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Abstract

I introduce trade dynamics into a static model of international trade with product dif-

ferentiation, heterogeneous productivity firms, and increasing marginal market penetration

costs. I interpret firms as ideas that materialize into production, where an idea is a way

to produce a differentiated good with a given productivity. Adapting a stochastic process

similar to Reed, the model endogenously generates a right tail cross-sectional Pareto distri-

bution of firms’ productivities based on two minimal assumptions: continuous entry of ideas

at a certain rate and productivities of ideas that evolve according to a geometric Brownian

motion. The cross-sectional predictions of the model for the distribution of domestic and

exporting sales of firms are in line with firm-level data. In addition, the model delivers new

predictions consistent with observations of the dynamics of domestic and exporting sales of

firms. It predicts that many small firms enter and exit the market very frequently and that

the growth rate as well as the variance of the growth rate of sales is higher for small firms.
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1 Introduction

Recent empirical research has established a series of facts on cross-sectional observations of sales

of firms by exporting destination. This empirical work was followed by studies such as those by

Eaton and Kortum (2002), Bernard, Eaton, Jensen, and Kortum (2003), Eaton, Kortum, and

Kramarz (2005), and Arkolakis (2008), which have shown that models with firm productivity

heterogeneity can closely predict key aspects of this empirical evidence. In addition, these models

are kept highly parsimonious and are often used to perform policy research. Furthermore, the

past few years new firm level data are becoming available that allow researchers to explore the

intertemporal dimension on firms exporting sales (Bernard, Redding, and Schott (2006), and

Eaton, Eslava, Kugler, and Tybout (2007)).

In this paper, I develop a model that studies firm-level trade dynamics. In particular, I

introduce dynamics into the model developed by Arkolakis (2008), where firms have to pay an

increasing marketing cost to reach additional consumers in each country. Following Kortum

(1997) and Eaton and Kortum (2001), I assume that new ideas arrive at an exogenously given

rate in each of the countries. Essentially, to each firm I associate an idea that allows it to produce

a differentiated good and potentially earn profits. After an idea is “born”, its productivity is

expected to increase over time. Deviations from the expected growth rate follow a Brownian

motion. The resulting stochastic process of productivities is the one introduced by Reed (2001)

while firm dynamics are introduced into the monopolistic competition framework of Melitz (2003)

following Luttmer (2007).

The new model endogenously generates a Pareto cross-sectional distribution of productivities

of firms. Given this distribution of productivities and the rest of the setup of the model that

is based on the framework of Arkolakis (2008), the model delivers cross-sectional predictions for

the export sales of firms that are essentially identical to the ones outlined in that paper. In

particular the model predicts that the distribution of sales of firms selling to a market exhibits

Pareto tails for the firms that sell the most there. Furthermore, it implies that there are more

small firms in each market than the Pareto distribution would imply and thus the left tail of the

distribution of sales in the model has more curvature compared to the Pareto distribution.

The introduction of firm dynamics delivers three new predictions regarding the intertempo-
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ral behavior of exporting firms, in addition to the previous cross-sectional predictions. First,

the model predicts that many small firms enter and exit each market very frequently. This

observation is consistent with facts presented by Eaton, Eslava, Kugler, and Tybout (2007) for

Colombian exporters. Second, the growth of export sales is higher for small firms, which is con-

sistent with the facts documented by Eaton, Eslava, Kugler, and Tybout (2007). This finding is

also consistent with a series of studies on domestic sales data that report that Gibrat’s law (the

independence of firms’ size and growth rates) does not hold for small firms. Such evidence can

be found in Mansfield (1962), Hart and Oulton (1996), among others, and is reviewed by Sutton

(1997). Third, the model predicts that the variance of growth rates of export sales is higher for

firms with lower sales, when restricting attention to the sales of firms selling to a given destina-

tion. This last prediction is consistent with domestic firm-level sales data reviewed by Sutton

(2002). However, the model also predicts the same pattern for firms’ exports per destination, a

hypothesis that has not been tested empirically.

