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1. Introduction

A classic question in macroeconomics is: what is the size of the government-

spending multiplier? There is a large empirical literature that grapples with this

question. Authors such as Barro (1981) argue that the multiplier is around 0.8

while authors such as Ramey (2008) estimate the multiplier to be closer to 1.2.1

There is also a large literature that uses general-equilibrium models to study the

size of the government-spending multiplier. In standard new-Keynesian models

the government-spending multiplier can be somewhat above or below one depend-

ing on the exact specification of agent’s preferences (see Gali, López-Salido, and

Vallés (2007) and Monacelli and Perotti (2008)). In frictionless real-business-cycle

models this multiplier is typically less than one (see e.g. Aiyagari, Christiano, and

Eichenbaum (1992), Baxter and King (1993), Burnside, Eichenbaum and Fisher

(2004), Ramey and Shapiro (1998), and Ramey (2008)). Viewed overall it is

hard to argue, based on the literature, that the government-spending multiplier

is substantially larger than one.

In this paper we argue that the government-spending multiplier can be much

larger than one when the nominal interest rate does not respond to an increase in

government spending. We develop this argument in a model where the multiplier is

quite modest if the nominal interest rate is governed by a Taylor rule. When such

a rule is operative the nominal interest rate rises in response to an expansionary

fiscal policy shock that puts upward pressure on output and inflation.

There is a natural scenario in which the nominal interest rate does not respond

to an increase in government spending: when the zero lower bound on the nominal

interest rate binds. We find that the multiplier is very large in economies where

the output cost of being in the zero bound state is also large. In such economies

1For recent contributions to the VAR-based empirical literature on the size of the government-
spending multiplier see Fisher and Peters (2009) and Ilzetzki, Mendoza, and Vegh (2009).
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it can be socially optimal to substantially raise government spending in response

to shocks that make the zero lower bound on the nominal interest rate binding.

We begin by considering an economy with Calvo-style price frictions, no cap-

ital and a monetary authority that follows a standard Taylor rule. Building on

insights in Eggertsson and Woodford (2003), we study the eect of a temporary,

unanticipated rise in agents’ discount factor. Other things equal, the shock to the

discount factor increases desired saving. Since investment is zero in this economy,

aggregate saving must be zero in equilibrium. When the shock is small enough,

the real interest rate falls and there is a modest decline in output. However, when

the shock is large enough, the zero bound becomes binding before the real interest

rate falls by enough to make aggregate saving zero. In this model, the only force

that can induce the fall in saving required to re-establish equilibrium is a large,

transitory fall in output.

Why is the fall in output so large when the economy hits the zero bound?

For a given fall in output, marginal cost falls and prices decline. With staggered

pricing, the drop in prices leads agents to expect future deflation. With the

nominal interest rate stuck at zero the real interest rate rises. This perverse rise

in the real interest rate leads to an increase in desired saving which partially

undoes the eect of a given fall in output. So, the total fall in output required to

reduce desired saving to zero is very large.

This scenario resembles the paradox of thrift originally emphasized by Keynes

(1936) and recently analyzed by Krugman (1998), Eggertsson and Woodford

(2003), and Christiano (2004). In the textbook version of this paradox, prices

are constant and an increase in desired saving lowers equilibrium output. But, in

contrast to the textbook scenario, the zero-bound scenario studied in the modern

literature involves a deflationary spiral which contributes to and accompanies the

large fall in output.

2



Consider now the eect of an increase in government spending when the zero

bound is strictly binding. This increase leads to a rise in output, marginal cost

and expected inflation. With the nominal interest rate stuck at zero, the rise

in expected inflation drives down the real interest rate which drives up private

spending. This rise in spending leads to a further rise in output, marginal cost,

and expected inflation and a further decline in the real interest rate. The net

result is a large rise in inflation and output. In eect, the increase in government

consumption unleashes an inflationary spiral that counteracts the deflationary

spiral associated with the zero bound state.

The exact value of the government-spending multiplier depends on a variety

of factors. However, we show that this multiplier is large in economies in which

the output cost associated with the zero bound problem is more severe. We argue

this point in two ways. First, we show that the value of the government-spending

multiplier can depend sensitively on the model’s parameter values. But, parameter

values which are associated with large declines in output when the zero bound

binds are also associated with large values of the government-spending multiplier.

Second, we show that the value of the government-spending multiplier is positively

related to how long the zero bound is expected to bind.

An important practical objection to using fiscal policy to counteract a contrac-

tion associated with the zero-bound state is that there are long lags in implement-

ing increases in government spending. Motivated by this consideration, we study

the size of the government-spending multiplier in the presence of implementation

lags. We find that a key determinant of the size of the multiplier is the state of

the world in which new government spending comes on line. If it comes on line in

future periods when the nominal interest rate is zero then there is a large eect

on current output. If it comes on line in future periods where the nominal interest

rate is positive, then the current eect on government spending is smaller. So
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our analysis supports the view that, for fiscal policy to be eective, government

spending must come online in a timely manner.

In the second step of our analysis we incorporate capital accumulation into

the model. In addition to the discount factor shock we also allow for a neutral

technology shock and an investment-specific shock. For computational reasons we

consider temporary shocks that make the zero bound binding for a deterministic

number of periods. Again, we find that the government-spending multiplier is

larger when the zero bound binds. Allowing for capital accumulation has two

eects. First, for a given size shock it reduces the likelihood that the zero bound

becomes binding. Second, when the zero bound binds, the presence of capital

accumulation tends to increase the size of the government-spending multiplier.

The intuition for this result is that, in our model, investment is a decreasing

function of the real interest rate. When the zero bound binds, the real interest

rate generally rises. So, other things equal, saving and investment diverge as the

real interest rate rises, thus exacerbating the meltdown associated with the zero

bound. As a result, the fall in output necessary to bring saving and investment

into alignment is larger than in the model without capital.

The simple models discussed above suggest that the multiplier can be large in

the zero bound state. The obvious next step would be to use reduced form meth-

ods, such as identified VARs, to estimate the government-spending multiplier

when the zero bound binds. Unfortunately, this task is fraught with diculties.

First, we cannot mix evidence from states where the zero bound binds with evi-

dence from other states because the multipliers are very dierent in the two states.

Second, we have to identify exogenous movements in government spending when

the zero bound binds.2 This task seems daunting at best. Almost surely gov-

2To see how critical this step is, suppose that the government chooses spending to keep
output exactly constant in the face of shocks that make the zero bound bind. A naive econo-
metrician who simply regressed output on government spending would falsely conclude that the
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ernment spending would rise in response to large output losses in the zero bound

state. To know the government spending multiplier we need to know what output

would have been had government spending not risen. For example, the simple

observation that output did not grow quickly in Japan in the zero bound state,

even though there were large increases in government spending, tells us nothing

about the question of interest.

Given these diculties, we investigate the size of the multiplier in the zero

bound state using the empirically plausible DSGEmodel proposed by Altig, Chris-

tiano, Eichenbaum and Lindé (2004) (henceforth ACEL). This model incorporates

price and wage setting frictions, habit formation in consumption, variable capital

utilization and investment adjustment costs of the sort proposed by Christiano,

Eichenbaum and Evans (2005) (henceforth CEE). ACEL estimate the parameters

of their model to match the impulse response function of ten macro variables to a

monetary shock, a neutral technology shock, and a capital-embodied technology

shock.

Our key findings based on the ACEL model can be summarized as follows.

