all positive. The flight distance variable, added in columns 4-5, is positive suggesting that longer

flights are more likely to incur airtime delays.
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Dep. Var: Aircraft Ground Time, OLS regressions
(1) (2) (3) (4) (5)
VARIABLES

Departing Bank Length  0.147***  0.098*** 0.048*** 0.145*** 0.146***
(0.008) (0.008) (0.010) (0.010) (0.010)

Arriving Bank Length  0.221***  0.210*** 0.192*** 0.228*** 0.229***
(0.008) (0.008) (0.009) (0.010) (0.011)

Departing Bank Flights  0.017 -0.005 0.043*** -0.001 0.014
(0.013) (0.013) (0.013) (0.015) (0.017)

Bank Flights 0.017 -0.055"** 0.019  -0.011  -0.007
(0.012)  (0.012) (0.015) (0.013) (0.014)
Hub Carrier 7.358** 3435 7.014** 4.365

(0.351)  (0.330)  (0.403)  (0.376)
Distance (current) ~ 0.005*** 0.005*** 0.005*** 0.003*** 0.003***
(0.000)  (0.000) (0.000) (0.000)  (0.000)
Distance (previous) ~ 0.004** 0.004** 0.004*** 0.003*** 0.003***
(0.000)  (0.000) (0.000) (0.000)  (0.000)

Age 0.273*** 0.250***
(0.020)  (0.020)
Seats (#) 0.083*** 0.082***
(0.004) (0.004)
Engines (#) -0.281 0.782
(0.549) (0.537)
Constant 32.658*** 40.399*** 40.716*** 22.880*** 25.218***
(0.576) (0.658) (1.302) (1.382) (1.317)
Carrier FE - + + - -
Airport FE - - + - -
Observations 89762 89762 89762 60282 56341
R-squared 0.073 0.121 0.138 0.081 0.079

Hokk p<0017 *% p<005, * p<01
Robust standard errors in parentheses

Table 7: Ground Time Analysis

Table 7 displays regression results using aircraft ground time as dependent variable. The regression
examines whether longer banks are associated with longer aircraft ground time. The sample of flights
includes only flights that arrived during a bank period and depart during the subsequent departing
bank. In column 4 I add aircraft characteristics, and in column 5 I focus only on flights operated by
hub carriers. The results suggest that aircraft ground time is longer as the length of banks increases.
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Dep. Var: Taxiout delay, OLS regressions
(1) (2) (3) (4) (5)
VARIABLES

Runway Capacity -0.011***  -0.023***  -0.014***  -0.010***  -0.038***
(0.002) (0.003) (0.004) (0.002) (0.006)

Bank Flights ~ 0.094***  0.115%*  0.144**  0.088**  0.107***
(0.004) (0.005) (0.006) (0.005) (0.013)

Bank Conc  -5.918**  -4.692**  -1.004*  -5558***  -8.419***
(0.387) (0.478) (0.524) (0.450) (1.121)
Flight Bank Pos  0.772** 0.548 0.753** 0.700* 0.268

(0.378) (0.372) (0.353) (0.407) (0.861)
ThunderStorm  3.427**  3.309**  3.421** 3405  14.626***
(0.174) (0.176) (0.177) (0.218) (0.474)

Rain 0.898*** 1.010*** 0.871*** 1.121%** 4.420%**
(0.098) (0.098) (0.096) (0.122) (0.289)
Snow 4.094** 4.500%** 3.932%** 4 472 7.597**
(0.496) (0.481) (0.461) (0.642) (1.526)
Heavy Fog 1.087** 1.133*** 0.423*** 1.271%** 7.185***
(0.138) (0.138) (0.137) (0.166) (0.450)
Constant 8.860™** 11.096**  4.768*** 6.713**  22.633***
(0.375) (0.578) (0.915) (0.632) (1.447)
Carrier FE - + + - +
Airport FE - - + - -
Aircraft Char. - - - + -

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 8: Taxi-out Delay Estimation Results

In the Table, I present the results of the delay regression using the taxi-out delay measure. The speci-
fication is similar to the bank length regression (Table 6) except that the bank concentration variable
is used instead of the bank length variable. Standard errors are clustered over a flight number. In all
regressions, the coefficient on the bank concentration variable is negative and statistically significant.
Runway capacity is also negative suggesting that, ceteris paribus, the scarcity of the runway has a detri-
mental impact on delays. Similarly, the coefficient on the number of bank flights is positive indicating
that larger banks are associated with longer waiting times. The relative location of the flight within the
bank is positive suggesting that flights scheduled either at the beginning or towards the end of the bank
wait less for their turn to depart. Weather and aircraft characteristics typically have the expected signs.
In column 5, the dependent variable is the sum of the taxi-out delay measure and the flight departure
delay. The results indicate that more concentrated banks exhibit fewer delays and are consistent with
internalizing behavior.
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Dep. Var: Airtime delay, OLS regressions

(1) (2) (3) (4) (5)
VARIABLES
Runway Capacity =~ -0.013*** -0.040*** -0.044*** -0.017*** -0.021***
(0.004) (0.005) (0.011) (0.003) (0.003)
Bank Flights 0.050*** 0.089*** 0.078*** 0.076*** 0.079***
(0.010) (0.012) (0.018) (0.008) (0.008)
Bank Conc -11.841*** -7.512%** -2.313* -5.443*** -6.392***
(0.822) (1.071) (1.234) (0.803) (0.699)
Flight Bank Pos 2.457* 2.412%* 2.565*** 2.584*** 2.030***
(0.764) (0.754) (0.738) (0.686) (0.593)
ThunderStorm 2.241** 1.774** 1.692*** 2.274* 2.053***
(0.166) (0.145) (0.134) (0.192) (0.151)
Rain 1.321* 1.527** 1.448*** 1.075*** 1.272%
(0.136) (0.114) (0.094) (0.142) (0.116)
Snow 8.432*** 7.978*** 7.372*** 9.143*** 8.007***
(0.982) (0.922) (0.797) (1.091) (0.857)
Heavy Fog 1.603** 1.604*** 0.809*** 0.896*** 1.172%
(0.185) (0.175) (0.138) (0.188) (0.163)
Distance 0.011*** 0.010***
(0.000) (0.000)
Constant 24.256*** 26.614*** 24.741*** 9.628*** 12.663***
(0.914) (1.232) (2.352) (1.462) (0.822)
Carrier FE - + + - -
Airport FE - - + - -
Aircraft Char. - - - + -
Observations 123811 123811 123811 80661 123810
R-squared 0.045 0.063 0.086 0.255 0.235

*** p<0.01, ** p<0.05, * p<0.1
Robust standard errors in parentheses

Table 9: Airtime Delay Estimation Results
Table 9 presents the regression results using the airtime delay measure. The specification is similar
to the bank length regression (Table 7) except that the bank concentration variable is used instead
of the bank length variable. The regression results indicate that concentrated banks are associated
with shorter delays and lend additional support for an internalization behavior by airlines. The flight
distance variable, added in columns 4-5, is positive suggesting that longer flights are more likely to incur
airtime delays.
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