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Abstract 

We calculate the socially optimal level of illiquidity in a stylized retirement savings 
system. We solve the planner’s problem in an economy in which time-inconsistent 
households face a tradeoff between commitment and flexibility (Amador, Werning and 
Angeletos, 2006). We assume that the planner can set up multiple accounts for 
households: a perfectly liquid account and/or partially illiquid retirement savings 
accounts with early withdrawal penalties. Revenue from penalties is collected by the 
government and redistributed through the tax system. We solve for the socially optimal 
values of these penalties, and the socially optimal allocations to these accounts. When 
agents have heterogeneous present-biased preferences, the socially optimal system has 
three accounts: (i) a liquid account, (ii) an account with an early withdrawal penalty of ≈ 
100%, and (iii) an account with an early withdrawal penalty of ≈ 10%. With 
heterogeneous preferences, the socially optimal retirement savings system in our stylized 
model looks surprisingly like the existing U.S. system: (i) a liquid account, (ii) an illiquid 
Social Security account (and defined benefit pensions), and (iii) a 401(k)/IRA account 
with a 10% penalty. The socially optimal allocations to these accounts and the predicted 
equilibrium flows of early withdrawals – “leakage” – also match the U.S. system. 
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1 Introduction  

How much liquidity should be built into a socially optimal savings system? On one hand, 

flexibility allows households to consume in ways that reflect their idiosyncratic preferences 

— i.e., households can respond to taste shocks and taste shifters. However, liquidity allows 

households with self-control problems (and other types of biases or errors) to over-consume. 

If illiquidity is optimal, how should it be implemented? Possible forms of illiquidity 

include a perfectly illiquid retirement claim (like a typical defined benefit pension or Social 

Security) or a partially illiquid account (like an IRA or 401(k) plan). In theory, an optimal 

system might combine different types of illiquid accounts. 

In the domain of practical policies, there is a partial consensus on these questions. Almost 

all developed countries have some form of compulsory savings that is completely illiquid (e.g., 

Social Security in the US). 

But that’s where agreement ends. For example, in most developed countries defined 

contribution (DC) savings accounts are usually completely illiquid before age 55 (Beshears et 

al 2015). By contrast, in the US, certain types of withdrawals from DC accounts are allowed 

without penalty, and, for IRAs, withdrawals may be made for any reason if a 10% penalty 

is paid. Liquidity allows significant pre-retirement “leakage”: for every $1 contributed to 

the accounts of US savers under age 55, $0.40 simultaneously flows out of the 401(k)/IRA 

system, not counting loans (Argento, Bryant, and Sabelhaus 2014). Until now, no normative 

model has been used to determine whether such leakage is good or bad from the perspective 

of overall social welfare. Nevertheless, most media coverage bemoans leakage. 

Our paper evaluates the optimality of an N -account retirement savings system with a 

combination of liquid, partially illiquid, and/or fully illiquid accounts. Within this frame-

work, we focus on two special cases: systems with two accounts and systems with three 

accounts. In all of our analysis we will assume that the first account is fully liquid, so our 

two-account system has a fully liquid account and a partially (or fully) illiquid account. Like-

wise, our three-account system has a fully liquid account and two partially illiquid accounts 

(one of which might be fully illiquid). We show that the three-account system is a good 
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approximation (with respect to expected welfare) for a completely general mechanism design 

solution. 

We study preferences that include both normatively legitimate taste shifters and nor-

matively undesirable self-control problems. The self-control problems are modeled as the 

consequence of present bias (Phelps and Pollak 1968, Laibson 1997): i.e., a discount function 

with weights {1, βδ2, . . . , βδt}, where the degree of present bias is 1 − β. Our model is an 

aggregate version (with interpersonal transfers) of the flexibility/commitment framework of 

Angeletos, Werning, and Amador (2006; hereafter refered to as AWA). Our model is also 

closely related to the model of Moser and Olea de Souza e Silva (2017), who also generalize 

AWA. They study the case of unobservable earnings ability and unobservable β, whereas we 

study the case of unobservable taste shocks (with exogenous earnings) and unobservable β. 

Moser and Olea de Souza e Silva (2017) find that second-best optimal savings institutions 

have many of the properties of the U.S. retirement savings system, a theme that also emerges 

in our analysis. 

We divide our analysis into the cases of homogeneous present bias and heterogeneous 

present bias. In the homogeneous case, we assume that all agents have the same degree of 

present bias — in other words, the same value of β. Under homogeneous β, our model implies 

that partially illiquid accounts with penalties π ⋍ 1 − β play an economically significant role 

in improving social welfare. 

We then relax the homogeneity assumption, and assume that agents have heterogeneous 

present-bias. In this heterogeneous-preference case, we find that fully illiquid accounts play 

an important role in improving welfare, whereas partially illiquid accounts matter relatively 

little. We show that the socially optimal degree of illiquidity mostly caters to the households 

with the lowest β values. Completely illiquid retirement savings generates large welfare gains 

for these low-β agents and these welfare gains swamp the welfare losses of the high-β agents 

(who are made slightly worse off by shifting some of their wealth from perfectly liquid accounts 

to perfectly illiquid accounts). 

To  the  extent that there is  a role for  partially illiquid accounts in the heterogeneous-β 
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economy, we find that they should have low early withdrawal penalties — approximately 10%. 

This implies that the partially illiquid accounts look much like a typical 401(k) account. 

Moreover, these partially illiquid accounts display a high level of leakage in equilibrium. 

In other words, early withdrawals (i.e., pre-retirement withdrawals) are common from this 

partially illiquid account. This leakage is a two-edged sword: it results in part from legitimate 

taste shocks and in part from self-control problems (i.e., low β). The costs of the partially 

illiquid account to low β types (who end up paying most of the early withdrawal penalties) 

and benefits to high β types (who are net recipients of these penalties) are nearly off-setting, 

although the net effect for all of society is slightly positive. 

Section 2 describes the planner’s problem — i.e., account allocations and early withdrawal 

penalties that maximize social welfare subject to information asymmetries between the plan-

ner and the households. Section 3 analyzes the solution to the planner’s problem in the case of 

autarky (inter-household transfers are not permitted) and present bias that is homogeneous. 

Section 4 analyzes the solution to the planner’s problem when inter-household transfers are 

admitted and present bias is homogeneous. Section 5 analyzes the solution to the planner’s 

problem in the case of inter-household transfers and heterogeneous present-bias. This is the 

most realistic benchmark that we study. We also show that our optimized retirement savings 

system is characterized by very high rates of leakage from the partially illiquid retirement 

savings account, suggesting that the US system, which exhibits high leakage in practice, is 

not necessarily suboptimal (though it is ‘second-best’ because of information assymetries). 

In section 6, we conclude and discuss the limitations of our existing analysis and our goals 

for future work. 

2 Model  

We study a two-period model of consumption for a continuum of households with unit mass. 

Households are indexed by taste shocks (θ) and present bias (β). In period one, a household 

consumes c1(θ, β). In period two, a household consumes c2(θ, β). For example, think of 

period 1 as working life and period 2 as retirement. When the values of θ and β are implicit, 
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we will simply refer to c1 and c2. 