First, when the central bank follows a Taylor rule the value of the government-

spending multiplier is generally less than one. Second, the multiplier is much

larger if the nominal interest rate does not respond to the rise in government

spending. For example, suppose that government spending goes up for eight

quarters and the nominal interest rate remains constant. In this case the impact

multiplier is roughly two. Third, the value of the multiplier depends critically on

how much government spending occurs in the period during which the nominal

interest rate is constant. The larger is the fraction of government spending that

occurs while the nominal interest rate is constant, the smaller is the value of the

government spending multiplier is zero. This example is, of course, just an application of Tobin’s
(1970) post hoc ergo propter hoc argument.
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multiplier. Consistent with the theoretical analysis above, this result implies that

for government spending to be a powerful weapon in combating output losses

associated with the zero bound state, it is critical that the bulk of the spending

come on line when the lower bound is actually binding.

As emphasized by Eggertsson and Woodford (2003), an alternative way to

escape the negative consequences of a shock that makes the zero bound binding

is for the central bank to commit to future inflation. We abstract from this

possibility in this paper. We do so for a number of reasons. First, this theoretical

possibility is well understood. Second, we do not think that it is easy in practice

for the central bank to credibly commit to future high inflation. Third, the optimal

trade-o between higher government purchases and anticipated inflation depends

sensitively on how agents value government purchases and the costs of anticipated

inflation. Studying this issue is an important topic for future research.

Our analysis is related to several recent papers on the zero bound. Eggertson

(2009) focuses on the eects of transitory tax cuts when the zero bound on nominal

interest rates binds. Bodenstein, Erceg, and Guerrieri (2009) analyze the eects of

shocks to open economies when the zero bound binds. Braun and Waki (2006) use

a model in which the zero bound binds to account for Japan’s experience in the

1990s. Their results for fiscal policy are broadly consistent with our results. Braun

and Waki (2006) and Coenen and Wieland (2003) investigate whether alternative

monetary policy rules could have avoided the zero bound state in Japan.

Our paper is organized as follows. In section 2 we analyze the size of the

government-spending multiplier when the interest follows a Taylor rule in a stan-

dard new-Keynesian model without capital. In section 3 we modify the analysis to

assume that the nominal interest rate does not respond to an increase in govern-

ment spending, say because the lower bound on the nominal interest rate binds.

In section 4 we extend the model to incorporate capital. In section 5 we discuss
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the properties of the government-spending multiplier in the medium size DSGE

model proposed by ACEL. Section 6 concludes.

2. The standard multiplier in a model without capital

In this section we present a simple new-Keynesian model and analyze its implica-

tions for the size of the “standard multiplier,” by which we mean the size of the

government-spending multiplier when the nominal interest rate is governed by a

Taylor rule.

Households The economy is populated by a representative household, whose

life-time utility, U , is given by:

U = E0



t=0

t


[Ct (1Nt)1]

1  1
1 

+ v (Gt)


. (2.1)

Here E0 is the conditional expectation operator, and Ct, Gt, and Nt denote time-

t consumption, government consumption, and hours worked, respectively. We

assume that  > 0,   (0, 1), and that v(.) is a concave function.

The household budget constraint is given by:

PtCt +Bt+1 = Bt (1 +Rt) +WtNt + Tt, (2.2)

where Tt denotes firms’ profits net of lump-sum taxes paid to the government.

The variable Bt+1 denotes the quantity of one-period bonds purchased by the

household at time t. Also, Pt denotes the price level and Wt denotes the nominal

wage rate. Finally, Rt denotes the one-period nominal rate of interest that pays

o in period t. The household’s problem is to maximize utility given by equation

(2.1) subject to the budget constraint given by equation (2.2) and the condition

E0 limtBt+1/[(1 +R0)(1 +R1)...(1 +Rt)]  0.
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Firms The final good is produced by competitive firms using the technology,

Yt =

 1

0

Yt (i)
1
 di

 
1

,  > 1, (2.3)

where Yt (i) , i  [0, 1] denotes intermediate good i.

Profit maximization implies the following first-order condition for Yt (i):

Pt (i) = Pt


Yt
Yt (i)

 1


, (2.4)

where Pt(i) denotes the price of intermediate good i and Pt is the price of the

homogeneous final good.

The intermediate good, Yt (i), is produced by a monopolist using the following

technology:

Yt (i) = Nt (i) ,

where Nt (i) denotes employment by the ith monopolist. We assume there is no

entry or exit into the production of the ith intermediate good. The monopolist

is subject to Calvo-style price-setting frictions and can optimize its price, Pt (i),

with probability 1 . With probability  the firm sets:

Pt (i) = Pt1 (i) .

The discounted profits of the ith intermediate good firm are:

Et



j=0

t+jt+j [Pt+j (i)Yt+j (i) (1 )Wt+jNt+j (i)] , (2.5)

where  = 1/ denotes an employment subsidy which corrects, in steady state, the

ineciency created by the presence of monopoly power. The variable t+j is the

multiplier on the household budget constraint in the Lagrangian representation of

the household problem. The variable Wt+j denotes the nominal wage rate.

Firm i maximizes its discounted profits, given by equation (2.5), subject to the

Calvo price-setting friction, the production function, and the demand function for

Yt (i), given by equation (2.4).
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Monetary policy We assume that monetary policy follows the rule:

Rt+1 = max(Zt+1, 0), (2.6)

where

Zt+1 = (1/)(1 + t)
1(1R)(Yt/Y )

2(1R) [ (1 +Rt)]
R  1.

Throughout the paper a variable without a time subscript denotes its steady state

value, e.g. the variable Y denotes the steady-state level of output. The variable

t denotes the time-t rate of inflation. We assume that 1 > 1 and 2  (0, 1).

According to equation (2.6) the monetary authority follows a Taylor rule as

long as the implied nominal interest rate is non-negative. Whenever the Taylor

rule implies a negative nominal interest rate, the monetary authority simply sets

the nominal interest rate to zero. For convenience we assume that steady-state in-

flation is zero. This assumption implies that the steady-state net nominal interest

rate is 1/  1.

Fiscal policy As long as the zero bound on the nominal interest rate is not

binding, government spending evolves according to:

Gt+1 = G

t exp(t+1). (2.7)

Here G is the level of government spending in the non-stochastic steady state and

t+1 is an i.i.d. shock with zero mean. To simplify our analysis, we assume that

government spending and the employment subsidy are financed with lump-sum

taxes. The exact timing of these taxes is irrelevant because Ricardian equivalence

holds under our assumptions. We discuss the details of fiscal policy when the zero

bound is binding in Section 3.
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Equilibrium The economy’s resource constraint is:

Ct +Gt = Yt. (2.8)

A ‘monetary equilibrium’ is a collection of stochastic processes,

{Ct, Nt,Wt, Pt, Yt, Rt, Pt (i) , Yt (i) , Nt (i) , t, Bt+1, t},

such that for given {Gt} the household and firm problems are satisfied, the mone-

tary and fiscal policy rules are satisfied, markets clear, and the aggregate resource

constraint is satisfied.

To solve for the equilibrium we use a linear approximation around the non-

stochastic steady state of the economy. Throughout, Ẑt denotes the percentage

deviation of Zt from its non-stochastic steady state value, Z. The equilibrium is

characterized by the following set of equations.