It is important to note that in the context of the model deviations from Gibrat’s law and

the curvature of the distribution of productivities are intimately related. The early work of

Simon (1955) demonstrated that independence of growth rates with size combined with entry at

a certain rate, gives rise to a distribution with Pareto right tails. Therefore, the faster growth

of sales of the smaller firms featured in the model implies the curvature of the distribution of

productivities for these firms. Given that the growth rate of sales of larger firms is approximately

independent of their size, the distribution of sales for these firms is roughly Pareto. In the

data, the deviations from Gibrat’s law and the Pareto distribution of sales are patterns that

are consistently repeated across destinations when looking at the sales of firms selling there.

Therefore, a demand-side explanation such as the one I present in this paper seems to be the

appropriate modeling framework.

Previous theoretical models with heterogeneous firms and firm dynamics include the one-

country models of Jovanovic (1982), Klette and Kortum (2004), and Luttmer (2007) and the two-

country model of Opromolla and Irarrazabal (2006). Jovanovic (1982) and Klette and Kortum

(2004) develop a model that is consistent with panel data observations on firm dynamics such as

the ones mentioned above. Luttmer develops a model that delivers a cross-sectional distribution

of sales close to the one observed in the data. However, his model is not consistent with the facts
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on firm dynamics stated above given that the demand structure is based solely on the CES Dixit-

Stiglitz specification. Opromolla and Irarrazabal (2006) extend Luttmer (2007) in a two-country

context. The model presented in this paper contributes to this literature with an analytically

tractable, multi-country model of trade that is consistent with the main cross-sectional and panel

data observations on firms domestic and exporting sales.

2 Model

The model described in this section extends the static version of Arkolakis (2008). It introduces

a stochastic process for productivities found in Reed (2001). It incorporates dynamics into a

model with heterogeneous productivity firms following Luttmer (2007).

I assume that time is continuous and indexed by t. I will refer to the importing country with

an index j and to the exporting country with i, where i, j = 1, ..., N . There is a continuum of

consumers in each economy i of measure Hit = Hie
gηt at each point of time. The consumer in

country i, has preferences over a composite good Cjt from which she derives utility according to

µ
E

Z +∞

0

re−rtC
γ−1
γ

jt dt

¶ γ
γ−1

where r > 0 is the discount rate and γ > 0 is the intertemporal elasticity of substitution.

On the balanced growth path constructed below, the aggregate variables grow at a some

rate gκ (to be specified), implying that Cjt = Cje
gκt. To ensure that the value of the aggregate

endowment is finite, the discount rate must exceed the rate of growth of the aggregate variables

and thus,

Assumption 1

r +
1

γ
gκ > gκ + gη

with gη ≥ 0.
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The composite good is made of a continuum of differentiated commodities

Cjt =

Ã
NX
i=1

Z
ω∈Ωhit

qijt (ω)
ρ dω

! 1
ρ

where qijt (ω) is the demand for a good ω from a consumer from country j and σ = 1/ (1− ρ) is the

elasticity of substitution among different varieties of goods. At a given point of time t, a consumer

has access to a set of goods Ωh
it from country i = 1, ..., N . Goods are produced by firms with

potentially different productivities. The productivities of firms selling to country j are potentially

drawn from [0,+∞). We will consider a symmetric equilibrium where all firms with the same

productivity from the same country i choose to charge the same price in country j. Given the

large number of consumers and firms and the symmetric CES Dixit-Stiglitz preferences, we can

re-index variables at each point of time t as a function of productivities of the firms producing

the goods, z, and their country of origin i. In this symmetric equilibrium, each consumer from

country i has access to the same measure of goods of a given type Mijtµijt (z)nijt (z), at time

t.1 Here, Mijt stands for the the measure of firms from country i selling in country j at time

t, nijt (z) for the fraction of goods of a given type that a consumer from country j has access

to at time t, and µijt (z) for the pdf of the distribution of productivities of firms from country

i conditional on selling to country j at a given time t. The measure of consumers reached by a

firm of type z from country i, in country j is nijt (z)Ljt.

Each household earns labor income wjt, for selling his unit labor endowment on the labor

market and profit flows πjt from the ownership of domestic firms. Thus, the demand for good z

from country i by a consumer from country j is

qijt (z) =
pijt (z)

−σ

P 1−σ
ijt

yjt

where yjt = wjt + πjt and

P 1−σ
jt =

NX
υ=1

Mυjt

Z +∞

0

pυjt (z)
1−σ nυjt (z)µυjt (z) dz . (1)

1See Arkolakis (2008) for the details of this argument.

