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Introduction

� In the previous lecture we discussed the estimation of DC
model using market level data

� The estimation was based on the moment condition

E (ξ jt jzjt ) = 0.

� In this lecture we will
� discuss commonly used IVs
� survey several applications



Commonly Used IVs BLP 95 Goldberg 95 Nevo 2001

The role of IVs

� IVs play dual role
� generate moment conditions to identify θ2
� deal with the correlation of prices and error

� Simple example (Nested Logit model)

ln(
sjt
s0t
) = xjtβ+ αpjt + ρ ln(

sjt
sGt
) + ξ jt

even if price exogenous, "within market share" is endogenous

� Price endogeneity can be handled in other ways (e.g., panel
data)
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Commonly used IVs: competition in characteristics space

� Assume that E (ξ jt jxt ) = 0, observed characteristics are mean
independent of unobserved characteristics

� BLP propose using
� own characteristics
� sum of char of other products produced by the �rm
� sum of char of competitors products

� Power: proximity in characteristics space to other products
�! markup �! price

� Validity: xjt are assumed set before ξ jt is known

� Not hard to come up with stories that make these invalid
� Most commonly used

� do not require data we do not already have

� Often (mistakenly) called "BLP Instruments"
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Commonly used IVs: cost based

� Cost data are rarely directly observed
� BLP (1995, 1999) use characteristics that enter cost (but not
demand)

� Villas-Boas (2007) uses prices of inputs interacted with
product dummy variables (to generate variation by product)

� Hausman (1996) and Nevo (2001) rely on indirect measures
of cost

� use prices of the product in other markets
� validity: after controlling for common e¤ects, the unobserved
characteristics are assumed independent across markets

� power: prices will be correlated across markets due to common
marginal cost shocks

� easy to come up with examples where IVs are not valid (e.g.,
national promotions)
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Commonly used IVs: dynamic panel

� Ideas from the dynamic panel data literature (Arellano and
Bond, 1991, Blundell and Bond, 1998) have been used to
motivate the use of lagged characteristics as instruments.

� Proposed in a footnote in BLP
� For example, Sweeting (2011) assumes ξ jt = ρξ jt�1 + ηjt ,
where E (ηjt jxt�1) = 0.Then

E (ξ jt � ρξ jt�1jxt�1) = 0

is a valid moment condition
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Berry, Levinsohn, Pakes �Automobile Prices in Market
Equilibrium�(EMA, 95) �BLP

Points to take away:

1. The e¤ect of IV

2. Logit versus RC Logit
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Data

� 20 years of annual US national data, 1971-90 (T=20): 2217
model-years

� Quantity data by name plate (excluding �eet sales)
� Prices � list prices
� Characteristics from Automotive News Market Data Book

� Price and characteristics correspond to the base model
� Note: little/no use of segment and origin information
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Demand Model

The indirect utility is

uijt = xjtβi + α ln(yi � pjt ) + ξ jt + εijt

Note: income enters di¤erently than before.�
βki

�
= βk + σkvik vik � N(0, 1)

The outside option has utility

uijt = α ln(yi ) + ξ jt + σ0vi0 + εijt
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Estimation

� Basically estimate as we discussed before.
� add supply-side moments (changes last step of the algorithm)

� help pin down demand parameters
� adds cost side IVs

� Instrumental variables. assume E (ξjt jxt ) = 0, and use
� (i) own characteristics
� (ii) sum of char of other products produced by the �rm
� (iii) sum of characteristics products produced by other �rms

� Cost side: E (ξjt jwt ) = 0
� E¢ ciency:

� (i) importance sampling for the simulation of market shares
� (ii) discussion of optimal instruments
� (iii) parametric distribution for income (log-normal)
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Table 3: e¤ect of IV (in Logit)
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Tables 5: elasticities
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Tables 6: elasticities
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Table 7: substitution to the outside option
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Table 8: markups
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Summary

� Powerful method with potential for many applications
� Clearly show:

� e¤ect of IV
� RC logit versus logit

� Common complaints:
� instruments
� supply side: static, not tested, driving the results
� demand side dynamics
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Goldberg �Product Di¤erentiation and Oligopoly in
International Markets: The Case of the Automobile

Industry�(EMA, 95)

� I will focus on the demand model and not the application
� Points to take away

� endogeneity with household-level date
� Nested Logit versus RC Logit
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Demand Model
� Nested Logit nests determined by buy/not buy, new/used,
county of origin (foreign vs domestic) and segment