The Phillips curve for this economy is given by:

t = Et


t+1 + MCt


, (2.9)

where  = (1 ) (1 ) /. In addition,MCt denotes real marginal cost which,

under our assumptions, is equal to the real wage rate. Absent labor market

frictions, the percent deviation of real marginal cost from its steady state value is

given by:
MCt = Ĉt +

N

1N
N̂t. (2.10)

The linearized intertemporal Euler equation for consumption is:

[ (1 ) 1] Ĉt  (1 ) (1 )
N

1N
N̂t (2.11)

= Et


 (Rt+1 R) t+1 + [ (1 ) 1] Ĉt+1  (1 ) (1 )

N

1N
N̂t+1


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The linearized aggregate resource constraint is:

Ŷt = (1 g) Ĉt + gĜt, (2.12)

where g = G/Y .

Combining equations (2.9) and (2.10) and using the fact that N̂t = Ŷt we

obtain:

t = Et (t+1) + 


1

1 g
+

N

1N


Ŷt 

g

1 g
Ĝt


. (2.13)

Similarly, combining equations (2.11) and (2.12) and using the fact that N̂t = Ŷt

we obtain:

Ŷt  g [ (  1) + 1] Ĝt = (2.14)

Et


 (1 g) [ (Rt+1 R) t+1] + Ŷt+1  g [ (  1) + 1] Ĝt+1


.

As long as the zero bound on the nominal interest rate does not bind, the

linearized monetary policy rule is given by:

Rt+1 R = R (Rt R) +
1 R



1t + 2Ŷt


.

Whenever the zero bound binds, Rt+1 = 0.

We solve for the equilibrium using the method of undetermined coecients.

For simplicity, we begin by considering the case in which R = 0. Under the

assumption that 1 > 1, there is a unique linear equilibrium in which t and Ŷt

are given by:

t = AĜt, (2.15)

Ŷt = AY Ĝt. (2.16)

The coecients A and AY are given by:

A =


1 


1

1 g
+

N

1N


AY 

g

1 g


, (2.17)
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AY = g
( 1) [ (  1) + 1] (1 ) (1 )

(1 ) [ 1 (1 g)2] + (1 g) ( 1)


1
1g +

N
1N

 . (2.18)

The eect of an increase in government spending Using equation (2.12)

we can write the government-spending multiplier as:

dYt
dGt

=
1

g

Ŷt

Ĝt
= 1 +

1 g
g

Ĉt

Ĝt
. (2.19)

This equation implies that the multiplier is less than one whenever consumption

falls in response to an increase in government spending. Equation (2.16) implies

that the government-spending multiplier is given by:

dYt
dGt

=
AY
g
. (2.20)

From this equation we see that the multiplier is constant over time. To analyze

the magnitude of the multiplier outside of the zero bound we consider the following

baseline parameter values:

 = 0.85,  = 0.99, 1 = 1.5, 2 = 0,  = 0.29, g = 0.2,  = 2, R = 0,  = 0.8.

(2.21)

These parameter values imply that  = 0.03 and N = 1/3. Our baseline pa-

rameter values imply that the government-spending multiplier is 1.05. Figure 1

displays the impulse response of output, inflation, and the nominal interest rate

to a government spending shock.

In our model Ricardian equivalence holds. From the perspective of the repre-

sentative household the increase in the present value of taxes equals the increase

in the present value of government purchases. In a typical version of the standard

neoclassical model we would expect some rise in output driven by the negative

wealth eect on leisure of the tax increase. But in that model the multiplier is

generally less than one because the wealth eect reduces private consumption.
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From this perspective it is perhaps surprising that the multiplier in our base-

line model is greater than one. This perspective neglects two key features of

our model, the frictions in price setting and the complementarity between con-

sumption and leisure in preferences. When government purchases increase, total

demand, Ct +Gt, increases. Since prices are sticky, price over marginal cost falls

after a rise in demand. As emphasized in the literature on the role of monopoly

power in business cycles, the fall in the markup induces an outward shift in the

labor demand curve. This shift amplifies the rise in employment following the

rise in demand. Given our specification of preferences,  > 1 implies that the

marginal utility of consumption rises with the increase in employment. As long as

this increase in marginal utility is large enough, it is possible for private consump-

tion to actually rise in response to an increase in government purchases. Indeed,

consumption does rise in our benchmark scenario which is why the multiplier is

larger than one.

To assess the importance of our preference specification we redid our calcula-

tions using the basic specification for the momentary utility function commonly

used in the new-Keynesian DSGE literature:

u =

C1t  1


/ (1 ) N1+

t / (1 + ) , (2.22)

where, , , and  are positive. The key feature of this specification is that the

marginal utility of consumption is independent of hours worked. Consistent with

the intuition discussed above, we found that, across a wide set of parameter values,

dY/dG is always less than one with this preference specification.3

To provide additional intuition for the determinants of the multiplier, Figure

2 displays dY/dG for various parameter configurations. In each case we perturb

3See Monacelli and Perotti (2008) for a discussion of the impact of preferences on the size of
the government spending multiplier in models with Calvo-style frictions when the zero bound is
not binding.
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one parameter at a time relative to the benchmark parameter values. The (1, 1)

element of Figure 2 shows that a rise in  is associated with an increase in the

multiplier. This result is consistent with the intuition above which builds on the

observation that the marginal utility of consumption is increasing in hours worked.

This dependence is stronger the higher is . Note that multiplier can be bigger

than unity even for  slightly less than unity. This result presumably reflects

the positive wealth eects associated with the increased competitiveness of the

economy associated with the reduction in the markup.

The (1, 2) element of Figure 2 shows that the multiplier is a decreasing function

of . In other words, the multiplier is larger the higher is the degree of price

stickiness. The result reflects the fall in the markup when aggregate demand and

marginal cost rise. This eect is stronger the stickier are prices. The multiplier

exceeds one for all  < 0.13. In the limiting case when prices are perfectly sticky

( = 0) the multiplier is given by:

dYt
dGt

=
[ (  1) + 1] (1 )
1 + (1 g)2

> 0.

Note that when 2 = 0 the multiplier is greater than one as long as  is greater

than one.

When prices are perfectly flexible ( = ) the markup is constant. In this

case the multiplier is less than one:

dYt
dGt

=
1

1 + (1 g) N
1N

< 1.

This result reflects the fact that with flexible prices an increase in government

spending has no impact on the markup. As a result, the demand for labor does

not rise as much as in the case in which prices are sticky.

The (1, 3) element of Figure 2 shows that as 1 increases, the multiplier falls.

The intuition for this eect is that the expansion in output increases marginal
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cost which in turn induces a rise in inflation. According to equation (2.6) the

monetary authority increases the interest rate in response to a rise in inflation.

The rise in the interest rate is an increasing function of 1. Higher values of 1
lead to higher values of the real interest rate which are associated with lower levels

of consumption. So, higher values of 1 lead to lower values of the multiplier.

The (2, 1) element of Figure 2 shows that as 2 increases, the multiplier falls.

The intuition underlying this eect is similar to that associated with 1. When

2 is large there is a substantial increase in the real interest rate in response to a

rise in output. The contractionary eects of the rise in the real interest rate on

consumption reduce the size of the multiplier.

The (2, 2) element of Figure 2 shows that as R increases the multiplier rises.

The intuition for this result is as follows. The higher is R the less rapidly the

monetary authority increases the interest rate in response to the rise in marginal

cost and inflation that occur in the wake of an increase in government purchases.

This result is consistent with the traditional view that the government-spending

multiplier is greater in the presence of accommodative monetary policy. By ac-

commodative we mean that the monetary authority raises interest rates slowly in

the presence of a fiscal expansion.