5



In the equation above, pυjt (z) is the price that a good which is produced in source country

υ with productivity z is being sold in country j. Given the above assumptions, we have that

CjtPjt = yjt. Finally, goods from source country υ that have drawn z below the productivity

threshold z∗υjt choose not to sell to country j. Given the above, total demand faced for a good

of type z from country i when selling to country j is

nijt (z)Ljt
pijt (z)

−σ

P 1−σ
ijt

yjt .

2.1 Entry and Exit

Following Kortum (1997), an idea is a way to produce a good ω with productivity z. Thus, ideas

become firms only if they materialize into production. I assume that each country innovates at a

constant rate and thus new ideas flow at a rate gη (1− α).2 Each idea is exclusively owned and

gives a monopoly over the good related to that idea (monopolistic competition).3

New goods can be potentially produced with an initial productivity, z̄it, where

z̄it = z̄i exp (gEt) ,

where z̄i is drawn from an initial distribution G (z̄i) . The productivity of producing a good will

evolve stochastically and will be specified in the next paragraph. Ideas cannot disappear, but if

are not used in production (and thus do not appear as firms), they remain idle while waiting for

a chance to be used (if their productivity surpasses z∗ijt at a given time t).4

2This rate is the one necessary to solve for a balanced growth path. Ideas could be related to
population and thus the rate of arrival of these ideas could be ultimately thought of as a function of the
population. Arkolakis, Demidova, Klenow, and Rodriguez-Clare (2008) show that under the assumption
of Pareto distribution of firm efficiencies the same solution can arise from a model where new firms can
choose to pay a cost and enter the market (as in Melitz (2003)). Pareto distribution of firm efficiencies
will endogenously arise in the context I consider here.

3The context of exclusivity of ideas can be also interpreted within the framework of Eaton, Kortum,
and Kramarz (2005). In particular, the exclusivity of ideas can arise as a limit case of a model where
firms can choose to produce a single good out of a number of potential varieties and where this number
tends to infinity.

4It is straightforward to add an assumption that ideas dissapear at an exogenous rate gδ. The entry
rate has to be adjusted to gη (1− α) + gδ. This will affect the steady state distribution accordingly. The
balanced growth path will be the same as the one specified later on. However, the growth rates of firms
will have to be adjusted for the probability of death.
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2.2 Firms and Ideas

Productivities evolve independently across ideas according to

zτ,a = z̄i exp (gEτ + gIa+ σzWτ,a) (2)

where zτ,a is the labor productivity of the firm of age a that was born in time τ , τ = t−a,Wτ,a ∼
N (0, a) is a standard Brownian motion and z̄i is an initial condition. This stochastic process

for productivities is similar to the one introduced by Luttmer (2007) and can be also interpreted

as a similar process for the quality of a good. Notice that the productivity of incumbent ideas

is generally improving at a rate gI with deviation from this trend due to the Brownian shocks

on the growth rate. The incumbent ideas also face competition from new ideas, and thus new

potential firms, that arrive continuously.

Only ideas that are chosen to be produced in positive amounts appear as operating firms.

Firms decide on the quantity of the good produced using a constant returns to scale production

function q (zτ,a) = zτ,al, where l is the amount of labor used in production. The firms have to

pay market penetration costs that are a function of the number of consumers reached at a given

market. I model these market penetration costs as in Arkolakis (2008) and I assume that they

have to be incurred at each instant by the firm. While this assumption is clearly abstracting

from reality, it becomes more tangible when compared to a fixed cost that is necessary to be

paid at each period of time required by previous models (see for example Melitz (2003), Luttmer

(2007)). A more detailed development of the dynamics of the market penetration costs induced

by state dependence on previous market penetration is left for future research.