In this model, we give households access to N savings accounts with initial balances 

{xn}Nn=1, early withdrawal penalties {πn}Nn=1, and allow households to withdraw from these

accounts in whatever order they choose — in equilibrium they will choose to withdraw from 

the low-penalty accounts first. This N -account model is a special case of the fully general 

mechanism design problem, which is discussed in Appendix A and quantitatively analyzed 

in subsection 4.1, where we show that the welfare that arises from the N -account framework 

(with N = 3) is close to the welfare for the completely general mechanism. We choose to 

focus on the N -account framework because of its similarity to the actual retirement savings 

systems that are currently in use around the world. 

2.1 Preferences of the social planner 

The social planner has the following preferences over consumption in periods 1 and 2: 

θu(c) + δv(c) 

where θ is a taste shifter1, δ is a discount factor, and u and v are both strictly increasing 

and strictly concave functions. We assume that u' and v' converge to ∞ as their respective

arguments fall to zero. Following AWA and Beshears et al (2015), we assume that θ has 

bounded support with closure [θ, θ], where 0 < θ. 

2.2 Preferences of households 

We now describe the preferences of the households in this economy. Self 1 has the same 

preferences as the social planner, but Self 1 also has present bias: 

θu(c) + βδv(c) 
1 See Atkeson and Lucas (1992). There are also other ways of modeling taste shifters. For example, one 

could assume that the utility function is u(c−⋎), where ⋎ is an additive taste shifter inside the utility function.
Analyzing this case is beyond the scope of the current paper, but is part of our ongoing work. 
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where 

0 < β ≤ 1.

Bounding β at 1 is without loss of generality. 

2.3 Information structure. 

We assume that households are naive in the sense that they don’t anticipate their own present 

bias and hence won’t use commitment strategies. 

We assume that taste shifters, θ, and present bias, β, are private information of each 

household in the economy. The social planner knows the aggregate distributions of these 

(independent) parameters. We assume that the distribution function on θ is F (θ) and the 

distribution function on β is G(β).We will make assumptions on these distribution functions 

in the theorems that follow. 

2.4 Timing. 

Time 0: The planner sets up N accounts with interest rate R, where N  is a constraint that 

we discuss in the next section. Each of the N accounts is characterized by two variables: an 

initial allocation xn and a linear withdrawal penalty πn, which applies only to withdrawals 

in period 1. Because it only applies in period one, πn is an early withdrawal penalty. 

Specifically, if a consumer withdraws money from an account in period 1 with withdrawal 

penalty πn, then the consumer receives 2 (1 − πn) dollars at the margin. Without loss of

generality, we assume that there are no withdrawal penalties in period 2. From the planner’s 

perspective, the choice variables are the allocations to the N accounts, {xn}Nn=1, and the

early (i.e., period-1) withdrawal penalties on those accounts, {πn}N 
n=1.

In this framework, a completely liquid account has πn = 0, a partially liquid account has 

an early withdrawal penalty such that 0 < πn < 1, and a completely illiquid account has an 

early withdrawal penalty πn − 1.
2 The framework admits negative penalties for period 1 consumption (i.e., subsidies for period 1 consump-

tion). 
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The planner must satisfy intertemporal, economy-wide budget balance (under the assump-

tion that the gross interest rate is one). We state the budget constraint in two equivalent 

ways. First, the integral of equilibrium consumption over states, must equal the overall re-

sources in the economy, which are normalized to one. Our framework assumes a continuum 

population of consumers (with measure one), so that integrating over taste-shock states is 

the same as integrating over consumers. Accordingly, the budget constraint can be written: 

∫ ( )
c2(θ, β)

c1(θ, β) +  dF (θ)dG(β) ≤ 1. (1)
R 

An equivalent way of describing budget balance is to relate allocations to resources. Al-

locations are the accounts given to each consumer. Resources are both the initial unit 

endowment and the revenue raised from penalties paid in equilibrium. Let ωn(θ, β) be equi-

librium period-1 withdrawals from account n across the population of consumers. Then the 

budget constraint can be written: 

∫ N | ∫ |∑ 
c1(θ, β) dF (θ) dG(β) = (1− πn) ωn(θ, β) dF (θ) dG(β) .

n=1 ∫ N | ∫ |∑ 
c2(θ, β) dF (θ) dG(β) = xn − ωn(θ, β) dF (θ) dG(β) .
 

n=1
 ∫ ( ) N N | ∫ |
∑ ∑c2(θ, β)
c1(θ, β) + dF (θ)dG(β) = xn − πn ωn(θ, β) dF (θ) dG(β) = 1. 

R 
n=1 n=1 

Time 1: Self 1 maximizes her perceived welfare from the perspective of time 1 (which 

includes present bias). This will generate withdrawals from the accounts established at date 

0. 

Time 2: Self 2 spends any remaining funds in the accounts. 

2.5 Summary of the N-account mechanism design problem 

We can now jointly express both the planner’s problem and the consumer’s problem. We 

begin with the consumer’s problem, since consumer behavior is an input to the planner’s 

7
 



problem. In essence, the consumer has only one decision to make. In period 1, the consumer 

with parameters θ and β faces this problem: 

max θu(c1) +  βv(c2) (2) 
{ωn}Nn=1

subject to the constraints, 

c1

c2

= 

= 

N∑ 

n=1 
[(1 − πn) ωn]

R 
N∑ 

n=1 

(xn − ωn)

(3) 

(4) 

This problem generates equilibrium policy functions c1(θ, β) and c2(θ, β). 

In period 0, the planner faces the following problem: 

∫ 
W =  max [θu(c1(θ, β)) + v(c2(θ, β))] dF (θ)dG(β) (5) 

{xn}N , {πn}Nn=1 n=1

subject to the constraints that (i) c1(θ, β) and c2(θ, β) are given  by  the consumer’s problem

(equations 2-4) and (ii) economy-wide budget balance is satisfied: 

∫ ( )
c2(θ, β)

c1(θ, β) +  dF (θ)dG(β) ≤ 1, (6)
R 

which is equivalent to equation 1. 

The problem summarized in the last subsection is a restricted version of a completely 

general mechanism design problem. We compare our results to the solution of the general 

mechanism design problem in the Appendix. 
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3 Optimal Illiquidity with Homogeneous Present Bias and
 

Autarky 

We begin our analysis by reviewing a special case that requires two key assumptions. First, 

we assume that all agents share a common value of β — i.e., a common degree of present bias. 

Hence, the distribution function G(β) is degenerate. 

Second, we assume “autarky.” By this we mean, no interpersonal transfers are possible, 

so each household can consume no more than their original endowment. Note that our 

autarky assumption allows interactions between households and the government, but those 

interactions can’t engender transfers across households. In other words, the government 

needs to burn any resources that it collects from households (rather than transferring those 

resources to other households). We relax this extreme assumption starting in the next section 

and for the remainder of the paper. 

With the assumption of autarky, our problem can be expressed using our standard nota-

tion with the aggregate budget constraint replaced by an autarkic budget constraint: 

c1(θ, β) + c2(θ, β) ≤ 1 for each household with parameters θ and β.

Assuming a degenerate G(β), autarky, and a weak restriction on F (θ), the socially opti-

mal allocation is achieved with only two accounts: an account that is completely liquid and 

an account that is completely illiquid in period 1 and completely liquid in period 2. Any 

additional accounts (with intermediate levels of liquidity) do not have value to the planner. 