The (2, 3) element of Figure 2 shows that the multiplier is a decreasing func-

tion of the parameter governing the persistence of government purchases, . The

intuition for this result is that the present value of taxes associated with a given

innovation in government purchases is an increasing function of . So the negative

wealth eect on consumption is an increasing function of .

We conclude this subsection by noting that we redid Figure 2 using a forward-

looking Taylor rule in which the interest rate responds to the one-period-ahead

expected inflation and output gap. The results that we obtained were very similar

to the ones discussed above.
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Viewed overall, our results indicate that, from the perspective a simple new-

Keynesian model, it is quite plausible that the multiplier is above one. However,

it is dicult to obtain multipliers above 1.2 for plausible parameter values.

3. The constant-interest-rate multiplier in a model without
capital

In this section we analyze the government-spending multiplier in our simple new-

Keynesian model when the nominal interest rate is constant. We focus on the

case in which the nominal interest rate is constant because the zero bound binds.

We assume, as in Eggertsson and Woodford (2003) and Christiano (2004), that

the shock that makes the zero bound binding is an increase in the discount factor.

We think of this shock as representing a temporary rise in agent’s propensity to

save.

A discount factor shock We modify agent’s preferences, given by (2.1), to

allow for a stochastic discount factor,

U = E0



t=0

dt


[Ct (1Nt)1]

1  1
1 

+ v (Gt)


. (3.1)

The cumulative discount factor, dt, is given by:

dt =


1

1+r1
1

1+r2
· · · 1

1+rt
, t  1,

1 t = 0.
(3.2)

The time-t discount factor, rt, can take on two values: r and rl, where rl < 0.

The stochastic process for rt is given by:

Pr

rt+1 = r

l|rt = rl

= p, Pr


rt+1 = r|rt = rl


= 1p, Pr


rt+1 = r

l|rt = r

= 0.

(3.3)
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The value of rt+1 is realized at time t. We define  = 1/(1 + r), where r is the

steady state value of rt+1.

We consider the following experiment. The economy is initially in the steady

state, so rt = r. At time zero r1 takes on the value rl. Thereafter rt follows

the process described by equation (3.3). The discount factor remains high with

probability p and returns permanently to its normal value, r, with probability

1 p. In what follows we assume that rl is suciently high that the zero-bound

constraint on nominal interest rates binds. We assume that Ĝt = Ĝl  0 in the

lower bound and Ĝt = 0 otherwise.

To solve the model we suppose (and then verify) that the equilibrium is char-

acterized by two values for each variable: one value for when the zero bound binds

and one value for when it is not. We denote the values of inflation and output in

the zero bound by l and Ŷ l, respectively. For simplicity we assume that R = 0,

so there is no interest rate smoothing in the Taylor rule, (2.6). Since there are no

state variables and Ĝt = 0 outside of the zero bound state, as soon as the zero

bound is not binding the economy jumps to the steady state.

We can solve for Ŷ l using equation (2.13) and the following version of equation

(2.14), which takes into account the discount factor shock:

Ŷt  g [(  1) + 1] Ĝt (3.4)

= Et


Ŷt+1  g [(  1) + 1] Ĝt+1  (1 g) (Rt+1  rt+1) + (1 g)t+1



We focus on the case in which the zero bound binds at time t, so Rt+1 = 0.

Equations (2.13) and (3.4) can be re-written as:

Ŷ l = g [ (  1) + 1] Ĝl +
1 g
1 p


rl + pl


, (3.5)

l = pl + 


1

1 g
+

N

1N


Ŷ l 

g

1 g
Ĝl. (3.6)
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Equations (3.5) and (3.6) imply that l and Ŷ l are given by:

l =
(1 g)


1
1g +

N
1N


rl


+g(1p)


1
1g +

N
1N


 (  1) + N

1N


Ĝl. (3.7)

Ŷ l =
(1 p) (1 g)rl


+
(1 p) (1 p) [ (  1) + 1] p


gĜl, (3.8)

where:

 = (1 p) (1 p) p

1 +

N

1N
(1 g)


.

Since rl is negative, a necessary condition for the zero bound to bind is that

 > 0. If this condition did not hold inflation would be positive and output would

be above its steady state value. Consequently, the Taylor rule would call for an

increase in the nominal interest rate so that the zero bound would not bind.

Equation (3.8) implies that the drop in output induced by a change in the

discount rate, which we denote by , is given by:

 =
(1 p) (1 g)rl


. (3.9)

By assumption  > 0, so  < 0. The value of  can be a large negative number

for plausible parameter values. The intuition for this result is as follows. The

basic shock to the economy is an increase in agent’s desire to save. We develop

the intuition for this result in two steps. First, we provide intuition for why the

zero bound binds. We then provide the intuition for why the drop in output can

to be very large when the zero bound binds.

To understand why the zero bound binds recall that in this economy saving

must be zero in equilibrium. With completely flexible prices the real interest rate

would simply fall to discourage agents from saving. There are two ways in which

such a fall can occur: a large fall in the nominal interest rate and/or a substantial
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rise in the expected inflation rate. The extent to which the nominal interest rate

can fall is limited by the zero bound. In our sticky-price economy a rise in the rate

of inflation is associated with a rise in output and marginal cost. But a transitory

increase in output is associated with a further increase in the desire to save, so

that the real interest rate must rise by even more. Given the size of the shock to

the discount factor there may be no equilibrium in which the nominal interest rate

is zero and inflation is positive. So the real interest rate cannot fall by enough to

reduce desired saving to zero. In this scenario the zero bound binds.

Figure 3 illustrates this point using a stylized version of our model. Saving

(S) is an increasing function of the real interest rate. Since there is no investment

in this economy saving must be zero in equilibrium. The initial equilibrium is

represented by point A. But the increase in the discount factor can be thought of

as inducing a rightward shift in the saving curve from S to S . When this shift is

large, the real interest rate cannot fall enough to re-establish equilibrium because

the lower bound on the nominal interest rate becomes binding prior to reaching

that point. This situation is represented by point B.

To understand why the fall in output can be very large when the zero bound

binds, recall that equation (3.7) shows how the rate of inflation, l, depends on

the discount rate and on government spending in the zero bound state. In this

state  is positive. Since rl is negative, it follows that l is negative and so too

is expected inflation, pl. Since the nominal interest rate is zero and expected

inflation is negative, the real interest rate (nominal interest rate minus expected

inflation rate) is positive. Both the increase in the discount factor and the rise

in the real interest rate increase agent’s desire to save. There is only one force

remaining to generate zero saving in equilibrium: a large, transitory fall in income.

Other things equal this fall in income reduces desired saving as agents attempt

to smooth the marginal utility of consumption over states of the world. Because
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the zero bound is a transitory state of the world this force leads to a decrease

in agents desire to save. This eect has to exactly counterbalance the other two

forces which are leading agents to save more. This reasoning suggest that there

is a very large decline in income when the zero bound binds. In terms of Figure

3 we can think of the temporary fall in output as inducing a shift in the saving

curve to the left.

We now turn to a numerical analysis of the government-spending multiplier,

which is given by:

dY l

dGl
=
(1 p) (1 p) [ (  1) + 1] p


. (3.10)

In what follows we assume that the discount factor shock is suciently large to

make the zero bound binding. Conditional on this bound being binding, the size

of the multiplier does not depend on the size of the shock. In our discussion of

the standard multiplier we assume that the first-order serial correlation of govern-

ment spending shocks is 0.8. To make the experiment in this section comparable

we choose p = 0.8. This choice implies that the first-order serial correlation of

government spending in the zero bound is also 0.8. All other parameter values

are given by the baseline specification in (2.21).