The labor requirement of a firm willing to reach a fraction of consumers n in a market of

population size L is

f (n,Lj) =
Lα
j

ψ

1− (1− n)−β+1

−β + 1
.

where β ∈ [0,+∞) and α ∈ [0, 1). Assuming, as in Arkolakis (2008), that firms incur these costs

in both domestic and foreign wages yields the following total market penetration cost faced by a
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firm from country i selling to country j:

f (n, Lj) = wγ
jw

1−γ
i

Lα
j

ψ

1− (1− n)−β+1

−β + 1
.

In addition to the marketing cost to reach consumers, the firm has to pay a variable trade

cost modeled in the standard iceberg formulation. This implies that a firm operating in country

i and selling to country j must ship τ ij > 1 units in order for one unit of the good to arrive at

the export destination. For simplicity, I assume that τ ii = 1.

Given the constant returns to scale production technology and the separability of the market-

ing cost function across countries, the decision of the firm to sell to a given country is independent

of the decision to sell to other countries. Thus, a firm with productivity z at time t from country

i solves the following maximization problem for each given country j:5

πijt (z) = max
nijt,pijt

½
nijtLjtyjt

p1−σijt

P 1−σ
jt

− nijtLjtyjt
τ ijtp

−σ
ijtwit

P 1−σ
jt z

− wγ
jtw

1−γ
it

Lαjt
ψ

1−[1−nijt]−β+1
−β+1

¾
s.t. nijt ∈ [0, 1] ∀t .

Total profits of a particular firm are the summation of the profits from exporting activities

in all the j = 1, ..., N countries (or a subset thereof). Notice that given the current set-up, the

decision of the firm is essentially static. Thus, at a given moment of time, the firm’s problem is

the same as in Arkolakis (2008).

For the case of β ≥ 0, the optimal decisions of the firm in the multi-country model are:

pijt (z) = σ̃
τ ijtwit

z
. (3)

where

σ̃ =
σ

σ − 1

For z ≥ z∗ijt,

nijt (z) = 1− £L1−α
jt yjtw

−γ
jt z

σ−1 (σ̃τ ijwit)
1−σ ψP σ−1

jt /
¡
w1−γ
it σ

¢¤−1/β
, (4)

5Slighly abusing the notation, I denote the decision of the firm as a function of its productivity
z, supressing time of birth and age information. Given that the optimization decision is static, what
is important is the current level of productivity rather than the time path. I will keep the notation
parsimonious throughout the text whenerer is possible.
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and nijt (z) = 0 for z < z∗ijt, where z
∗
ijt is given by

z∗ijt = sup {πijt (z) = 0} . (5)

The above implies that firms from country i that choose to operate at period t in market j

have ¡
z∗ijt
¢σ−1

=
¡
L1−α
jt yjtw

−γ
jt z

σ−1 (σ̃τ ijtwit)
1−σ ψP σ−1

jt /
¡
w1−γ
it σ

¢¢−1
(6)

Solving for the first order conditions and substituting them out together with (6) in the expression

for the sales per firm, we have that sales of a firm z from country i in country j are

rijt (z) =

 Lα
jty

γ
jty

1−γ
it

1
ψ̃

·³
z
z∗ijt

´σ−1
−
³

z
z∗ijt

´(σ−1)/β̃¸
if z ≥ z∗ijt

0 otherwise.
(7)

where

β̃ =
β

β − 1
, ψ̃ =

ψ

σ (1− λ)
,

and λ is the fraction of profits out of total income. In the balanced growth path equilibrium that

we will consider the fraction of profits will be constant and thus, for simplicity of notation, we

denote them by λ.

2.3 Balanced Growth Path Equilibrium

For simplicity of exposition I consider a simple case regarding the entry of ideas: at each moment

of time, all the entry happens at one level of productivity, z̄it, but because of technological

progress, this level increases over time at a given rate (in particular z̄it = z̄i exp (gEt)) . Extending

this simple case to one in which new entrants arrive with a productivity that is distributed

according to a particular distribution is straightforward (see for example Reed (2002)). To solve

for the cross-sectional distribution, I consider the stationary balanced growth path. I define the
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detrended variable6

φ = z̄i exp (gEτ + gIa+ σzWτ,a) / exp (gE (τ + a)) =

= z̄i exp ((gI − gE) a+ σzWτ,a)

The logarithm of this expression gives

φ0 = lnφ = ln z̄i + (gI − gE) a+ σzWτ,a (8)

and thus the variable φ0 follows a simple Brownian motion with a drift and an initial condition

z̄0i = ln z̄i. Standard arguments for Brownian motion imply that a given generation of ideas will

have a cross-sectional probability density that will be given by7

f (φ0, a|z̄0i)
1

σ
√
α2π

exp

(
−
µ
φ0 − z̄0 − (gI − gE) a

σz
√
α

¶2

/2

)
.