Assume that F is differentiable and let G(θ) = (1− β)θF '(θ)+F (θ). Assume there exists

θM ∈ [θ, θ] such that: (i) ' ≥  on  and (ii) ' ≤  on ∞  Assume that ' G 0 (0, θM ); G 0 (θM, ). F is

bounded away from zero on [θ, θ]. We refer to these as the assumptions on F. 

Theorem 1 (AWA) Assume there is a homogeneous population-wide value of β. Assume that 

households are in autarky. Welfare is maximized by giving self 1 two accounts: a completely

liquid account and a completely illiquid account. 
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This result is a corollary of a result in AWA.3 The result depends critically on the autarky 

assumption, as we will show in the next section. With autarky (and the density assumption in 

Proposition 1), intermediate penalties (i.e., 0% < π < 100%) are socially i nefficient because 

they force resources to be destroyed — the revenue from penalties can’t be transferred to other 

households and must be wasted. 

This proposition implies that no welfare benefits are achieved by increasing the number of 

accounts beyond N = 2  in the N -Account Mechanism Design Problem (equations 2-6). But 

the proposition relies on an extremely strong (and unrealistic) assumption, notably autarky. 

4	 Optimal Liquidity with Homogeneous Present Bias and Trans-

fers 

The current section relaxes the autarky assumption. Specifically, we now revert to overall 

budget balance rather than consumer-by-consumer budget balance. With overall budget 

balance, a perfectly liquid and a perfectly illiquid account are not jointly sufficient to maximize 

social surplus. We continue to make the same assumptions on F that we adopted in the 

previous section. 

Theorem 2 Suppose that interpersonal transfers are possible. A two-account system with 

one completely liquid account and one completely illiquid account does not maximize welfare. 

In other words, when transfers are allowed, a completely liquid account and a completely 

illiquid account are not jointly sufficient to obtain the social optimum. 

This result is proven in the appendix. 

4.1	 Optimal Policy with N Accounts. 

If a perfectly liquid account and a perfectly illiquid account do not jointly obtain the  social  

optimum, what happens under other account structures? In this subsection we answer this 
3 See Ambrus et al (2013) for related information about this argument. The Theorem is stated here with 

a slightly stronger condition on F than the condition used by AWA (see Beshears et al 2015). 
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question with simulation results. Each simulation has a different assumption on the number 

of accounts and the scope that the planner has to set withdrawal penalties on those accounts. 

In our benchmark simulations we make the following assumptions. 

A1. The per period utility functions are u(c) = v(c) = ln(c); 

A2. The density of the multiplicative taste shocks is truncated normal, with mean μ = 1  

and standard deviation σ = 1/4, and support [1− x, 1 + x], where x = 2/3. Note  that  

E[θ] = 1. 

In the analysis reported in Figure 1, we plot total welfare (W ) for  the case of two  accounts:  

a completely liquid account and a partially illiquid account with the penalty (π2), which is 

represented by the horizontal axis. For each point on the figure, we optimize the allocation 

to the liquid account (x1) and the allocation to the partially illiquid account (x2), holding 

fixed the penalty on the horizontal axis. Figure 1 assumes that β = 0.7. The peak welfare 

is obtained at a value of π2 = 0.28, implying that the optimal withdrawal penalty is 28% (in 

this two-account system). 

Figure 2 repeats this exercise for ten cases: in each case β is fixed at a population-wide 

(homogeneous) value. For every case, we assume that all agents in the economy have the 

same value of β, and we plot total welfare for the case of one fully liquid account and one 

partially illiquid account (with the penalty, π2, represented by the horizontal axis, and the 

account allocation optimized for this particular penalty and the assumed population-wide 

value of β). Figure 2 reveals that the optimal value of π2 is approximately equal to 1− β. 

This near match between π2 and 1− β is easy to see on Figure 3, where we plot the optimal 

level of π2 as a function of the population-wide value of β; now  β is on the horizontal axis. 

Table 1 reports the welfare consequences of other account structures, including the so-

lution to the non-linear mechanism design problem. (Each column in Table 1 represents a 

homogeneous-β economy.) 

Row 1 is the money metric welfare gain by moving from a system with one fully liquid 

account to two accounts (one purely liquid and one partially liquid). As expected, the welfare 
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gains are enormous for β = 0.1 (a welfare gain of 71.65% of wealth), modest for large β values 

(e.g., a welfare gain of 1.29% of wealth for the case of β = 0.7) and non-existent for β = 1. 

Row 2 is the money metric welfare gain by moving from all-liquid to 3 accounts (one 

purely liquid and two partially liquid). For this case, the optimal penalties continue to track 

1 − β. In particular, it is approximately the case that ∂πn = −1 for all n = {2, 3}. 
∂β The

welfare gains in row 2 closely mimic the welfare gains in row 1. 

Row 3 is  the money  metric  welfare gain by moving from one  fully liquid account to  

the (completely general) solution to the non-linear mechanism design problem. We discuss 

the formal set-up for this problem in Appendix A. These welfare gains also mimic the 

welfare gains in row 1, with one interesting conceptual exception (which is not quantitatively 

important). When β = 1  there is a welfare gain of 0.02% of wealth (2/100th’s of 1%). 

This small welfare gain derives from redistribution. The mechanism is set-up to effectively 

transfer resources to high θ types, which requires a non-convex budget set. Such a budget set 

is not possible in the N -account system (because we constrain the penalties to be positive). 

Row 4 is the money metric welfare gain by moving from one fully liquid account to two 

accounts: one completely liquid and one completely illiquid. These welfare gains are similar 

to rows 1-3 for low β values. However, for larger β values (i.e., β ∈ {0.5, 0.6, 0.7, 0.8}) the 
welfare gains are meaningfully smaller than the welfare gains in rows 1-3. For example, for 

β = 0.7, row 1 reports a welfare gain of 1.33% of wealth, while row 4 has a welfare gain of 

1.02% of wealth. In other words, meaningful welfare gains can be obtained by using accounts 

with intermediate penalties (rows 1 and 2) or general mechanisms (row 3), instead of being 

constrained to use only accounts that are fully illiquid and fully illiquid (row 4). 

Some readers may also be interested in the specific penalty values and account allocations 

for the cases studied in rows 1-4. These penalties and allocations are reported in appendix 

B. 
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5	 Optimal Liquidity with Transfers and Heterogeneous Present 

Bias 

In this section, we continue to assume overall budget balance (rather than consumer-by-

consumer budget balance). In addition, we now relax the assumption that consumers have a 

homogeneous discount parameter, β. As in the previous section, we begin with a theoretical 

result and then provide quantitative simulations. Our theoretical result studies the case 

where the heterogeneous population of consumers is concentrated at two boundary points, 

β = 0 and β = 1. This ‘limiting case’ of heterogeneity turns out to be analytically tractable 

and sheds light on the general case of heterogeneity. 

Theorem 3 Let the mass of agents with β = 1  be μ and the mass of agents with β = 0  

be 1 − μ. Assume that the planner is constrained by aggregate budget balance (rather than 

autarkic budget balance). Then the socially optimal N-account allocation is achieved by a 

two-account system with one perfectly liquid account and one perfectly illiquid account. 

The intuition for this result follows from two observations. First, adding partially illiquid 

accounts transfers resources from β = 0 households (who pay the penalties) to β = 1 house-

holds (who are net recipients of the penalties because of aggregate budget balance). Second, 

this additional source of inequality is welfare-reducing because utility is concave. 