For our benchmark specification the government-spending multiplier is 3.7,

which is roughly three times larger than the standard multiplier. The intuition

for why the multiplier can be large when the nominal interest rate is constant, say

because the zero bound binds, is as follows. A rise in government spending leads to

a rise in output, marginal cost and expected inflation. With the nominal interest

rate equal to zero, the rise in expected inflation drives down the real interest rate,

leading to a rise is private spending. This rise in spending generates a further rise

in output, marginal cost, and expected inflation and a further decline in the real

interest rate. The net result is a large rise in inflation and output.
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We now consider the sensitivity of the multiplier to parameter values. The

first row of Figure 4 displays the government-spending multiplier and the response

of output to the discount rate shock in the absence of a change in government

spending as a function of the parameter . The ‘’ indicates results for our

benchmark value of . This row is generated assuming a discount factor shock

such that rl is equal to 2 percent on an annualized basis. We graph only values

of  for which the zero bound binds, so we display results for 0.02    0.036.

Three key features of this figure are worth noting. First, the multiplier can be

very large. Second, absent a change in government spending, the decline in output

is increasing in the degree of price flexibility, i.e. it is increasing in , as long as

the zero bound binds. This result reflects that, conditional on the zero bound

binding, the more flexible are prices, the higher is expected deflation and the

higher is the real interest rate. So, other things equal, higher values of  require

a large transitory fall in output to equate saving and investment when the zero

bound binds. Third, the government-spending multiplier is also an increasing

function of .

The second row of Figure 4 displays the government-spending multiplier and

the response of output to the discount rate shock in the absence of a change in

government spending as a function of the parameter p. The ‘’ indicates results

for our benchmark value of p. We graph only values of p for which the zero bound

binds, so we display results for 0.75  p  0.82. Two key results are worth

noting. First, absent a change in government spending the decline in output is

increasing in p. So the longer is the expected duration of the shock the worst are

the output consequences of the zero bound being binding. Second the value of the

government-spending multiplier is an increasing function of p.

Figure 4 shows the precise value of the multiplier is sensitive to the choice of pa-

rameter values. But looking across parameter values we see that the government-
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spending multiplier is large in economies where the drop in output associated with

the zero bound is also large. Put dierently, fiscal policy is particularly powerful

in economies where the zero bound state entails large output losses. One more

way to see this result is to analyze the impact of changes in N , which governs the

elasticity of labor supply, on dY l/dGl and . Equations (3.10) and (3.9) imply

that:
dY l

dGl
=
(1 p) (1 p) [ (  1) + 1] p

(1 p) (1 g)rl
. (3.11)

From equation (3.9) we see that changes in N that make  converge to zero imply

that , the impact of discount factor shock on output, converges to minus infinity.

It follows directly from equation (3.11) that the same changes in N cause dY l/dGl

to go to infinity. So, again we conclude that the government-spending multiplier is

particularly large in economies where the output costs of being in the zero bound

state are very large.4

Sensitivity to the timing of government spending In practice there is

likely be a lag between the time at which the zero bound becomes binding and

the time at which additional government purchases begin. A natural question is:

how does the economy respond at time t to the knowledge that the government

will increase spending in the future? Consider the following scenario. At time t

the zero bound binds. Government spending does not change at time t, but it

takes on the value Gl > G from time t + 1 on, as long as the economy is in the

zero bound. Under these assumptions equations (2.13) and (3.4) can be written

as:

t = p
l + 


1

1 g
+

N

1N


Ŷt, (3.12)

Ŷt = (1 g) rl + pŶ l  g [ (  1) + 1] pĜl + (1 g)pl. (3.13)

4An exception pertains to the parameter . The value of dY l/dGl is monotonically increasing
in , but dŶ l/drl is independent of .
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Here we use the fact that Ĝt = 0, Et (t+1) = pl, Et(Ĝt+1) = pĜl, and Et(Ŷt+1) =

pŶ l. The values of l and Ŷ l are given by equations (3.7) and (3.8), respectively.

Using equation (3.8) to replace Ŷ l in equation (3.13) we obtain:

dYt,1
dGl

=
1 g
g

p

1 p
dl

dĜl
. (3.14)

Here the subscript 1 denotes the presence of a one period delay in implementing an

increase in government spending. So, dYt,1/dGl represents the impact on output

at time t of an increase in government spending at time t + 1. One can show

that the multiplier is increasing in the probability, p, that the economy remains

in the zero bound. The multiplier operates through the eect of a future increase

in government spending on expected inflation. If the economy is in the zero

bound in the future, an increase in government purchases increases future output

and therefore future inflation. From the perspective of time t this eect leads to

higher expected inflation and a lower real interest rate. This lower real interest

rate reduces desired saving and increases consumption and output at time t.

Evaluating equation (3.14) at the benchmark values we obtain a multiplier

equal to 1.5. While this multiplier is much lower than the benchmark multiplier

of 3.7, it is still large. Moreover, this multiplier pertains to an increase in today’s

output in response to an increase in future government spending that only occurs

if the economy is in the zero bound state in the future.

Suppose that it takes two periods for government purchases to increase in the

event that the zero bound binds. It is straightforward to show that the impact

on current output of a potential increase in government spending that takes two

periods to implement is given by:

dYt,2
dGl

= p
1 g
g


dt,1

dĜl
+

1

1 p
dl

dĜl


.

Here the subscript 2 denotes the presence of a two period delay. Using our bench-

mark parameters the value of this multiplier is 1.44, so the rate at which the
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multiplier declines as we increase the implementation lag is relatively low.

Consider now the case in which the increase in government spending occurs

only after the zero bound ends. Suppose, for example, that at time t the govern-

ment promises to implement a persistent increase in government spending at time

t+ 1, if the economy emerges from the zero bound at time t+ 1. This increase in

government purchases is governed by: Ĝt+j = 0.8j1Ĝt+1, for j  2. In this case

the value of the multiplier, dYt/dGt+1, is only 0.46 for our benchmark values.

The usual objection to using fiscal policy as a tool for fighting recessions is

that there are long lags in gearing up increases in spending. Our analysis indicates

that the key question is: in which state of the world does additional government

spending come on line? If it comes on line in future periods when the zero bound

binds there is a large eect on current output. If it comes on line in future periods

where the zero bound is not binding the current eect on government spending is

smaller.

Optimal government spending The fact that the government-spending mul-

tiplier is so large in the zero bound raises the following question: taking as given

the monetary policy rule described by equation (2.6) what is the optimal level

of government spending when the representative agent’s discount rates is higher

than its steady state level? In what follows we use the superscript L to denote

the value of variables in states of the world where the discount rate is rl. In these

states of the world the zero bound may or may not be binding depending on the

level of government spending. From equation (3.7) we anticipate that the higher

is government spending, the higher is expected inflation, and the less likely the

zero bound is to bind.

We choose GL to maximize the expected utility of the consumer in states of

the world in which the discount factor is high and the zero bound binds. For
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now we assume that in other states of the world Ĝ is zero. So, we choose GL to

maximize:

UL =



t=0


p

1 + rl

t CL

(1NL)1

1  1
1 

+ v

GL


, (3.15)

=
1 + rr

1 + rl  p


CL

(1NL)1

1  1
1 

+ v

GL


.