This distribution is not stationary. However the continuous entry of new ideas will create a

different cross-sectional distribution of productivities when we look across ideas with different

ages. Given the entry process, the differential equation (8) generates the following Kolmogorov

forward equation, ∀i, and for ∀φ ∈ (−∞, z̄0i) ∪ (z̄0i,+∞),8

0 = − (gI − gE) f
0 (φ0) +

1

2
σ2zf

00 (φ0)− gη (1− α) f (φ0) , (9)

where Jiegη(1−α)tf (φ0) the density of firms with productivity φ0. Intuitively, the net changes at

each point φ0 of the distribution, due to the stochastic flows of productivities in and out of that

point and new entry which implies discounting at a rate gη (1− α), have to equal to zero for the

distribution to be stationary.

The process of productivities that was considered above has to satisfy a set of conditions. A

6Essentially, considering the detrended variable φ, I consider a no-growth version of the model and
thus follow the notation of Arkolakis (2008).

7See for example Harrison (1985) p. 37.
8In an appendix available online I provide a different proof by expliciltly calculating f

¡
φ0|z̄¢ =R +∞

0
e−gη(1−α)af

¡
φ0, a|z̄¢ da. This proof, though more straightforward provides less intuition on the exact

forces that give rise to the cross sectional distribution of productivities across all ideas.
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first requirement is that f (φ0) is a probability density which implies that

f (φ0) ≥ 0 ∀φ0 ∈ (−∞,+∞) , (10)

and Z z̄0i

−∞
f (φ0) dφ0 +

Z +∞

z̄0i

f (φ0) dφ0 = 1 . (11)

Also, −∞ is an absorbing barrier and thus,

lim
φ0↓−∞

f (φ0) = 0 . (12)

Finally, the requirement that net flows into the distribution at point z̄0i equal the entry rate

gη (1− α) :9,

− (gI − gE) [f (z̄
0
i−)− f (z̄0i+)] +

1

2
σ2z [f

0 (z̄0i−)− f 0 (z̄0i+)] = gη (1− α) . (13)

The solution of the above system is (see appendix):

f (φ0|z̄0i) =
 θ1θ2

θ1+θ2
eθ1(φ

0−z̄0i) if φ0 < z̄0i
θ1θ2
θ1+θ2

e−θ2(φ
0−z̄0i) if φ0 ≥ z̄0i

(14)

where

θ1 =
gI − gE +

q
(gI − gE)

2 + 2σ2zgη (1− α)

σ2z
> 0 (15)

θ2 = −
gI − gE −

q
(gI − gE)

2 + 2σ2zgη (1− α)

σ2z
> 0 (16)

which implies the following assumption.

Assumption 2

gη (1− α) > 0 .

9Similar conditions are commonly used in labor models to characterize the behavior of the distribution
at a point of entry to or exit from a particular occupation (see Moscarini (2005)).
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This constraint is the one that guarantees that a time-invariant distribution exists and that an

ever increasing fraction of firms is not concentrated in either of the tails of the distribution.

The resulting distribution of φ ∈ [0,+∞) for the point of entry z̄i is the so-called double

Pareto distribution (Reed (2001)) with probability density function10

f (φ|z̄i) =


θ1θ2
θ1+θ2

φθ1−1

z̄
θ1
i

if φ < z̄i

θ1θ2
θ1+θ2

φ−θ2−1

z̄
−θ2
i

if φ ≥ z̄i
(17)

The double Pareto distribution is illustrated in figure (1). A closer look at the probability

density of productivities, (17), reveals that at each moment of time, a constant fraction of ideas

θ1/ (θ1 + θ2) is above the threshold z̄i. Thus, for the shake of exposition, I assume that the

parameters of the model are such that z∗ijt/ exp (gEt) > z̄i, ∀i, for the rest of the paper. This
implies that (detrended) cross-sectional distribution of idea is Pareto at [z̄i,+∞) with parameter

θ2.