� This model can be viewed as using segment and county of
origin as (dummy) characteristics, and assuming a particular
distribution on their coe¢ cients.
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Data

� Household-level survey from the Consumer Expenditure
Survey:

� 20,571, HH between 83-87
� 6,172 (30%) bought a car
� 1,992 (33%) new car
� 1,394 (70%) domestic and 598 foreign

� Prices (and characteristics) are obtained from Automotive
News Market Data Book
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Estimation

� The model is estimated by ML
� The likelihood is partitioned and estimated recursively:

� At the lowest level the choice of model conditional on origin,
segment and neweness, based on the estimated parameters an
�inclusive value� is computed and used to estimate the choice
of origin conditional on segment and neweness, etc.

� Does not deal with endogeneity. Origin and segment �xed
e¤ects are included, but these do not fully account for brand
unobserved characteristics
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Table II: price elasticities by class
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Table III: price semi-elasticities
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Table IV: implied markups
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Nevo, "Measuring Market Power in the Ready-to-eat
Cereal Industry" (EMA, 2001)

Points to take away:

1. industry where characteristics are less obvious.

2. e¤ects of various IV�s

3. testing the model of competition

4. comparison to alternative demand models (later)
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The RTE cereal industry

� Characterized by:
� high concentration (C3�75%, C6�90%)
� high price-cost margins (�45%)
� large advertising to sales ratios (�13%)
� numerous introductions of brands (67 new brands by top 6 in
80�s)

� This has been used to claim that this is a perfect example of
collusive pricing
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Questions

� Is pricing in the industry collusive?
� What portion of the markups in the industry due to:

� Product di¤erentiation?
� Multi-product �rms?
� Potential price collusion?
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Strategy

� Estimate brand level demand
� Compute PCM predicted by di¤erent industry
structuresnmodels of conduct:
� Single-product �rms
� Current ownership (multi-product �rms)
� Fully collusive pricing (joint ownership)

� Compare predicted PCM to observed PCM
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Supply
The pro�ts of �rm f

Πf = ∑
j2Ff

(pj �mcj )qj (p)� Cf

the �rst order conditions are

sj (p) + ∑
r2Ff

(pr �mcr )
∂qr (p)

∂pj
= 0

De�ne Sjr = �∂sr/∂pj j , r = 1, ..., J, and

Ωjr =

�
Sjr if 9fr , jg � Ff
0 otherwise

s(p) +Ω(p �mc) = 0 and (p �mc) = Ω�1s(p)

Therefore by: (1) assuming a model of conduct; and (2) using
estimates of the demand substitution; we are able to compute
price-cost margins under di¤erent �ownership� structures
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Demand

� Utility, as before

uijt = xjtβi + αipjt + ξ jt + εijt

� Allow for brand dummy variables (to capture the part of ξ jt
that does not vary by market)

� captures characteristics that do not vary over markets
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Data

� IRI Infoscan scanner data
� market shares �de�ned by converting volume to servings
� prices �pre-coupon real transaction per serving price
� 25 brands (top 25 in last quarter), in 67 cities (number
increases over time) over 20 quarters (1988-1992); 1124
markets, 27,862 observations

� LNA advertising data
� Characteristics from cereal boxes

� Demographics from March CPS

� Cost instruments from Monthly CPS

� Market size �one serving per consumer per day
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Estimation

� Follows the method we discussed before
� Uses only demand side moments
� Explores various IVs:

� characteristics of competition; problematic for this sample,
with brand FE

� prices in other cities
� proxies for city level costs: density, earning in retail sector, and
transportation costs

� Brand �xed e¤ects
� control for unobserved quality (instead of instrumenting for it)
� identify taste coe¢ cients by minimum distance
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Logit Demand
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Results from the Full Model
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Elasticities
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Margins
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Comments/Issues

� Is choice discrete?
� Ignores the retailer �uses retailer prices to study
manufacturer competition

� retail margins go into marginal cost
� marginal costs do not vary with quantity, therefore this
restricts the retailers pricing behavior

� which direction will this bias the �nding? Most likely towards
�nding collusion where there is none (the retailer behavior
might take into account e¤ects across products)

� So�a Villas Boas (2007) extends the model

� Much of the price variation at the store-level is coming from
"sales". How does this impact the estimation?

� data is quite aggregated:quarter-brand-city
� "sales" generate incentives for consumer to stockpile
� Follow up work by Hendel and Nevo looked at this
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