To ensure that UL is finite we assume that p < (1 + rl).

Note that:

Y L = NL = Y

Ŷ L + 1


,

CL = Y

Ŷ L + 1


G


ĜL + 1


.

Substituting these expressions into equation (3.15) we obtain:

UL =
1 + rr

1 + rl  p






N

Ŷ L + 1


Ng


ĜL + 1


(1N


Ŷ L + 1


)1

1
 1

1 





+
1 + rr

1 + rl  p
v

Ng


ĜL + 1


.

We choose the value of ĜL that maximizes UL subject to the intertemporal

Euler equation (equation (2.14)), the Phillips curve (equation (2.13)), and Ŷt =

Ŷ L, Ĝt = GL, Et(Ĝt+1) = pGL, t+1 = L, Et(t+1) = pL, and Rt+1 = RL,

where

RL = max

ZL, 0


,

and

ZL =
1


 1 +

1




1

L + 2Ŷ
L

.

The last constraint takes into account that the zero bound on interest rates may

not be binding even though the discount rate is high.
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Finally, for simplicity we assume that v(G) is given by:

v (G) = g
G1

1 
.

We choose g so that g = G/Y is equal to 0.2.

Since government purchases are financed with lump sum taxes, the optimal

level of G has the property that the marginal utility of G is equal to the marginal

utility of consumption:

gG
 = C(1)1N (1)(1).

This relation implies:

g =  ([N (1 g)])
(1)1N (1)(1) (Ng) .

Using our benchmark parameter values we obtain a value of g equal to 0.015.

Figure 5 displays the values of UL, Ŷ L, ZL, ĈL, RL, and L as a function

of ĜL. The ‘*’ indicates the level of a variable corresponding to the optimal

value of ĜL. The ‘o’ indicates the level of a variable corresponding to the highest

value of ĜL that satisfies Z l  0. A number of features of Figure 5 are worth

noting. First, the optimal value of ĜL is very large: roughly 30 percent (recall

that in steady state government purchases are 20 percent of output). Second, for

this particular parameterization the increase in government spending more than

undoes the eect of the shock which made the zero bound constraint bind. Here,

government purchases rise to the point where the zero bound is marginally non

binding and output is actually above its steady state level. These last two results

depend on the parameter values that we chose and on our assumed functional

form for v(Gt). What is robust across dierent assumptions is that it is optimal

to substantially increase government purchases and that the government-spending

multiplier is large when the zero-bound constraint binds.5

5We derive the optimal fiscal policy taking monetary policy as given. Nakata (2009) argues
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The zero bound and interest rate targeting Up to now we have emphasized

the economy being in the zero bound state as the reason why the nominal interest

rate might not change after an increase in government spending. Here we discuss

an alternative interpretation of the constant interest rate assumption. Suppose

that there are no shocks to the economy but that, starting from the non-stochastic

steady state, government spending increases by a constant amount and the mon-

etary authority deviates from the Taylor rule, keeping the nominal interest rate

equal to its steady-state value. This policy shock persists with probability p. It is

easy to show that the government-spending multiplier is given by equation (3.10).

So the multiplier is exactly the same as in the case in which the nominal interest

rate is constant because the zero bound binds.

4. A model with capital and multiple shocks

In the previous section we use a simple model without capital to argue that the

government-spending multiplier is large whenever the output costs of being in the

zero bound state are also large. Here we show that this basic result extends to a

generalized version of the previous model in which we allow for capital accumu-

lation. In addition, we consider three types of shocks: a discount-factor shock, a

neutral technology shock, and a capital-embodied technology shock. These shocks

have dierent eects on the behavior of the model economy. But, in all cases, the

government-spending multiplier is large whenever the output costs of being in the

zero bound state are large.

that it is also optimal to raise government purchases when monetary policy is chosen optimally.
He does so using a second-order Taylor approximation to the utility function in a model with
separable preferences where the natural rate of interest follows an exogenous stochastic process.
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The model The preferences of the representative household are given by equa-

tions (3.1) and (3.2). The household’s budget constraint is given by:

Pt

Ct + Ite

t

+Bt+1 = Bt (1 +Rt) +WtNt + Ptr

k
tKt + Tt, (4.1)

where It denotes investment, Kt is the stock of capital, and rkt is the real rental

rate of capital. The capital accumulation equation is given by:

Kt+1 = It + (1 )Kt 
I
2


It
Kt

 
2
Kt. (4.2)

The variable t represents a capital-embodied technology shock. The price of

investment goods in units of consumption is equal to exp(t). A positive shock

to t is associated with a decline in the price of investment goods. The parameter

I > 0 governs the magnitude of adjustment costs to capital accumulation. As I

, investment and the stock of capital become constant. The resulting model

behaves in a manner very similar to the one described in the previous section.

The household’s problem is to maximize life-time expected utility, given by

equations (3.1) and (3.2), subject to the resource constraints given by equations

(4.1) and (4.2) and the condition E0 limtBt+1/[(1+R0)(1+R1)...(1+Rt)]  0.

It is useful to derive an expression for Tobin’s q, i.e. the value in units of

consumption of an additional unit of capital. We denote this value by qt. Equa-

tion (4.1) implies that the real cost of increasing investment by one unit is et.

Equation (4.2) implies that increasing investment by one unit raises Kt+1 by

1  I

It
Kt
 

units. It follows that the optimal level of investment satisfies

the following equation:

et = qt


1 I


It
Kt

 

. (4.3)
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Firms The problem of the final good producers is the same as in the previous

section. The discounted profits of the ith intermediate good firm are given by:

Et



j=0

t+jt+j

Pt+j (i)Yt+j (i) (1 )


Wt+jNt+j (i) + Pt+jr

k
t+jKt+j(i)


.

(4.4)

Output of good i is given by:

Yt (i) = e
at [Kt (i)]

 [Nt (i)]
1 ,

where Nt (i) and Kt (i) denote the labor and capital employed by the ith monop-

olist. The variable at represents a neutral technology shock that is common to all

intermediate goods producers.

The monopolist is subject to the same Calvo-style price-setting frictions de-

scribed in Section 2. Recall that  = 1/ denotes a subsidy that is proportional to

the costs of production. This subsidy corrects the steady-state ineciency created

by the presence of monopoly power. The variable t+j is the multiplier on the

household budget constraint in the Lagrangian representation of the household

problem. Firm i maximizes its discounted profits, given by equation (4.4), sub-

ject to the Calvo price-setting friction, the production function, and the demand

function for Yt (i), given by equation (2.4).

The monetary policy rule is given by equation (2.6).

Equilibrium The economy’s resource constraint is:

Ct + Ite
t +Gt = Yt. (4.5)

A ‘monetary equilibrium’ is a collection of stochastic processes,

{Ct, It, Nt, Kt,Wt, Pt, Yt, Rt, Pt (i) , r
k
t , Yt (i) , Nt (i) , t, Bt+1, t},
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such that for given {dt, Gt, at,t}, the household and firm problems are satisfied,

the monetary policy rule given by equation (2.6) is satisfied, markets clear, and

the aggregate resource constraint holds.

Experiments At time zero the economy is in its non-stochastic steady state.