The requirements that the distribution of productivities and sales of firms has a finite mean

as well as that their average sales are finite are necessary and are guaranteed by the following

two assumptions:

Assumption 3

gη (1− α) > gI − gE + σ2z/2 ,

Assumption 4

gη (1− α) > (gI − gE) (σ − 1) +
σ2z
2
(σ − 1)2 .

These two assumptions imply that the entry rate of new ideas and firms is larger than the

growth of the productivities and sales of the most productive incumbent firms. Given the above

assumptions the model at each point of time collapses to the model of Arkolakis (2008) with

10See appendix for the proof. This distribution can also be thought of as a limit case in the distribution
of firms derived by Luttmer (2007) when the entry-exit cutoff goes to −∞. However, in the case of
Luttmer (2007), this would imply that firms never exit and this is not consistent with the existence of
indivisibilities in the production that are postulated there.
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the number of potential entrants being θ1/ (θ1 + θ2) Jie
gη(1−α)t. In addition, the rate of growth

of aggregate variables is gκ = gE + gη (1− α) / (σ − 1). It is straightforward to verify that there

exists a balanced growth path that satisfies all the steady state equations appearing in Arkolakis

(2008) replaced for the variables defined in this paper for each different time t.11

Finally, I will restrict the analysis to a parameterization that will allow me to match the facts

about growth rates of firms as a function of firm size:

Assumption 5

(gI − gE) (σ − 1) + (σ − 1)2 σ2z > 0 .

Proposition 1 Given assumptions 1-5, there exists a balanced growth path for the economy

described above.

Proof. By assumption we have that Hit = Hie
gηt and Jit = Jie

gη(1−α)t, z̄it = z̄i exp (gEt) . Define

z∗ijt = z∗ije
gEt, wit = wie

gκt, Cit = Cie
gκt, Pit = Pi. Given these assumptions and definitions, the

cross-sectional distribution of productivities of operating firms is Pareto. In addition, when we

replace the static variables considered by Arkolakis (2008) with their dynamic analoges in this

paper all the steady state equations of the equilibrium are satisfied ∀ t. The values of z∗ij, wi, Pi,

and Ci can be found by solving the system of equations when t = 0.

2.4 Firm Dynamics

The static framework in Arkolakis (2008) is successful in delivering the stylized cross-sectional

firm-level predictions as documented by Eaton, Kortum, and Kramarz (2005). Given this suc-

cess, the extension to a dynamic framework allows to focus on the new theoretical predictions

related to firm dynamics. However, generalizing the framework of this model in order to allow

the cross-sectional distribution of productivities of operating firms to be double-Pareto, rather

than Pareto, will give additional testable cross-sectional implications. It implies a skewness of

the distribution of operating productivities, particularly for ideas with low productivities. The

threshold productivity of exporting from country i to j, φ∗ij, will be typically smaller when look-

ing at destinations where exports from i are higher. Thus, the skewness of the distribution of

11In this equilibrium the share of profits out of total income is λ = (σ − 1) / (σθ). See Arkolakis (2008)
for the proof.
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productivities and consequently the one of sales of firms selling to these destinations will be

higher. This is consistent with the facts reported by Eaton, Kortum, and Kramarz (2005). Si-

multaneously, the Pareto tail of the distribution of productivities allows to match the Pareto-like

distribution of sales for the largest exporters to each country.

The productivity process that is introduced in this paper, while following Reed (2001), is

quite different from other processes proposed in the literature that generate a right tail Pareto

cross-sectional distribution of productivities (see Gabaix (1999), Luttmer (2007)). In previous

models a lower bound productivity was required to bound the size of the firm and prevent

the distribution from becoming degenerate. In the setup proposed in this paper, entry is the

only force that keeps the distribution from becoming degenerate while ideas have a productivity

without a lower bound. The entry of new firms close to the threshold of operation, is the force

that prevents the distribution from widening out and that creates the Pareto tails.