It turns out that this exact result is still approximately true with far less extreme distri-

butions of β values. 

5.1	 Optimal policy with transfers and heterogeneous present bias: the 

general case. 

The previous theorem reports the case in which heterogeneity is extreme: some housholds 

have β = 0  and others have β = 1. In this case, a system with a fully liquid account 

and completely illiquid account achieves the (constrained-efficient) social optimum. In the 

current and the following subsections, we explore the robustness of this result using numerical 
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simulations. Specifically, we study cases in which β has a distribution of values over the 

points {0.1, 0.2, 0.3, ..., 1}.
As before, each simulation has a different assumption on the (finite) number of accounts 

and the scope that the planner has to set withdrawal penalties on those accounts. In all of 

these cases we make assumptions A1 and A2 from the previous section (pinning down the 

utility functions, u and v, and the density on the taste shock, f(θ)). 

In the current section, we make an additional assumption on the distribution of β values. 

A3. β takes only the discrete values in the set B = {0.1, 0.2, 0.3, ..., 1} (with probabilities

that sum to one). 

Our benchmark distribution is plotted in Figure 4, which is generated from the con-

tinuous density f(β) = βa−1(1 − β)b−1, with calibratin a = 2.3 and b = 1. This distribu-

tion/calibration was chosen with the following goals in mind. First, we wanted a density 

that was bounded between 0 and 1. Second, we wanted a distribution that had a mean value 

close to 0.7.4 Third, we wanted a distribution that had declining mass as β falls from 1 to 0, 

implying that the modal agent in the economy has no self-control problem. This is the first 

calibration that we tried. (We report additional distributions — i.e., robustness checks — in 

the next subsection and find that the results change very little.) 

Figure 5 reports the case of one fully liquid account and one partially illiquid account, 

where the penalty of the partially illiquid account is plotted on the horizontal axis. The 

resulting welfare for every type in the economy is plotted on the vertical axis. Figure 5 is 

analogous to Figure 2, except that in Figure 5 the account allocations {x1, x2} are the same
for every agent (because an agent’s β-type is not known by the government). Figure 5 has 

two panels. Panel A uses a vertical axis scale that encompasses all of the data, including the 

large welfare improvements for low-β types. Panel B uses a truncated scale that improves 
4 The mean of the continuous density is exactly 0.7. But we discretize the density, so that the actual 

probabilities on B are 
f(β)Σ .
β∈B f(β)

This discretized density has mean 0.73. 
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the visibility of welfare fluctuations for the high-β types. Unlike the low-β types, who 

experience monotonically rising welfare as π2 rises, the high-β types have welfare that rises 

with π2 for low levels of π2, but then peaks and starts falling with π2. This single-peaked 

property is driven by penalty payments, which are disproportionately made by low-β types 

(see Figure 7 below). Low-β types make larger and larger penalty payments as π2 rises 

from 0 to intermediate values. High-β types are the implicit beneficiaries of these penalty 

payments. Eventually, rising π2 squelches the penalty payments of low-β types, suppressing 

the cross-subsidy to high-β types, and thereby causing the welfare of high-β types to start 

falling. By the time π2 reaches 1, the cross-subsidy has been completely eliminated, and 

high-β types are slightly worse off than they were when π2 = 0. On a money metric basis 

the β = 1 types have a welfare loss equivalent to -0.23% of their income (approximately 1/2 

the vertical distance on Figure 5), as they moved from π2 = 0 to π2 = 1. However, on 

a money-metric basis, the β = 0.1 types have gained welfare equivalent to 71.35% of their 

income. 

Figure 6 aggregates welfare for the 10 types of agents, β ∈ B = {0.1, 0.2, ..., 1.0}, using 
the population weights in Figure 4. Figure 6 reveals that the enormous welfare gains for 

low-β types swamp the modest welfare losses for high-β types, an example of assymetric 

paternalism (Camerer et al 2003). Accordingly, the optimal policy (in this two-account 

system) is to have the partially illiquid account be fully illiquid: π2 = 1. 

Figure 7 reports the gross penalties paid by all β-types. As anticipated above, the 

penalties are hump-shaped in π2, and the penalties are overwhelmingly paid by the low-β 

households. 

Figure 8 reports the accounts allocations chosen by the planner as a function of π2. 

Note that the account allocations asymptote to a nearly 50/50 split, implying that the fully 

illiquid account is used aggressively to achieve population-wide consumption smoothing. By 

implication, the high-β types are being constrained for the good of the low-β types. 

Table 2 shows that the welfare implications of Figures 5-8 are not specific to the  two  

account system. The first row of Table 2 reports population weighted welfare for the case of 
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a fully liquid account and a fully illiquid account (with optimized account allocations). This 

is essentially the socially optimized welfare in Figures 5-8 (with π2 = 1). Welfare in this 

row (and all of the rows to follow) is expressed in terms of the money metric gain relative to 

population-weighted welfare in the case with only one fully liquid account. 

The second row of Table 2 reports population weighted welfare for the case of a fully 

liquid account, a fully illiquid account, and a third account that has a flexible intermediate 

penalty: 0 < π3 < 1. We find that the optimal value of the penalty on this third account 

is 9%, remarkably close to the penalties that we see in 401(k) and IRA accounts. Table 2 

reveals that the addition of this third account does almost nothing for welfare, which increases 

by 0.018% of income (18/1000ths of 1% of income). Accordingly, a 401(k)/IRA account is 

socially optimal in our model (i.e., it raises welfare), but its welfare consequences are de 

minimis relative to a system with a fully liquid account and a fully illiquid account (row 1). 

The balances in the account with a 9% penalty represent 14% of partially and fully illiquid 

assets. This percentage compares favorably to the one in the US economy (treating Social 

Security claims and DB claims as perfectly illiquid retirement savings and 401(k)/IRA claims 

as partially illiquid retirement savings). 

The third row of Table 2 reports population-weighted welfare in the case with two fully 

flexible accounts — i.e., no account has a penalty that is ex-ante pinned down. We find that 

the welfare gain (relative to the system with one fully liquid account and one fully illiquid 

account) is 0.015% of income (15/1000ths of 1% of income). Hence, the account system in 

row three generates essentially no welfare gain relative to the case of one fully liquid and one 

fully illiquid account. 

The fourth row of Table 2 reports population-weighted welfare in the case with three fully 

flexible accounts — i.e., no account has a penalty that is ex-ante pinned down. We find that 

the welfare gain (relative to the system with one fully liquid account and one fully illiquid 

account) is 0.020% of income (20/1000ths of 1% of income). Hence, the account system in 

row four also generates essentially no welfare gain relative to the case of one fully liquid and 

one fully illiquid account. 
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We conclude that one fully liquid account and one fully liquid account generates essentially 

the same welfare gains as more systems with more flexibility and more accounts. 

5.2	 Leakage 

We can also use this model to study leakge. The most empirically relevant case is the one in 

which we have three accounts: a fully liquid account (π1 = 0), , a partially illiquid account 

with optimized penalty π2, and a fully illiquid account (π3 = 1). When we optimize this 

system, we obtain π2 = 0.09. (This corresponds to row 2 in Table 2.) This case (which 

approximately achieves the social optimum for the family of N -account models), admits 

penalized leakage from the second account. For this case we find that 74% of the dollars 

allocated to the second account ‘leak’ from that account in period 1 (and incur a penalty of 

π2). 