At time one agents learn that one of the three shocks (rL, at, or t) diers from

its steady state value for T periods and then returns to its steady state value. We

consider shocks that are suciently large so that the zero bound on the nominal

interest rate binds between two time periods that we denote by t1 and t2, where

1  t1  t2  T . The values of t1 and t2 are dierent for dierent shocks.6 We

solve the model using a shooting algorithm. In practice the key determinants of

the multiplier are t1 and t2. To maintain comparability with the previous section

we keep the size of the discount factor shock the same and choose T = 10. In

this case t1 equals one and t2 equals six. Consequently, the length for which the

zero bound binds after a discount rate shock is roughly the same as in the model

without capital.

With the exception of I and  all parameters are the same as in the economy

without capital. We set  equal to 0.02. We choose the value of I so that the

elasticity of I/K with respect to q is equal to the value implied by the estimates

in Eberly, Rebelo, and Vincent (2008).7 The resulting value of I is equal to 17.

We compute the government spending multiplier under the assumption thatGt

increases by Ĝ percent for as long as the zero bound binds. In general, the increase

in Gt aects the time period over which the zero bound binds. Consequently we

proceed as follows. Guess a value for t1 and t2. Increase Gt for the period t  [t1,
6The precise timing of when the zero bound constraint is binding may not be unique.
7Eberly, Rebelo and Vincent (2008) obtain a point estimate of b equal to 0.06 in the regression

I/K = a+b ln(q). This estimate implies a steady state elasticity of It/Kt with respect to Tobin’s
q of 0.06/. Our theoretical model implies that this elasticity is equal to (I)

1. Equating
these two elasticities yields a value of I of 17.
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t2]. Check that the zero bound binds for t  [t1, t2]. If not revise the guess for t1
and t2.

Denote by Ŷt the percentage deviation of output from steady state that results

from a shock that puts the economy into the zero bound state holding Gt con-

stant. Let Ŷ t denote the percentage deviation of output from steady state that

results from the both the original shock and the increase in government purchases

described above. We compute the government spending multiplier as follows:

dYt
dGt

=
1

g

Ŷ t  Ŷt
Ĝ

.

As a reference point we note that when the zero bound is not binding the

government-spending multiplier is roughly 0.9. This value is lower than the value

of the multiplier in the model without capital. This lower value reflects the fact

that an increase in government spending tends to increase real interest rates and

crowd out private investment. This eect is not present in the model without

capital.

A discount factor shock We now consider the eect of an increase in the

discount factor from its steady state value of four percent (APR) to 1 percent

(APR). Figure 6 displays the dynamic response of the economy to this shock. The

zero bound binds in periods one through six. The higher discount rate leads to

substantial declines in investment, hours worked, output, and consumption. The

large fall in output is associated with a fall in marginal cost and substantial de-

flation. Since the nominal interest rate is zero, the real interest rate rises sharply.

We now discuss the intuition for how the presence of investment aects the re-

sponse of the economy to a discount rate shock. We begin by analyzing why a

rise in the real interest rate is associated with a sharp decline in investment. Ig-

noring covariance terms, the household’s first-order condition for investment can
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be written as:

Et


1 +Rt+1
Pt+1/Pt


=
1

qt
Ete

atK1
t+1 N

1
t+1 st+1 + (4.6)

1

qt
Et


qt+1


(1 )

I
2


It+1
Kt+1

 
2
+ I


It+1
Kt+1

 

It+1
Kt+1


,

where st is the inverse of the markup rate. Equation (4.6) implies that in equi-

librium the household equates the returns to two dierent ways of investing one

unit of consumption. The first strategy is to invest in a bond that yields the real

interest rate defined by the left-hand side of equation (4.6). The second strategy

involves converting the consumption good into 1/qt units of installed capital. The

return to this capital has three components. The first component is the mar-

ginal product of capital (the first term on the right-hand side of equation (4.6)).

The second component is the value of the undepreciated capital in consumption

units (qt+1 (1 )). The third component is the value in consumption units of the

reduction in adjustment costs associated with an increase in installed capital.

To provide intuition it is useful to consider two extreme cases, infinite adjust-

ment costs (I = ) and zero adjustment costs (I = 0). Suppose first that

adjustment costs are infinite. Figure 7 displays a stylized version of this economy.

Investment is fixed and saving is an increasing function of the real interest rate.

The increase in the discount factor can be thought of as inducing a rightward shift

in the saving curve. When this shift is very large, the real interest rate cannot fall

by enough to re-establish equilibrium. The intuition for this result and the role

played by the zero bound on nominal interest rates is the same as in the model

without capital. That model also provides intuition for why the equilibrium is

characterized by a large, temporary fall in output, deflation, and a rise in the real

interest rate.

Suppose now that there are no adjustment costs (I = 0). In this case Tobin’s
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q is equal to e and equation (4.6) simplifies to:

Et
1 +Rt+1
Pt+1/Pt

= Et

eatK1

t+1 N
1
t+1 st+1 + (1 )


.

According to this equation an increase in the real interest rate must be matched

by an increase in the marginal product of capital. In general the latter is accom-

plished, at least in part, by a fall in Kt+1 caused by a large drop in investment.

In Figure 7 the downward sloping curve labeled ‘elastic investment’ depicts the

negative relation between the real interest rate and investment in the absence of

any adjustment costs. As drawn the shift in the saving curve moves the equilib-

rium to point C and does not cause the zero bound to bind. So, the result of an

increase in the discount rate is a fall in the real interest rate and a rise in saving

and investment.

Now consider a value of I that is between zero and infinity. In this case both

investment and q respond to the shift in the discount factor. For our parameter

values the higher the adjustment costs the more likely it is that the zero bound

binds. In terms of Figure 7 a higher value of I can be thought of as generating a

steeper slope in the investment curve, thus increasing the likelihood that the zero

bound binds.

Suppose that the zero bound binds. Other things equal, a higher real interest

rate increases desired saving and decreases desired investment. So the fall in

output required to equate the two must be larger than in an economy without

investment. This larger fall in output is undone by an increase in government

purchases. Consistent with this intuition Figure 6 shows that the government-

spending multiplier is very large when the zero bound binds (on impact dY/dG

is roughly equal to four). This multiplier is actually larger than in the model

without capital.8

8This multiplier is computed setting Ĝ to one percent.
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A natural question is what happens to the size of the multiplier as we increase

the size of the shock. Recall that in the model without capital, as long as the zero

bound binds, the size of the shock does not aect the size of the multiplier. The

analogue result here, established using numerical methods, is that the size of the

shock does not aect the multiplier as long as it does not aect t1 and t2. For a

given t1 the size of the multiplier is decreasing in t2. For example, suppose that

shock is such that t2 is equal to four instead of the benchmark value of six. In

this case the value of the multiplier falls from 3.9 to 2.3. The latter value is still

much larger than 0.9, the value of the multiplier when the zero bound does not

bind.

A neutral technology shock We now consider the eect of a temporary, three-

percent increase in the neutral technology shock, at. Figure 8 displays the dynamic

response of the economy to this shock. The zero bound binds in periods one

through eight. Strikingly, the positive technology shock leads to a decline in

output, investment, consumption, and hours work. The shock also leads to a

sharp rise in the real interest rate and to substantial deflation. To understand

these eects it is useful to begin by considering the eects of a technology shock

when we abstract from the zero bound. A transitory technology shock triggers a

relatively small rise in consumption and a relatively large rise in investment. Other

things equal, the expansion in output leads to a rise in marginal cost and the rate

of inflation. However, the direct impact of the technology shock on marginal cost

dominates and generates strong deflationary pressures. A Taylor rule with a large

coecient on inflation relative to output dictates that the central bank lower real

rates to reduce the rate of deflation.9 If the technology shock is large enough, the

9Our formulation of the Taylor rule assumes that the natural rate of output is constant and
equal to the level of output in the steady state. In reality, the monetary authority could well
revise its estimate of the natural rate in response to a persistent technology shock. For simplicity
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zero bound becomes binding. At this point the real interest rate may simply be

too high to equate desired saving and investment. The intuition for what happens

when the zero bound binds is exactly the same as for the discount factor shock.