The first important observation is that, due to the stochastic nature of productivities, firms

with a productivity close the threshold of entry z∗ijt continuously enter and exit a particular

market j. Given that the firms that just surpassed the threshold of entry z∗ijt when β > 0 and

that the distribution of productivities is Pareto a large part of the new entrants will have tiny

sales. All these implications of the model are very consistent with the trade data reported by

Eaton, Eslava, Kugler, and Tybout (2007).

Before proceeding to the predictions regarding growth rates of sales, it will be useful to give

some intuition for the main mechanisms at work in this model. The assumption of the geometric

Brownian motion implies that the expected growth rate of productivity is the same for all incum-

bent firms, independent of their size. Given the assumption on constant returns to scale and the

CES Dixit-Stiglitz demand specification (constant price elasticity), this translates into identical

expected growth rate of sales per consumer across all incumbent firms as in Luttmer (2007).

However, the marketing cost function exhibits increasing cost elasticity for reaching additional

consumers. Thus, the same expected growth rate in per-consumer sales for the incumbent firms

translates into percentage increases in the number of consumers reached that are larger for ini-

tially smaller firms. In order to compute the (instantaneous) expected growth and variance of

the sales of the firm we may apply Ito’s lemma to expression (7). Notice that s = ln
¡
z/z∗ijt

¢
is a

Brownian motion with drift gI − gE and standard deviation σz. Applying Ito’s lemma for firms
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of age a from country i selling positive amounts, rija (s), to country j we have that12

drija = rija

·µ
αgη + gκ + (gI − gE)

h0 (s)
h (s)

+
1

2
σ2z

h00 (s)
h (s)

¶
da+ σz

h0 (s)
h (s)

dW (a)

¸
(18)

where

h (s) = es(σ−1) − es(σ−1)/β̃

The following proposition is a straightforward implication of the mechanism that has been

described above:

Proposition 2 Given assumptions 1-5,

a) If β → 0 the growth rate of all the firms is the same.

b) There exist a β0 ∈ (0,+∞), such that ∀ β > β0, ∂ (drija (s) /rija (s)) /∂s < 0, ∀β < β0,

∂ (drija (s) /rija (s)) /∂s > 0 for for all firms from market i selling to market j. The growth rate

of the largest firms tends to αgη + gκ + (gI − gE) (σ − 1) + σ2z
2
(σ − 1)2 .

Proof. The expected growth rate for firm of size rija (s) is

drija (s)

rija (s)
= αgη + gκ + (gI − gE) (σ − 1)

h0 (s)
h (s)

+
σ2z
2
(σ − 1)2

h00 (s)
h (s)

.

In order to prove part a) of the proposition notice that

h0 (s)
h (s)

β→0−→ (σ − 1) , (19)

h00 (s)
h (s)

β→0−→ (σ − 1)2 . (20)

To prove part b) we look at the derivative of the growth rate with respect to s. The sign of this

derivative is determined by the sign of the following equation

f (β) = −
µ

β

β − 1

¶2µ
(gI − gE) (σ − 1) + (σ − 1)2

σ2z
2

¶
+(gI − gE) (σ − 1)

β

β − 1
+(σ − 1)2

σ2z
2

,

12The application of Ito’s Lemma requires the sales function to have a continuous second derivative.
Though continuous, the function h (s) does not attain continuous derivatives at s = 0.
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which implies that the growth rates are decreasing in size iff

β >
(σ − 1)2 σ2z

2
£
(gI − gE) (σ − 1) + (σ − 1)2 σ2z

¤ ∈ (0,+∞) .

Thus, if assumption 5 is not satisfied then there does not exist a range of β’s such that the growth

rates are decreasing in size. The growth rate of the largest firms can be found by considering the

following two limits:

h0/h s→+∞−→ (σ − 1) , (21)

h00/h s→+∞−→ (σ − 1)2 . (22)

Notice that the growth rate of wage per capita and population imply that nominal GDP

grows at a rate gκ + gη. Assumption 3 and 4 ensure that the expected growth rate of sales

and productivities of the largest incumbent firms is not larger than the growth rate of nominal

GDP. This guarantees that the distribution of productivities and sales of firms has a finite mean.