This high leakage rate is even higher than the leakage rate reported in the U.S. system 

(where the early withdrawal penalty is 10%). One potential explanation for the difference 

is that dollars in the model are deposited by government fiat, whereas many of the dollars 

in the U.S. system are voluntarily deposited into the 401(k)/IRA system, implying that they 

are coming from households with higher β values in the first place. 

Our robustness analysis reveals that high leakage is a robust feature of our model. None 

of our dozens of calibrations generate leakage rates below 40% (see Appendix C). 

5.3	 Optimal policy with transfers and heterogeneous present bias: robust-

ness. 

In the previous subsection, we described a benchmark calibration in the economy with inter-

household transfers and heterogeneous present bias. Two key findings emerged: 

1.The constrained-efficient social optimum is approximated by a two-account system, with 

one account that is completely liquid and a second account that is completely illiquid. Little 

welfare gain is obtained by moving beyond this simple (and extreme) two-account system. 

2. If a third account is added, its optimized early-withdrawal penalty is 9%. 
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3. The equilibrium leakage rate from the third account is 74%. 

In the current subsection, we document the robustness of these three findings. With 

respect to the first finding, the largest welfare gain that we generate in our robustness checks 

(by extending the system of savings accounts beyond one perfectly liquid account and one 

perfectly illiquid account) is 0.06% of income (6/100ths of 1%). 

With respect to the second finding, the optimized penalty on the partially illiquid account 

ranges from 6% to 13% across our calibrated economies. 

With respect to the third finding, the equilibrium leakage rate ranges from 65% to 90%. 

The actual results are reported in the three panels of Table 3, which reports the results 

for (i) the two account system π1 = 0  and π2 = 1  and (ii) the three-account system with 

π1 = 0, 0 < π2 < 1, and π3 = 1. In every table we report the vector of penalties, the leakage 

rate (where appropriate), and welfare using a money metric improvement relative to the case 

of only one (fully liquid) account. 

Table 3a varies the value of the coefficient of relative risk aversion (⋎). In our benchmark 

calibration we set ⋎ = 1. In  Table 3a we study  the  cases  ⋎ = 1/3, ⋎ = 1/2, ⋎ = 2, and ⋎ = 3. 

Table 3b varies the shape of the density of θ. First we vary the standard deviation in the 

distribution of taste shifters (σ). In our benchmark calibration we set σ = 1/5. In Table 

3b we study the case σ = 1/4 and the case σ = 1/6. Second, we vary the support of the 

distribution of taste shifters [1− x, 1 + x]. In our benchmark calibration we set x = 2/3. In 

Table 3b we also study the case x = 1/3. 

Table 3c varies the mean and standard deviation of the distribution of β values. In our 

benchmark calibration we set E[β] = 0.73 and σβ = 0.23. In  Table 3c we study  the case  

E[β] = 0.70 and σβ = 0.25 and the case E[β] = 0.79 and σβ = 0.20. 

6 Conclusions and Directions for Future Work 

Three findings emerge from the analysis of our stylized two-period model for the case of 

heterogeneous present bias (which allows for mechanisms that admit interpersonal transfers): 

1. The constrained-efficient social optimum is well-approximated by a two-account sys-
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tem, with one account that is completely liquid and a second account that is completely 

illiquid. Little welfare gain is obtained by moving beyond this simple two-account system. 

Stated differently, the two account system identified in Amador, Werning and Angeletos 

(2006) turns out to be approximately optimal. 

2. If a third account is added, its optimized early-withdrawal penalty is between 6% and 

13%. 

3. In equilibrium, the leakage rate from this (partially illiquid) third account ranges from 

65% to 90%. 

These properties have analogs in the retirement savings systems in the US. The US has 

fully liquid accounts (i.e., a standard checking account), fully illiquid accounts (i.e., Social 

Security), and a partially illiquid defined contribution system with a 10% penalty for early 

withdrawals. This partially illiquid DC system has a leakage rate of 40%. 

Despite these similarities, it is inappropriate to conclude that our findings demonstrate 

the social optimality of the US system. Our simulation framework is highly stylized. For 

example, we assume only two periods (e.g., working life and retirement). We assume a 

particular form of multiplicative taste shifter.5 We assume that households are naive with 

respect to their present bias. We study a limited set of distributions of the present bias 

parameter, β.6 We only study N -account retirement savings systems (instead of studying a 

fully general mechanism design framework).7 

Much more robustness work is needed to interrogate the three findings that we have 

generated. It is not yet clear whether our results — which, to our surprise, seem to rationalize 

the fundamental institutional structure of the US retirement savings system — will continue 

to hold as we enrich and expand our analysis. 
5 We assume θu(c) but we could have instead assumed u(c − θ). In onging work, we are studying this case.
 
6 Little is known about the distribution of present bias.
 
7 Future drafts of this paper will contain such analysis. We are able to show that the fully general mechanism
 

design solution is well-approximated (in terms of welfare) by our two account system. 
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Table 1: Homogeneous Welfare Gains Relative to Decentralized (% Wealth Equivalent) 
Value of β 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 Liquid, 1 Flexible 71.65 32.67 17.54 9.80 5.40 2.81 1.29 0.45 0.07 0 
1 Liquid, 2 Flexible 71.67 32.72 17.63 9.89 5.48 2.86 1.31 0.46 0.07 0 
General Mechanism 71.68 32.75 17.66 9.93 5.51 2.88 1.33 0.46 0.07 0.02 
1 Liquid, 1 Illiquid 71.65 32.66 17.49 9.68 5.2 2.54 1.02 0.26 0.01 0 

Table 2: Heterogeneous Welfare Gains (% Wealth Equivalent) 
Relative to Decentralized Relative to 1 Liquid, 1 Illiquid 

1 Liquid, 1 Illiquid 3.397 0 
1 Liquid, 1 Flexible, 1 Illiquid 3.415 0.018 
2 Flexible 3.412 0.015 
3 Flexible 3.417 0.020 

Table 3: Heterogeneous Robustness 
Parameter Varied 1 Liquid, 1 Illiquid 

Welfare Gain 
1 Liquid, 

Welfare Gain 
1 Flex
π∗ 
2

ible, 1 Illiquid 
Leakage Rate (%) 

B
as
el
in
e

—– 3.397 3.415 0.09 74 

V
ar
y

 γ
 

 γ = 1
3

 γ = 12

γ = 2 

γ = 3 

4.537 

4.601 

1.899 

1.279 

4.599 

4.641 

1.907 

1.285 

0.09 

0.09 

0.13 

0.09 

75 

74 

65 

73 

V
ar
y

 f
(θ
) 

 χ = 13

 σ = 12

 χ = 1 , σ = 1 
3 2

3.622 

3.050 

3.569 

3.632 

3.074 

3.586 

0.06 

0.09 

0.11 

90 

67 

72 

V
a
ry

 g
(θ
) 

E(β) = 0.66, sd(β) = 0.26 

E(β) = 0.79, sd(β) = 0.20 

5.854 

1.862 

5.871

1.879

0.1 

0.07 

79 

70 

The table benchmarks against the Baseline heterogeneous case, which has parameters γ = 1, χ = 2 , 3
σ = 1 , E(β) = 0.73, and sd(β) = 0.23. Each variation considered varies only the parameters specified 2
in the ”Simulation Details” column. 
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Figure 1: β = 0.7 Homogeneous Utility Against π2 
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Figure 2: β ∈ {0.1, ..., 1.0} Homogeneous Utility Against π2 
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Figure 3: Optimal Homogeneous Penalty π∗ 
2
 against β
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Figure 4: Heterogeneous Population Density g(β) 
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Figure 5: Heterogeneous Population: Subpopulation Utilities against π2 
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Figure 6: Heterogeneous Population: Population Utility against π2 
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Figure 7: Heterogeneous Population: Subpopulation Penalties Paid 
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Figure 8: Heterogeneous Population: Account Allocations and Total Wealth 
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Is a Simple Two-Account Policy Optimal when Redistribution is
 
Feasible?
 