The key point is that the only way to reduce desired saving is to have a temporary

large fall in output. As with the discount rate shock once the zero bound binds,

the government-spending multiplier rises dramatically (see Figure 8).10

An investment-specific shock We now consider the eect of a temporary

eight percent increase in the price of investment goods (i.e. an eight percent fall

in t). Figure 9 displays the dynamic response of the economy to this shock.

Even though the shock that we consider is very large, the zero bound binds only

in periods one through three. In addition, the eects of the shock on the economy

are small relative to the eects of the other shocks that we discussed. So, while

the multiplier is certainly large when the zero bound binds, it is much smaller

than in the cases that we have already analyzed.11

The shock leads to a decline in output, investment, consumption, and hours

worked. It is also associated with deflation and a rise in the real interest rate.

To understand how the zero bound can become binding in response to this shock,

consider the impact on the economy when the zero bound does not bind. In

this case output falls. This fall occurs because the investments become more

expensive, reducing the incentive to work. Consumption also falls because of

the negative wealth eect of the shock. Other things equal, the fall in output

is associated with strong deflationary pressures. Suppose that these deflationary

pressures predominate. The fall in output and deflation lead the central bank

we abstract from this possibility.
10In computing the government spending multiplier we increased Gt to 0.5 percent in periods

one through eight.
11In computing the government spending multiplier we set Ĝ to one percent in periods one

through three.
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to lower nominal interest rates. For a suciently large shock, the zero bound

becomes binding. The intuition for what happens when the zero bound binds

is exactly the same as for the discount factor shock and the neutral technology

shock.

5. The multiplier in a medium-size DSGE model

In the previous sections we built intuition about the size of the government-

spending multiplier using a series of simple new-Keynesian models. In this sec-

tion we investigate the determinants of the multiplier in a medium-size DSGE

model taken from ACEL. These authors estimate the parameters of their model

to match the estimated impulse response function of ten aggregate U.S. time se-

ries to three identified shocks: a neutral technology shock, a capital-embodied

technology shock, and a monetary policy shock. The ten aggregate time series

include measures of the change in the relative price of investment, the change in

average productivity, the change in the GDP deflator, capacity utilization, per

capita hours worked, the real wage, the shares of consumption and investment in

GDP, the Federal Funds Rate and the velocity of money.

The model includes a variety of frictions that are useful in matching the es-

timated impulse response functions. These frictions include: sticky wages, sticky

prices, variable capital utilization, and the CEE investment adjustment-cost speci-

fication. The representative agent’s momentary utility is given by equation (2.22),

modified to include internal habit formation in consumption. With one exception

we use the parameter values estimated in ACEL. The one exception is the para-

meter governing investment adjustment costs. The law of motion for capital used

in ACEL is given by:

Kt+1 = (1 )Kt +


1 S


It
It1


. (5.1)
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The point estimate of S (1) in ACEL is 3.28 with a standard error of 1.69. When

we use that point estimate with our specification of the Taylor rule we find that

the model has multiple equilibria. In what follows we assume that S (1) = 5

which is close to the value estimated by Smets and Wouters (2007) and yields a

unique equilibrium.

The second panel of Figure 10 shows the value of the government-spending

multiplier when monetary policy is governed by a Taylor rule. We consider the

case where government spending increases by a constant amount for four and eight

periods, respectively. The key result here is that during the first four periods in

which the experiments are comparable the multiplier is higher in the first case than

in the second case. This result is consistent with the analysis in Section 2 which

argues that, when the Taylor rule is operative, the magnitude of the multiplier is

decreasing in the persistence of the shock to government spending.

The first panel reports the value of the government spending multiplier when

an increase in government spending coincides with a nominal interest rate that

is constant, say because the zero bound binds.12 Interestingly, when government

spending rises for only four periods, the government-spending multiplier is not very

sensitive to whether the interest rate is constant or the Taylor rule is operative.

However, when government spending rises for eight periods, there is a very large

dierence between the Taylor rule case and the zero bound case. In the latter

case the impact multiplier is roughly two. The multiplier rises in a hump-shaped

manner, attaining a peak value of roughly three after four periods. Output remains

above its steady state value for three years, even though the fiscal stimulus lasts

for only two years. Both the hump-shaped response of the multiplier and the

persistent eects of the increase in government spending reflects the endogenous

12Recall that the value of the multiplier does not depend on why the nominal interest rate is
constant. Given this property, we study the size of the multiplier in ACEL without specifying
either the type or the magnitude of the shock that makes the zero bound binding.
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sources of persistence present in ACEL, e.g. habit formation in consumption and

investment adjustment costs.

In the third panel we address the following question: how sensitive is the

multiplier to the proportion of government spending that occurs while the nominal

interest rate is zero? To this end we calculate the government-spending multipliers

when government spending goes up for eight, 16, and 24 periods, respectively. In

all cases the nominal interest rate is zero for eight periods and follows a Taylor

rule thereafter. So in the three cases the proportion of government spending that

comes online while the nominal interest rate is zero is 100, 50, and 33.3 percent,

respectively.

Our basic result is that the multipliers are higher the larger is the percentage of

the spending that comes online when the nominal interest rate is zero. This result

holds even in the first eight periods when the increase in government spending is

the same in all three cases. For example, the impact multiplier falls from roughly

two to 0.5 as we go from the first to the third case. This decline is consistent with

our discussion of the sensitivity of the multiplier to the timing of government

spending in Section 3. A key lesson from this analysis is that if fiscal policy is

to be used to combat a shock that sends the economy into the zero bound, it is

critical that the spending come on line when the economy is actually in the zero

bound. Spending that occurs after that yields very little bank for the buck and

actually dulls the impact of the spending that comes on line when the zero bound

binds.

Using a model similar to ACEL, Cogan, Cwik, Taylor, and Wieland (2009)

study the impact of increases in government spending when the nominal interest

rate is set to zero for one or two years. A common feature of their experiments

is that the bulk of the increase in government spending comes on line when the

nominal interest rate is no longer constant. Consistent with our results, Cogan et
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al. (2009) find modest values for the government-spending multiplier.

6. Conclusion

In this paper we argue that the government-spending multiplier can be very large

when the nominal interest rates is constant. We focus on a natural case in which

the interest rate is constant, which is when the zero lower bound on nominal in-

terest rates binds. In these economies the government-spending multiplier is quite

modest when monetary policy is governed by a Taylor rule. For the economies

that we consider it is optimal to increase government spending in response to

shocks that make the zero bound binding.

Our analysis abstracts from a host of political economy considerations which

might make an increase in government spending less attractive than our analysis

indicates. We are keenly aware that it is much easier to start new government

programs than to end them. It remains very much an open question whether, in

the presence of political economy considerations, tax policy of the sort emphasized

by Eggertson (2009) is a better way of responding a zero bound episode than

an increase in government purchases. What our analysis does indicate is that

measures designed to increase aggregate demand are particularly powerful during

such episodes.
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G up 4 periods

G up 8 periods
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