Deviations from the independence of growth rates of sales from firms’ size have been recognized

as early as Mansfield (1962). These deviations have been recently verified from a large literature

reviewed by Sutton (1997) and similarly for exporting sales by destination by Eaton, Eslava,

Kugler, and Tybout (2007). On the other hand, this deviation appears to be vanishing when

considering samples of large firms as Hart and Oulton (1996) point out. All these facts are

also predicted by the model given the results in proposition 2. It is important to note that the

same mechanism at work in the model is the one that implies the higher growth rates of smaller

exporters in trade liberalization episodes, consistent with the theoretical and empirical analysis

of Arkolakis (2008).

The final theoretical result of this paper refers to the variance of the growth rate of sales

of firms and its relation to the size of firms. At this time, there is no study in the trade data

reporting this fact. However, a large body of empirical literature, reviewed by Sutton (2002),

uses domestic sales data to establish an inverse relationship between the sales of firms and the

variance of their growth rates.

The following proposition identifies this fact in the model.
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Proposition 3 a) For the case of β → 0, the variance of the instantaneous growth rate of sales

of firms in a destination is independent of their sales there.

b) For the case of β > 0, the variance of the instantaneous growth rate of sales of firms in a

destination is bigger the smaller their sales there. The variance of the growth rate of the largest

firms tends to σ2z (σ − 1)2.

Proof. The variance of the instantaneous growth rate of firms characterized by the expression

(18) is given by the term

V (s) = σ2z

µ
h0 (s)
h (s)

¶2

(23)

Given (19) expression (23) is equal to σz (σ − 1) for β → 0. For the second part of the proposition,

given β > 0, the derivative of expression h0 (s) /h (s) with respect to s is always negative. Thus,

variance of growth rates of firms selling to a destination is inversely related to their size there.

In the limit for s→ +∞ we have that expression (23) is σ2z (σ − 1)2 completing the proof of the

proposition.

3 Conclusion

The model presented in this paper has all the potential to be used in applied empirical work: it

is highly tractable, closely matches the key cross-sectional observations on firms’ domestic and

exporting sales data, and is qualitatively consistent with some of the key observations related

to the time dimension of the domestic or exporting sales of firms. Predictions of the new model

could also be used as a compass for new empirical research. For example, the new model predicts

that the variance of export sales of firms is larger for firms that sell small amounts, a fact already

documented for domestic sales. Ongoing empirical research such as the one of Eaton, Eslava,

Kugler, and Tybout (2007) will help to precisely quantify key aspects of the panel dimension of

the firm-level data on trade and allow for the calibration of this model and for future quantitative

policy analysis. The construction of a model of trade that is highly tractable and matches impor-

tant aspects of firm-level trade data could allow to take important steps toward understanding

dynamic firm-level behavior.
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4 Appendix

4.1 Deriving the Stationary Distribution of Productivities

A simple guess for the solution of the Kolmogorov equation (9) is f (φ0) = A1e
θ1φ

0
+ A2e

−θ2φ0

where θ1 and −θ2 are given by the two solutions of the quadratic equation 1
2
σ2zθ

2− (gI − gE) θ−
gη (1− α). Using condition (12) set A2 = 0 for φ0 < z̄0i and using the requirement that f (φ0) is

a probability density set A1 = 0 for φ0 ≥ z̄0i.

Finally, from the characterization of the flows at the entry point (13), we pick A1, A2 such

that

1

2
σ2z [f

0 (z̄0i−)− f 0 (z̄0i+)] = gη (1− α) =⇒
1

2
σ2z

³
A1θ1e

θ1z̄0i +A2θ2e
−θ2z̄0i

´
= gη (1− α)

which in combination with (11) that gives

Z z̄0i

−∞
A1e

θ1φ
0
dφ0 +

Z +∞

z̄0i

A2e
−θ2φ0dφ0 = 1

imply that

A1 =
θ1θ2

θ1 + θ2
e−θ1z̄

0
i

A2 =
θ1θ2

θ1 + θ2
eθ2z̄

0
i

Notice, that the solutions also satisfy the first term in the LHS of (13) since the above solutions

imply that f (z̄0i−) = f (z̄0i+). In other words the distribution is continuous, but the derivative

has a kink at z̄0i.
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Figure 1: Double Pareto distribution
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