Proof of Theorem 2 

1.  Introduction 
We assume that: U,
W : [ 0,∞) → [−∞, ∞);  U 0,W 0 > 0  and U 00,W 00 < 0  on  (0, ∞); 
an d U 0 (0+) 
 = W 0 (0+) = ∞.
 
We make the following assumptions on the distribution function F of the taste 

shock θ: 

A1  Both   d    F an F 0 are  functions  of  bounded  variation  on  (0, ∞). 
A2 The support of F 0 is contained in 

£
θ, θ 

¤ 
, where 0  < θ < θ <∞. 

A30 F 0 is bounded away from 0 on θ
¡ ¢
, θ . In p articular, F 0(θ+), F 0(θ−) > 0. 

We assume that 0 < β < 1. 

Theorem 1. Suppose that interpersonal transfers are not possible. Then welfare is 
maximized by giving self 1 two accounts: a completely liquid account and a completely 
illiquid account. 

Theorem 2. Suppose that interpersonal transfers are possible. Then a two-account 
system with one completely liquid account and one completely illiquid account never 
maximizes welfare. 

2. Full Proof 
If self 1 is presented with two accounts, a perfectly liquid account containing the 
amount xliquid > 0 and a perfectly illiquid account (containing the amount xilliquid ≥ 
0), then the outcome will depend on her type θ. There w ill e xist θ 1 ∈ (0,∞) such 
that: if θ < θ1, then she consumes less than the balance xliquid in her liquid account: 
and, if θ ≥ θ1, then she consumes the whole of xliquid. This gives rise to a utility 
curve (u0, w0) given by the formulae u0(θ) =  U(c(θ)) and w0(θ) = W (k(θ)). This  
utility curve is a smooth function of θ for θ < θ1, has a k ink a t θ 1, and is constant 
for θ ≥ θ1. The idea behind the proof is to find necessary conditions for this curve 
to be optimal. 

Remark 3. We emphasize that there is no reason why θ1 should lie in 
£
θ, θ 

¤
. 

1
 



                                    

             
    

2 Is a Simple Two-Account Policy Optimal when Redistribution is Feasible? 

The first step is to formulate the optimization problem of the planner. The planner 
seeks to maximize social welfare Z 

(θ u(θ) +  w(θ)) dF (θ) 

subject to aggregate budget balance and incentive compatibility. Aggregate budget 
balance can be expressed in the form Z 

(y − C(u(θ)) − K(w(θ))) dF (θ) ≥ 0. (BC) 

Incentive compatibility breaks down into two parts, a linear part 

θ u0 + β w0 = 0 (ICL) 

and a monotonic part 
w 0 ≤ 0. (ICM)

We parameterize candidate solutions to this problem in terms of u¡( θ ), ¢w( θ ) and 
a piecewise continuous function u0 : Θ → R. More p recisely, i f θ 1 ∈ θ, θ then we
require that: 

1. u0 is continuous in the left-hand interval [ θ, θ1 );

2. u0 (θ1−) (the limit from the left of u0 at θ1) exists;

3. u0 is continuous in the right-hand interval θ
¡

1, θ 
¤
;

4. u0 (θ1+) (the limit from the right of u0 at θ1) exists.

We then: 

1. put w0 = − θ 
β u

0;

2. let u : Θ → R be the function with derivative u0 that takes the value u( θ ) at θ
(as the notation already suggests we should); 

3. let w : Θ → R be the function with derivative w0 that takes the value w( θ ) at
θ (as the notation already suggests we should). 

If θ1 ∈ ( 0, θ ] or θ1 ∈ 
£
θ,∞ 

¢
, then we require that u0 be continuous on the whole of£ ¤ 

θ, θ . 



3 Is a Simple Two-Account Policy Optimal when Redistribution is Feasible? 

The third step is to formulate the Lagrangean. In the case θ1 ∈ 
¡
θ, θ 

¢
, this c an

be written Z 
L(u, w, λ, νL, νR) =  (θ u(θ) +  w(θ)) dF (θ) Z 

+λ (y − C(u(θ)) − K(w(θ))) dF (θ)Z Z 
0 0− wL(θ) dνL(θ) − wR(θ) dνR(θ), 

[ θ,θ1 ] [ θ1,θ ] 

where u and w are detemined by u( θ ), w( θ ) and u0 as described above, λ is the 
scalar multiplier on the aggregate budget constraint, ¤ w0 is the extension of w0£  L |[ θ,θ1 )

to [ θ, θ1 ], wR0  is the extension of w0| θ1,θ to θ1, θ , νL is a finite non-negative Borel( ] £ ¤ 
measure on [ θ, θ1 ] and νR is a finite non-negative Borel measure on θ1, θ . 

Remark 4. Notice that the Lagrangean no longer includes terms corresponding to 
(ICL), since we are working with a reduced form. 

A necessary condition for (u0, w0) to be optimal is that there exist multipli-
ers λ, νL and νR such that three sets of conditions hold. First, the derivative of 
L(u, w, λ, νL, νR) at (u0, w0) in the direction (u, w) is 0 for all (u, w). That i s,  Z Z 

0 = (θ u  + w) dF − λ (C 0(u0) u + K 0(w0) w) dFZ Z 
0 0− wL(θ) dνL(θ) − wR(θ) dνR(θ) (1) 

[θ,θ1] [θ1,θ] 

for all feasible (u, w). Second, the constraints must all be satisfied. That is, Z 
0 = (y − C(u0(θ)) − K(w0(θ))) dF (θ),

00 ≤ w0L,
00 ≤ w0R.

Third, constraint qualification must hold. That is, Z 
0 = w0

0 
L(θ) dνL(θ), (2) 

[θ,θ1]Z 
0 = w0

0 
R(θ) dνR(θ). (3) 

[θ1,θ] 

Now, we can rearrange (1) iRn terms of the underlying parameters   ,    and u( θ ) w( θ )
u0 as follows. Putting F (θ) =  F (t) dt, and noting that θ F   F and u  

[θ,θ]
are both

                                

−
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continuous, we can integrate by parts to obtain Z	 Z£ ¤ θ 
θ u dF  (θ) =  ( θ F  − F )u 

θ− − ( θ F  − F )u 0 dθZ ¡	 ¢ 
= θ F  ( θ )− F ( θ ) u( θ )− ( θ F  − F )u 0 dθ¡	 ¢ 
= θ F  ( θ )− F ( θ ) u( θ )Z	 Z
− ( θ F  − F )u 0 L dθ − ( θ F  − F )u 0 R dθ.

[ θ,θ1 ] [ θ1,θ ] 

Similarly, 

                                  

Z	 Z 
w dF  (θ) = [F w]θ

θ 
− − F w0 dθZ 

=	 F ( θ )w( θ )− F w0 dθ

=	 F ( θ )w( θ )Z	 Z
− F w0 dθ − F w0 dθ. L	 R 

[ θ,θ1 ] [ θ1,θ ] R 
Next, putting Λu(θ) = C 0(u0(t)) dF (t), we have

[θ,θ] Z	 Z 
−λ C 0(u0)udF  = − uλ  Λ0 u dθ Z 

=	 − [uλ  Λu]θ
θ 
− + λ Λu u 0 dθ Z 

=	 −u( θ )λ Λu( θ ) +  λ Λu u 0 dθ

=	 −u( θ )λ Λu( θ )Z	 Z 
+	 λ Λu u 0 L dθ + λ Λu u 0 R dθ. 

[ θ,θ1 ] [ θ1,θ ] R 
Similarly, putting Λw(θ) =  K 0(w0(t)) dF (t),

[θ,θ] Z	 Z 
−λ K 0(w0)w dF  = − wλ  Λ0 dθw Z 

=	 − [wλ  Λw]θ
θ 
− + λ Λw w 0 dθ Z 

=	 −w( θ )λ Λw( θ ) +  λ Λw w 0 dθ

=	 −w( θ )λ Λw( θ )Z	 Z 
+ 0 dθ + λ Λw w 0 dθ. λ Λw wL	 R 

[ θ,θ1 ]	 [ θ1,θ ] 
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Finally, the terms − R
[θ,θ1]
w0  L(θ) dνL(θ) and − R[θ1,θ]w0 R(θ) dνR(θ) require no manip-

ulation. 
Hence, equating the coefficients of u( θ ), w( θ ), u0 and u0L R to 0 in (1), we obtain: 

0 =  θ F ( θ ) − F ( θ ) − λΛu( θ ), (4) 
0 =  F ( θ ) − λΛw( θ ), (5) 
0 =  −( θ F  − F ) dθ + θ F dθ + λΛu dθ − θ λΛw dθ + θ dνL, (6)

β β β 

0 =  −( θ F  − F ) dθ + θ F dθ + λΛu dθ − θ λΛw dθ + θ dνR. (7)
β β β 

Now, we certainly have wL0  < 0 on [ θ, θ1 ]. It therefore follows from constraint quali-
fication (namely (2)) that νL = 0. Equation (6) therefore implies that 

λ (θΛw − β Λu) =  θ F  − β (θ F  − F ) = (1  − β) θ F  + β F = G R
almost everywhere on [θ, θ1], where G  = (1 −  β) θ F 0 + F and G(θ) = G(t) dt

[θ,θ] .
Furthermore, since F 0 is of bounded variation, 

θΛw(θ) → θK 0(w0(θ)) F 0(θ+),
θ − θ
 
β Λu(θ)
 → β C 0(u0(θ)) F 0(θ+),
θ − θ
G → G(θ+) = (1 − β) θ F 0(θ+)
θ − θ

as θ ↓ θ. But, s ince ( u0(θ), w0(θ)) is chosen freely from the ambient budget line by
the θ type, we must have 

Hence, in fact, 

On the other hand, 

C 0(u0(θ)) K 0(w0(θ)) 
= . 

θ β 

θΛw(θ) − β Λu(θ) → 0.
θ − θ 

G → (1 − β) θ F 0(θ+) > 0.
θ − θ

For any finite choice of λ, we therefore have ¡the con¢ tradiction 0 =   (1−β) θ F 0(θ+) > 0.
This establishes that we cannot have θ1 ∈ θ, θ . 

Remark 5. This is where we use the assumption β < 1. 

If θ1 ∈ [ θ,∞ ), then we can still derive equations (4, 5 and 6). In particular,
we can still derive equation (6). We can therefore again derive a contradiction by 
essentially the same argument. 
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If θ1 ∈ ( 0, θ ], then we can still derive equations (4, 5 and 7). However, we can
no longer derive equation (6). We therefore£  need¤  new arguments. The first point to 
note is that, since θ1 ≤ θ, all t ypes θ  ∈ θ, θ choose the point that a hypothetical
θ1 type would choose from the ambient budget set. We therefore have Z 

Λu( θ ) = C 0(u0(t)) dF (t) = F ( θ )C 0(u0(θ1)), (8) 
[θ,θ]Z 

Λw( θ ) = K 0(w0(t)) dF (t) = F ( θ )K 0(w0(θ1)). (9) 
[θ,θ] 

Furthermore, since the θ1 type chooses freely from the ambient budget set, we have 

C 0(u0(θ1)) K 0(w0(θ1)) 
= . 

θ1 β 

Using (4) and (5), we therefore obtain 

θ F ( θ )− F ( θ ) Λu( θ ) C 0(u0(θ1)) θ1 
= = = . (10) 

F ( θ ) Λw( θ ) K 0(w0(θ1)) β 

Hence ¡ ¢ 
( θ − θ1 )F ( θ ) =  θ F ( θ )− β θ F ( θ )− F ( θ )

= (1− β) θ F ( θ ) + β F ( θ )
= G( θ ), (11) 

where G and G are as above.  

Remark 6. Bearing in mind that θ1 ≤ θ, so t hat G (θ1) = 0, this equation can also
be written 

or 

(θ − θ1)F ( θ ) = G( θ )− G(θ1)Z 
1 

G(t) dt = F ( θ ). 
θ − θ1 [θ1,θ]

That is, θ1 satisfies the equation for the optimal cutoff in the problem without inter-
personal transfers. 

Remark 7. This makes perfect sense: if θ1 ≤ θ then all θ types make the same
choice, and the optimum with interpersonal transfers happens not to involve any 
transfers. It must therefore also be the optimum without interpersonal transfers, and 
must therefore satisfy the equation for the optimal cutoff in the problem without 
interpersonal transfers. 
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However, we have not yet used equation (7). It follows from this equation that ¡ ¢
β − βdνR = 
θ ( θ F  − F ) dθ − F dθ + λ Λw θ Λu dθ. 

In other words, νR is absolutely continuous w.r.t. Lebesgue measure, with density ¡ ¢ 
ν 0 β 
R = 

θ ( θ F  − F )− F + λ Λw − β
θ Λu .

Furthermore: Z 
F (θ)

Λu(θ) = C 0(u0(t)) dF (t) = F (θ)C 0(u0(θ1)) = Λu( θ ) 
[θ,θ] F ( θ ) 
F (θ) θ1 F (θ) θ1 F ( θ ) θ1 F (θ) 

= Λw( θ ) = = 
F ( θ ) β F ( θ ) β λ β λ 

(where the last line follows from (10) and (5)); and Z 
F (θ)

Λw(θ) = K 0(w0(t)) dF (t) = F (θ)K 0(w0(θ1)) = Λw( θ ) 
[θ,θ] F ( θ ) 
F (θ) F ( θ ) F (θ) 

= = 
F ( θ ) λ λ 

(where the last line follows from (5)). Hence 

λ (θΛw − β Λu) = (θ − θ1)F (θ)

and 

θ ν 0 = β ( θ F  − F )− θ F  + (θ − θ1)FR 

= (θ − θ1)F (θ)− G.

¡Now,¢ F (θ) = G(θ) = 0. Hence θ ν 0 R(θ) = 0. Furthermore, we must have θ ν 0 ≥  R 0
on θ, θ . Hence  

θ ν 0 (θ)− θ ν0 (θ)R R ≥ 0.
θ − θ 

Letting θ→  θ+, we therefore obtain

(θ ν 0 ) .R
0(θ+) = (β θ − θ1)F 0(θ+) ≥ 0

Since F 0(θ+) > 0, it follows that θ1 ≤ β θ. Similarly, (11) implies that (θ−θ1)F ( θ )−
G( θ ) = 0. Hence θ ν0 R( θ ) = 0. Hence  

θ ν 0 ( θ )− θ ν 0 (θ)R R ≤ 0.
θ − θ

Letting θ→  θ−, we therefore obtain
(θ ν 0 )0(θ−) = (β θ − θ1)F 0(θ−) ≤ 0R .

Since F 0(θ−) > 0, it follows that θ1 ≥ β θ. These two inequalities on θ1 are inconsis-
tent, so we have a contradiction. 
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Remark 8. This is where we use the assumption β >  0: we would not obtain a 
contradiction by combining two weak inequalities if we had β = 0. 

Remark 9.  More generally, 

Rθ ν
0 )0 θ − θ1)F 0 + F − G(
 = ( 


= (θ − θ1)F 0 − (1− β) θ F 0

= (β θ − θ1)F 0 .

So, if we maintain the requi¡reme¢n
t that  θ ν 0R(θ
 ) = θ νR0 ( θ ) = 0, 
but¡ drop th¢e re-
quirement that θ νR0 ≥ 0 on θ, θ
 , then we must conclude that θ1 ∈ β θ, β θ and¡ ¢ 
θ ν 0R < 0 on θ, θ . I.e. having w 0 = 0 is strictly suboptimal: w0 < 0 would be better 
at all θ. 



Theorem 3 Proof:

Expected utility of the population is: 

ˆ θ 

Eu = µ [θu(c1) + v(c2)] dF (θ) + (1− µ) [E(θ)u(x + (1 − π)y) + v(z)] 
θ 

The balanced budget constraint is: 

ˆ θ 

µ [c1 + c2] dF (θ) + (1− µ) (w − πy) = 1 
θ 

The Lagrangian is: 

  
´ θ 

 µ [θu(c1) + v(c2)] dF (θ) + (1− µ) [E(θ)u(x + (1 − π)y) + v(w − x − y)] 
θ

L(x,w, Λ|y) = {

´ }

θ 
 +Λ 1− µ [c1 + c2] dF (θ)− (1− µ) (w − πy)

θ 

Therefore by the Envelope Theorem (making use of continuity of the con­
sumption functions): 

 
[ J

 
´ θ E(θ) 

 µ ∂ [θu(c1) + v(c2)] dF (θ) + (1− µ) u ′(x) − v ′(z) 

∂L θ ∂y 1+π 
{ }|y=0 = 

´ θ∂y  ∂ 
+Λ −µ c2] dF (θ) + (1− µ)π

θ ∂y 
[c1 + 

Recall that for θ ≤ θ1, consumption functions depend only on w, not on x 
or y. When θ1 ≤ θ ≤ θ2, c1 = x and c2 = w −x, so the functions do not depend 
on y. θ2 ≤ θ ≤ θ3 is measureless when y = 0, so it can be ignored. Lastly, when 
θ > θ3, c1 = x+(1−π)y and c2 = w−x−y (so that c1 +c2 = w−πy), yielding: 

  
´ θ ′ ′ 

∂L µ [(1 − π)θu ′(x)− v (z)] dF (θ) + (1− µ) [(1− π)E(θ)u (x) − v ′(z)] 
( )|y=0 = θ3 
´ θ∂y  +Λ µπ 
θ3 
dF (θ) + (1− µ)π

Where here, x + z = 1. 

We can recover Λ from the FOC for (noting that ∂ c( 1+ )c
w 2

∂w 
= 1): 

∂L ∂Eu 
0 = = − Λ 

∂w ∂w 

Giving the expected interpretation that Λ is the marginal utility of wealth. 

  
´ θ ′ ′ 

∂L µ 
θ3 
[(1 − π)θu ′(x)− v (z)] dF (θ) + (1− µ) [(1− π)E(θ)u (x) − v ′(z)] 

|y=0 = (

´ )

θ∂Eu ∂y  + µπ dF (θ) + (1− µ)π  
∂w θ3 

  
´ θ ′ 

∂L µ(1− π) [θu ′(x)− v (z)] dF (θ) + (1− µ)(1 − π) [E(θ)u ′(x) − v ′(z)] 
= ( )|y=0 ´

θ3 
´θ θ∂y  −µπ 

θ3 
v ′ (z)dF (θ)− (1− µ)πv ′ (z) + ∂Eu µπ dF (θ) + (1− µ)π 

∂w θ3 

1 



 
´ θ ′ ′− π µ 
θ3 

θu ′ x − v ′ z dF θ − µ E θ u x − v z∂L 
|y=0  ´ θ∂y  ∂Eu π − v ′ z µ dF θ − µ

∂w θ3 

When y , the Lagrangian collapses to the expected utility function: 

ˆ θ 

Eu x,w µ θu c1 v c2 dF θ − µ E θ u x v − x
θ 

And the first order condition for optimality of x is given by: 

ˆ θ∂Eu 
′µ θu ′ x − v z dF θ − µ E θ u ′ x − v ′ z

∂x θ1 

Yielding: 

ˆ ˆθ θ3 
′ ′µ θu ′ x − v ′ z dF θ −µ E θ u x − v z −µ θu ′ x − v ′ z dF θ

θ3 θ1 

Which gives us: 

ˆ ˆθ3 θ∂L ∂Eu 
′|y=0 − −π µ θu ′ x − v ′ z dF θ π − v z µ dF θ − µ

∂y ∂w θ1 θ3 

When y , we can write: 

ˆ ˆθ1 θ∂Eu ∂c1 ∂c2′µ θu ′ c1 v c2 dF θ v ′ z dF θ −µ v ′ z
∂w ∂w ∂wθ θ1 

∂c2Recalling that ∂c1 , and that θu ′ c1 v ′ c2 (from the first order 
∂w ∂w 

condition for optimal consumption choice of the time-consistent β agent): 

ˆ ˆθ1 θ∂Eu 
′µ v ′ c2 dF θ v ′ z dF θ − µ v z

∂w θ θ1 

′ ′Recalling further that for θ < θ1, c2 > z, then v c2 < v z , yielding: 

ˆ ˆθ1 θ∂Eu 
′ ′< µ v z dF θ v ′ z dF θ − µ v z

∂w θ θ1 

∂Eu 
< v ′ z

∂w 

This implies: 

ˆ ˆθ3 θ∂L 
|y=0 < − −π µ θu ′ x − v ′ z dF θ π v ′ z − v ′ z µ dF θ − µ

∂y θ1 θ3 

2 

dF − µ



ˆ θ3∂L 
|y=0 < −(1− π)µu ′ (x) [θ − θ1] dF (θ)

∂y θ1 

∂L 
|y=0 < 0 

∂y

Concluding the proof. 
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